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Abstract
Knowledge discovery from large and complex scientific data is a challenging task. With the ability
to measure and simulate more processes at increasingly finer spatial and temporal scales, the
growing number of data dimensions and data objects presents tremendous challenges for effective
data analysis and data exploration methods and tools. The combination and close integration of
methods from scientific visualization, information visualization, automated data analysis, and
other enabling technologies —such as efficient data management— supports knowledge discovery
from multi-dimensional scientific data. This paper surveys two distinct applications in

1Corresponding author: oruebel@lbl.gov (Oliver Rübel).

NIH Public Access
Author Manuscript
Procedia Comput Sci. Author manuscript; available in PMC 2013 June 10.

Published in final edited form as:
Procedia Comput Sci. 2010 May ; 1(1): 1757–1764. doi:10.1016/j.procs.2010.04.197.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



developmental biology and accelerator physics, illustrating the effectiveness of the described
approach.
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1. Introduction
Knowledge discovery from large and complex collections of today’s scientific datasets is a
challenging task. Due to advances in data acquisition and scientific computing, today’s
datasets are becoming increasingly complex. With the ability to measure and simulate more
processes at finer scales, the number of data dimensions and data objects has grown
significantly in today’s scientific datasets, while the phenomena researchers are able to
investigate become increasingly complex. Researchers are overwhelmed with data and
standard tools are often insufficient to enable efficient data analysis and, hence, discovery of
information and knowledge from the data.

We address these challenges via a combination of scientific visualization, information
visualization, automated data analysis, and other enabling technologies. The tight coupling
of different analysis methods and tools supports knowledge discovery from complex, multi-
dimensional scientific data. To illustrate the effectiveness of this approach, we survey the
processes and tools used to analyze: i) 3D gene expression data, and ii) laser wakefield
particle acceleration data, demonstrating the applicability of the described basic concept to a
large range of applications.

Analysis of 3D gene expression data is linked to the more general problem of understanding
the control of embryo development, which is a fundamental question in biology. A cell’s
unique fate is determined by specific combinations of developmental regulatory factors.
These factors form part of complex genetic regulatory networks, which ultimately
coordinate the expression of all genes. In order to study these complex systems, the
BDTNP2 has developed so called PointCloud data, a novel type of spatial and temporal gene
expression data. Single PointClouds are obtained via segmentation of two-photon
microscopy images of whole Drosophila embryos and provide a quantitative representation
of spatial gene expression levels of the Drosophila blastoderm at cellular resolution [1].
Multiple PointClouds representing a variety of genes at various developmental time points
are registered into a single Atlas PointCloud describing the expression of about one hundred
genes at multiple points in time [2]. Analysis of 3D gene expression data is challenging in
particular due to the large number of data dimensions (genes) and the complex interactions
between them.

Laser wakefield particle accelerators (LWFAs) [3] utilize an electron plasma wave to
accelerate charged particles (e.g., electrons) to high energy levels over very short distances
[4, 5]. Analysis, understanding, and control of the complex physical processes of plasma-
based particle acceleration requires understanding of how particle beams are formed and
accelerated. These processes are best understood by tracing the particles that form a beam
over time and studying their temporal evolution [6, 7, 8, 9]. In laboratory experiments,
however, it is impossible to record the complete evolution of a beam and much less to trace
single particles within a plasma. Researchers from the LOASIS3 project perform simulation

2Berkeley Drosophila Transcription Network Project (BDTNP): http://bdtnp.lbl.gov/Fly-Net/
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of LWFA experiments using VORPAL [10], in order to better understand the fundamental
physics of plasma-based acceleration and the processes involved in experiments, as well as
to improve experiments [11]. The datasets produced by LWFA simulations are (i) extremely
large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-
dimensional, making analysis and knowledge discovery from complex LWFA simulation
data a challenging task.

Section 2 introduces our general approach for knowledge discovery from multi-dimensional
scientific data. We demonstrate the broad applicability of the described methodology in a
survey of the analysis processes and tools used to analyze 3D gene expression (Section 3)
and laser wakefield particle acceleration data (Section 4).

2. General Methodology
While the challenges in developmental biology and accelerator physics research are quite
different, the same basic analytic methodology can be used for knowledge discovery from
such complex data. The basic approach is based on the unique combination and close
integration of: (i) enabling technologies, (ii) visualization, and (iii) data analysis (Figure 1).
Enabling technologies are fundamental methods, needed for data analysis, that are not
necessarily part of the analysis itself, e.g., methods for data retrieval, access, and
management.

Visualization transforms data into readily comprehensible images and is an indispensable
part of the scientific discovery process [12]. In particular in the context of multi-dimensional
data, a single display is often not sufficient to reveal all aspects of the data. Scientific
visualizations support detailed analysis of physical data characteristics, while information
visualizations provide means for exploration of the variable space and identification of
relationships between different data dimensions. We use multiple views —each highlighting
different aspects of the data— linked via the concept of data selection (brushing) [13, 14,
15]. Selected data subsets can be highlighted in any view enabling detailed analysis and
knowledge discovery.

While interactive data exploration based on linked multiple views is effective, it also has
limitations. Manual data exploration can be time-consuming — hindering the analysis of
large data collections — and visual detection of all fine and subtle data features is often
impossible. Automated data analysis methods promise to overcome these limitations of
visual data analysis by assisting in the most complex and time-consuming steps of the
analysis pipeline, e.g., through automated feature detection [16].

In practice, interpretation of automated analysis results is often unintuitive and may lead to
false interpretations, and proper definition of analysis parameters is often complicated. By
linking automated data analysis and visualization, we overcome the difficulties with both
visual and automated data analysis. Automating the detection of data features of interest
enables, e.g., development of advanced visualizations that focus on the main data portions of
interest, significantly reducing clutter and occlusion of important information. At the same
time, visualization eases validation and interpretation of analysis results and definition of
input parameters. Ultimately, it is the tight and meaningful integration of all these different
methods that enables us to effectively discover new knowledge.

3Lasers, Optