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Abstract
Introduction—This study focuses on the implementation of modulated modularity clustering
(MMC) a new cluster algorithm for the identification of molecular signatures of preeclampsia and
intrauterine growth restriction (IUGR), and the identification of affected microRNAs

Methods—Eighty-six human placentas from normal (40), growth-restricted (27), and
preeclamptic (19) term pregnancies were profiled using Illumina Human-6 Beadarrays. MMC was
utilized to generate modules based on similarities in placental transcriptome. Gene Set Enrichment
Analysis (GSEA) was used to predict affected microRNAs. Expression levels of these candidate
microRNAs were investigated in seventy-one human term placentas as follows: control (29);
IUGR (26); and preeclampsia (16).

Results—MMC identified two modules, one representing IUGR placentas and one representing
preeclamptic placentas. 326 differentially expressed genes in the module representing IUGR and
889 differentially expressed genes in a module representing preeclampsia were identified.
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Functional analysis of molecular signatures associated with IUGR identified P13K/AKT, mTOR,
p70S6K, apoptosis and IGF-1 signaling as being affected. Analysis of variance of GSEA-
predicted microRNAs indicated that miR-194 was significantly down-regulated both in
preeclampsia (p=0.0001) and IUGR (p=0.0304), and miR-149 was significantly down-regulated in
preeclampsia (p=0.0168).

Discussion—Implementation of MMC, allowed identification of genes disregulated in IUGR
and preeclampsia. The reliability of MMC was validated by comparing to previous linear
modeling analysis of preeclamptic placentas.

Conclusion—MMC allowed the elucidation of a molecular signature associated with
preeclampsia and a subset of IUGR samples. This allowed the identification of genes, pathways,
and microRNAs affected in these diseases.
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1. Introduction
Preeclampsia (PE) is a pregnancy associated syndrome characterized by hypertension and
proteinuria during pregnancy, which is a consequence of diverse pathophysiological
processes involving impaired implantation, endothelial dysfunction, and systemic
inflammation [1–4]. Intrauterine growth restriction (IUGR), of diverse causes, refers to the
poor growth of a fetus that has not reached its growth potential while in the mother’s uterus
during pregnancy [5]. This study describes the genome-wide gene expression analysis of a
large (n=86) set of human placentas in order to uncover expression patterns (or molecular
signatures) associated with preeclampsia and IUGR. Previously, we successfully identified,
using a linear model analysis, genes disregulated in preeclampsia [6]. However, a similar
analysis of IUGR samples was less effective, likely due to the high heterogeneity of the
IUGR samples. As a result, we used an alternative method of analysis referred to as
modulated modularity clustering (MMC) [7] that identifies unique expression signatures in a
heterogeneous sample population. MMC is analogous to K-means clustering [8] with the
exception that the numbers of clusters or modules are independently identified by MMC, not
arbitrarily selected by the investigator. Using MMC we were able to identify unique
placental gene expression signatures for both preeclampsia and a subset of IUGR subjects
and utilized those expression profiles to identify, using gene set enrichment analysis (GSEA)
[9], microRNA candidates disregulated in IUGR and/or preeclampsia. In the case of PE we
compared the MMC-generated results with our previously published linear model analysis
of PE placentas [6].

2. Materials and methods
2.1 Study design

An initial study population, consisting of 86 Caucasian and African-American subjects
collected during 2004–2008, was utilized for gene expression analysis. Initially a small
subset of 14 subjects (batch #1) was analyzed using Illumina arrays to ensure the quality of
the RNA before proceeding further. Once quality was confirmed the remaining 72 samples
were analyzed (batch #2). Principle component analysis identified one sample as an outlier
and that sample was discarded from the analysis. For the linear modeling batch #1 and batch
#2 samples were included and the data was corrected for batch effect using a set of 8
technical replicates. For the MMC analysis only the second batch was utilized as
preliminary analysis indicated that batch effect negatively affected the performance of the
MMC analysis. Thus, a subset population of 71 subjects in the following groups: (1)
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preeclampsia (n=16); (2) IUGR (n=26); and (3) control group (n=29), was used for MMC
and microRNA qRT-PCR validation.

2.2 Subjects and sample collection
Preeclampsia was diagnosed when both pregnancy-induced hypertension and proteinuria
were present according to American College of Obstetricians and Gynecologists 2000
guidelines [10]. Pregnancy-induced hypertension was defined as a sustained (≥ 2 measures 6
hours apart) blood pressure elevation (> 140/90 mm Hg) > 20 weeks of gestation.
Proteinuria was defined as a sustained (≥2 measures 4 hours apart) presence of elevated
protein in the urine (> 30 mg/dL or > 1+ on a urine dipstick). IUGR was defined when the
estimated weight of a fetus was below the 10th percentile for its gestational age and whose
abdominal circumference was below the 2.5th percentile. Subjects were enrolled at the Duke
University Medical Center Obstetric Clinic starting August 1, 2003. The criteria for subject
enrollment and procedure for sample collection and storage were described in our previous
paper [6]. Summary characteristics of the studied population are presented in (Table 1). The
study was approved by the Duke University Medical Center Institutional Review Board
(IRB 00016065).

2.3 RNA isolation from human placenta
Total RNA was isolated from term human placentas using the Totally RNA kit (Ambion).
Small RNA used for microRNA qPCR validation, was isolated using the mirVana miRNA
isolation kit (Ambion). Only samples with an OD260:OD280 ≥ 2.0 were used.

2.4 Real-time Quantitative RT-PCR
Small RNA-containing total RNA was converted into cDNA using the miScript Reverse
Transcription Kit (Qiagen). EvaGreen [11] based qRT-PCR was performed to profile
miRNA levels in 71 placentas from healthy or case (PE or IUGR) complicated pregnancies.
The fold change between the experimental sample and the calibration sample was calculated
using the Pfaffl method [12] (See supplemental method for detailed information).

2.5 Statistical analysis
Transcript data was log2 transformed, and quantile normalized as described previously [6].
Principle components analysis [13] was performed to calculate the contribution of each of
the factors to the measured transcriptional variation: classification (or module), gender,
induction of labor, their pair-wise two-way interactions, and estimated gestational age, by
using JMP Genomics 5.0 (SAS Institute, Cary, NC). Since no significant effect of induction
of labor was detected in our previous study [6], we chose to use a model without induction
of labor to perform gene-specific analysis of variance (ANOVA) using PROC MIXED in
SAS (SAS Institute, Cary, NC): expression = μ + classification + gender + gender ×
classification + batch + ε, treating classification, gender, and batch as fixed effects. Custom
hypothesis tests were constructed to test for differential expression between case (PE or
IUGR) and control or between different modules predicted by MMC (with module in place
of classification). Raw p-values were corrected for multiple comparisons via Benjamini-
Hochberg FDR at α < 0.05 (for pathway analysis) and Bonferonni at α < 0.05 methods [14]
as implemented in PROC MULTTEST in SAS (SAS Institute, Cary NC).

miRNA-specific analysis of variance (ANOVA) was performed using PROC MIXED in
SAS 9.2 (SAS Institute, Cary, NC), treating classification as fixed effect. The difference of
miRNA levels in three groups was also profiled by fitting relative expression unit to
classification in JMP 9 (SAS Institute, Cary, NC). Student t test was performed to evaluate
the module effect by using SAS 9.2 (SAS Institute, Cary, NC). Differences in demographics
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between the control and case groups were tested using one-way ANOVA and Chi-square
test for continuous and discrete variables respectively, by using JMP 9 (SAS Institute, Cary,
NC). Validation of microarray results using RT-PCR was previously reported [6]

2.6 Modulated Modularity Clustering and Gene Set Enrichment Analysis
Modulated Modularity Clustering (MMC)[7] was used to separate placentas on the basis of
the gene expression profiles. This method compares the gene expression profiles of input
samples, correlates them to each other, and creates modules based on an overall correlation
index, with no information provided as to which samples were classified as control, IUGR
or preeclampsia. The program does not know how many modules exist a priori, but
determines how many different molecular signatures are there in the sample population. A
normalized and quality filtered transcript data for 34471 probes in 71 human placenta
samples was submitted to the online software for clustering (http://mmc.gnets.ncsu.edu/).
Validation of the MMC procedure was provided by comparison of previous linear model
analysis of preeclamptic samples [6] with results obtained from MMC clustering.

Gene Set Enrichment Analysis (GSEA) [9] was performed on the ranked list (based on p-
value) of differentially expressed genes to identify functionally enriched gene sets. Curated
microRNA targets from the Molecular Signature Database (MSigDB, Borad Institute) were
analyzed for enrichment.

2.7 Pathway analysis
Genes from the data set that met the FDR<0.05 and were annotated as high-quality
(“perfect” or “good”) in an updated Illumina probe set annotation [15] were considered for
ingenuity pathways analysis (IPA). The significance of the association between the data set
and the canonical pathway was measured by using Benjamini-Horhberg multiple testing
corrected p-value.

2.8 Decision tree construction
The relative expression level of all the candidate miRNAs was used to construct the decision
tree. We used a well-known decision tree algorithm, C4.5, implemented in an open-source
software library [16] (WEKA, J48, University of Waikato, New Zealand). This analysis uses
recursive partitioning methods to separate the patients into distinct sub-sets by identifying
the value of miRNA relative expression level and automatically constructing the decision
branches. The corresponding breakpoints were selected with the criterion of maximization
of the purity of the group of patients after splitting. The algorithm also includes a “pruning”
procedure to reflexively eliminate unnecessary branches, reduce the estimated errors, and
generalize the model. The outcome is a set of probabilities associated with the likelihood
that the different microRNAs can be used to predict whether an individual is a case (IUGR
or PE) or a control based on the expression pattern of the selected microRNAs. The potential
predictive performance of the tree was evaluated using 5-fold cross-validation, where the
model was built on 4/5 of the data, and tested for its prediction error on the withheld 1/5 of
the data. This was repeated using every possible 4/5 and 1/5 split of the data, and an average
prediction error was calculated.

3. Results
3.1 Demographics of study population

Study population characteristics are described in Table 1. Preeclampsia and IUGR cases
were more likely to deliver early due to the induction of labor and had a lower infant birth
weight compared to controls (p<0.01). Lower maternal parity was found to be associated
with preeclampsia and IUGR samples (p<0.01). Placental weight, corrected birth weight
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percentile and maternal weight of IUGR were significantly lower than that of control and
preeclampsia (p<0.05). There were no significant differences in infant sex among the three
groups.

3.2 Variance component analysis
Variance component analysis indicated that classification (Control, IUGR, or PE) is the
main contributing effect on expression variation, with minor contributing effects of labor
and estimated gestational age. Gender has no significant contribution to the principle
components of expression variation (Supplemental figure 1A). Additionally, when we
performed this variance component analysis with module (from MMC analysis) in place of
classification, the contribution of module to the observed transcriptional variation is greater
than classification (Supplemental figure 1B). The dataset is freely available under GEO
Series accession number GSE35574.

3.3 Differentially expressed genes between control and IUGR placentas
Linear model analysis estimating placental gene expression differences between normal and
IUGR placentas found only 1 differentially expressed gene at a conservative Bonferroni
significance level. When we reexamined the data using a less conservative false discovery
rate (FDR) set at <0.1, we were able to identify 26 differentially expressed genes
(Supplemental figure 2A).

3.4 Modulated Modularity Clustering of patients based on placental gene expression
profiles

To get a clear module structure, 71 human term placentas composed of 29 control, 26 IUGR
and 16 PE were analyzed by MMC and classified into 6 modules based on the expression
profile. Unlike other modules that were a mix of PE and/or IUGR and control samples,
module 3 consisted of only IUGR samples, and module 5 consisted of only PE and IUGR
samples (Table 2). The gene expression differences between modules 3 (or module 5) and
the remaining modules were then compared by linear model analysis as described above.
Comparison of module 3 vs all identified 326 differentially expressed genes at a
conservative Bonferroni significance level and 2100 differentially expressed genes at
FDR<0.05; in the test of module 5 vs all, we found 889 differentially expressed genes at a
conservative Bonferroni significance level and 5184 differentially expressed genes at
FDR<0.05 (Supplemental figure 2B, 2C and supplemental table 1, 2).

All the 128 differentially expressed genes previously identified as disregulated in
preeclamptic samples [6] were represented at the top position in the analysis of module 5,
including the known preeclampsia associated genes ENG (endoglin), FLT1 (fms-related
tyrosine kinase 1), INHA (inhibin alpha), PAPPA2 (pappalysin-2), and RDH13 (retinol
dehydrogenase 13) (Supplemental figure 2C).

The differentially expressed genes (FDR<0.05) in “module 3 vs all” and “module 5 vs all”
were used to search for affected canonical pathways. Significant pathways are listed in
Table 3. Pathways that are enriched in “module 3 vs all” are associated with cellular growth,
proliferation and development. Significant pathways affected included P13K/AKT/mTOR/
eIF4/p70S6K signaling, apoptosis signaling and IGF-1 signaling. Pathways that are enriched
in “module 5 vs all” are associated with cellular growth, proliferation and development (e.g.
EIF2 signaling, RhoGDI signaling, and mTOR signaling) and immune responses (e.g.
leukocyte extravasation signaling, Fcg receptor-mediated phagocytosis in macrophages and
monocytes, and CXCR4 signaling). All of the eight pathways we previously identified as
disregulated in preeclampsia using linear modeling analysis [6] match those we identified in
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“module 5 vs all” using MMC (Table 3), supporting the validity of the MMC clustering
analysis method.

3.5 Gene Set Enrichment Analysis
A ranked list of differentially expressed genes was generated according to the log
transformed p-value in comparison of module 3 vs. all and module 5 vs. all respectively, and
was subsequently used as the input file for GSEA to identify functionally enriched gene sets.

From the enrichment of curated microRNA targets in the Molecular Signature Database
(MsigDB, Borad Institute), a set of microRNAs was predicted to target the differentially
expressed genes. Considering the normalized enrichment score (NES), false discovery rate
(FDR) and nominal p-value, six leading candidates (miR-520A-5p, miR-194, miR-412,
miR-149, miR-483, and miR-503) were selected for microRNA profiling (Table 4).

3.6 Comparison of miRNA levels between MMC modules and between PE, IUGR, and
Control groups

Results showed that the expression level of miR-520A-5p (p=0.0427) and miR-149
(p=0.0017) were significantly different in module 3 and module 5 respectively, when
compared to all other modules (Table 5 and Figure 1A, B). Similarly, miR-194 and miR-149
were significantly different between PE, IUGR, and control groups (Table 5 and Figure 1C,
D). The microRNA qPCR results were used to build a decision tree in order to determine
their potential usefulness as diagnostic biomarkers. As shown in Figure 1E, for
preeclampsia, a decision tree with an average predictive accuracy of 66.7% was identified.
For IUGR, a single variable decision tree with an average predictive accuracy of 58.2% was
identified (Fig. 1F)

4. Discussion
Intrauterine growth restriction (IUGR), as reflected by the birth of small for gestational age
(SGA) infants, has a complex etiology including maternal smoking, undernutrition, infection
or congenital abnormalities. IUGR can occur alone or associated with preeclampsia [17]. In
a previous study [6] we had reported 128 differentially expressed genes (conservative
Bonferroni-corrected p-value<0.05) and 2109 differentially expressed genes (FDR<0.05)
between preeclamptic and normal placentas. In this study, in contrast, only 1 differentially
expressed gene was identified between IUGR and normal placentas at a conservative
Bonferroni significance level, supporting the high degree of heterogeneity of IUGR. As a
result, we utilized a new clustering method, Modulated Modularity Clustering (or MMC) in
an attempt to identify subsets of IUGR and/or preeclamptic samples that had similar
molecular signatures.

There is a vast array of clustering methods available, and most methods are in fact a family
of approaches that require the user to supply additional arbitrary specifications. We
compared MMC to other approaches, and considered a number of clustering methods
including hierarchical clustering [18] and k-mean clustering [8]. Both of these approaches
require the user to specify the number of clusters, either directly (for k-means) or indirectly
(for hierarchical clustering) by choosing where to sever the tree. Two cases were considered:
to parallel the a priori category grouping, three clusters were chosen, whereas to parallel the
MMC results, six cluster were selected. A correlation-based distance was used for both
methods, and additionally squared Euclidean distance for k-means was considered. In total,
we compared MMC to six other clustering scenarios. None of the tested methods generated
biologically meaningful clusters except k-mean clustering when specifying six clusters a
priori, for which the results are essentially the same as those obtained with MMC clustering
(supplemental figure 4). The difference being that for K-means we has to arbitrarily select
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the number of clusters thus biasing the results. MMC in contrasts used the data to determine
the number of “natural” cluster in the dataset. This makes MMC a stronger approach than k-
means or hierarchical clustering.

MMC successfully identified two groups of placentas that had unique molecular signatures.
One of these modules (module 3) is associated with IUGR and the other (module 5) with
both IUGR and preclampsia. Essentially, what MMC accomplished was to take a pool of
highly heterogeneous IUGR placentas and identify within that group a subset that had a
common gene expression signature. While this does not resolve the issue of high
heterogeneity of the disease it does, at the very least, allow for a greater understanding of a
subset of IUGR patients. As shown in Table 2, the percentile birth weight represented by
placentas in Module 3 was 2.4% suggesting that these are placentas from severally growth-
restricted babies. Examination of other clinical parameter did not show anything remarkable
about these cases compared to other severely restricted IUGR cases in our sample
population, so at this time we have no clear explanation as to why this group of placentas is
unique compared to other IUGR cases.

The validity of the MMC result is supported by the following: a) 11/16 preeclamptic
placentas and a smaller subset (7) of IUGR placentas clustered in module 5. Examination of
the clinical data for these IUGR placentas indicated that 4/7 had been classified originally as
both IUGR and preeclamptic. b) The differentially expressed genes we had previously
identified in preeclamptic placentas [6] are essentially the same as those identified in
Module 5 including known preeclampsia associated genes. c) All eight significant pathways
we previously reported as disregulated in preeclampsia [6] are represented in the pathway
analysis of module 5. d) When “classification” is replaced with “module” in the variance
component analysis, the independent contribution of module to gene expression variation is
larger than that of classification (Supplemental figure. 1). This reinforces the hypothesis that
IUGR may be a highly heterogeneous disease, and that the currently used binary
classification may not be capturing the underlying biological variability.

Moreover, linear model comparison of module 3 patients resulted in the identification of 326
differentially expressed genes that are associated with this subset of IUGR placentas.
Included in the top ten differentially expressed genes are: ARPC3 (actin related protein 2/3
complex, subunit 3) essential for trophoblast outgrowth and implantation [19]; TGM2,
transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase),
involved in trophoblast intercellular fusion [20]; EVI5 (ecotropic viral integration site 5),
involved in collective cell migration [21]; IL18 (interleukin 18 ; interferon-gamma-inducing
factor), involved in the regulation of placental inflammation and a known contributor to the
pathogenesis of preeclampsia [22,23]; and DKFZP564K142, an implantation-associated
protein [24,25]. Also, many transcripts revealed in module 3 are involved in migration,
invasion, allergy or hypertension disorders. Similarly, pathway analysis identified P13K/
AKT signaling, mTOR and p70S6K signaling as being affected and these pathways are
known to be involved in IUGR and placental growth [26–28]. Also, IGF-1 signaling, a well-
known regulator of fetal growth, was also affected [29,30]. Our results provides for the first
time an opportunity to closely examine the gene expression profile unique to a subset of
IUGR patients.

We were also able to utilize the MMC results to identify a set of microRNAs, miR-149,
miR-194, and miR-520a, associated with preeclampsia and/or IUGR. miR-149 has been
detected previously in the plasma of pregnant women [31] but no association with either PE
or IUGR has been reported. miR-194 has been implicated in cancer metastasis/cell migration
[32,33] but there are no previous reports of association with PE or IUGR. miR-520a has
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been detected in the maternal plasma at 35 weeks of gestation and was found to be
unaffected by placental insufficiency-related complications [34].

In addition, putative targets of differentially expressed miRNAs (miR-194 and miR-149)
were analyzed based on the gene set information from GSEA. Target genes that are core
enriched in GSEA process are shown in supplemental table 3 and 4, with the expression
profiles in placenta. Most of these targets are represented in the differentially expressed
genes by classification or by module (supplemental figure 3), and several were implicated in
the pathogenesis of preeclampsia. SLC6A8, a putative target of miR-149 and up-regulated in
our preeclampsia samples, was functionally related to preeclampsia by transporting creatine
into and out of cells, since creatine is an important predictor for preeclampsia [35]. Another
putative target of miR-149, IGFBP5, was functionally associated with preeclampsia by the
interaction with PAPPA2, a known preeclampsia related gene [36]. Similarly, BTBD7 and
ARHGAP21, putative targets of miR-194, may be functionally associated with
preeclampsia. BTBD7 is reported to promote epithelial tissue remodeling and formation of
branched organs [37]. ARHGAP21 (also known as ARHGAP10), promotes activation of
RhoA [38], which is in the center of RhoA signaling enriched in differentially expressed
genes of module 5 and has a major role in the mechanisms of enhanced vascular reactivity in
preeclampsia [39]. Finally, NFAT5 (nuclear factor of activated T cells), putative target of
miR-194, was reported to regulate placental osmolytes inositol and sorbitol in the ovine
model of IUGR [40].

The decision tree modeling was used to explore the potential of these expression variables as
predictors of disease outcomes. We used internal model validation to estimate the potential
predictive accuracy of the resulting models, but future studies should evaluate the
performance on independent data.

In short, the evidence shows that the MMC analysis was capable of identifying unique
molecular signatures, and that in two cases (modules 3 and 5) those molecular signatures are
associated with disease.

Conclusions
MMC allowed the elucidation of a molecular signature associated with a subset of IUGR
samples. This allowed the identification of genes, pathways, and microRNAs affected in this
disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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MMC Modulated Modularity Clustering
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Figure 1.
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Table 3

Ingenuity pathways significantly enriched for differentially expressed genes in module 3 and module 5

Ingenuity Canonical Pathways Label FDR (B-H p-value)

P13K/AKT Signaling Module 3 vs all 0.0176

Regulation of eIF4 and p70S6K Signaling Module 3 vs all 0.0203

Molecular Mechanisms of Cancer Module 3 vs all 0.0324

mTOR Signaling Module 3 vs all 0.0324

Neuregulin Signaling Module 3 vs all 0.0412

Apoptosis Signaling Module 3 vs all 0.0412

IGF-1 Signaling Module 3 vs all 0.0420

Amyloid Processing Module 3 vs all 0.0425

Cleavage and Polyadenylation of Pre-mRNA Module 3 vs all 0.0425

JAK/Stat Signaling Module 3 vs all 0.0499

EIF2 Signaling Module 5 vs all 0.0002

Leukocyte Extravasation Signaling* Module 5 vs all 0.0009

RhoGDI Signaling Module 5 vs all 0.0015

mTOR Signaling Module 5 vs all 0.0015

Androgen Signaling Module 5 vs all 0.0015

Huntington’s Disease Signaling Module 5 vs all 0.0015

Sertoli Cell-Sertoli Cell Junction Signaling Module 5 vs all 0.0015

Mitochondrial Dysfunction Module 5 vs all 0.0015

Ephrin Receptor Signaling Module 5 vs all 0.0016

CXCR4 Signaling* Module 5 vs all 0.0017

RhoA Signaling Module 5 vs all 0.0017

Regulation of Actin-based Motility by Rho* Module 5 vs all 0.0017

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes* Module 5 vs all 0.0018

Gap Junction Signaling Module 5 vs all 0.0018

Breast Cancer Regulation by Stathmin1 Module 5 vs all 0.0018

Axonal Guidance Signaling Module 5 vs all 0.0018

Regulation of eIF4 and p70S6K Signaling Module 5 vs all 0.0018

Molecular Mechanisms of Cancer Module 5 vs all 0.0026

α-Adrenergic Signaling Module 5 vs all 0.0028

Tight Junction Signaling Module 5 vs all 0.0032

fMLP Signaling in Neutrophils Module 5 vs all 0.0052

Cell Cycle: G1/S Checkpoint Regulation Module 5 vs all 0.0052

Phospholipase C Signaling Module 5 vs all 0.0052

Signaling by Rho Family GTPases Module 5 vs all 0.0058

Oxidative Phosphorylation Module 5 vs all 0.0063

Germ Cell-Sertoli Cell Junction Signaling* Module 5 vs all 0.0068

Mismatch Repair in Eukaryotes Module 5 vs all 0.0078

Mechanisms of Viral Exit from Host Cells Module 5 vs all 0.0093
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Ingenuity Canonical Pathways Label FDR (B-H p-value)

Antiproliferative Role of TOB in T Cell Signaling Module 5 vs all 0.0093

NRF2-mediated Oxidative Stress Response* Module 5 vs all 0.0172

Semaphorin Signaling in Neurons* Module 5 vs all 0.0221

N-Glycan Biosynthesis* Module 5 vs all 0.0499

*
Pathways identical with the ones that enriched in differentially expressed genes between preeclamptic and normal placentas in our previous report

[6]
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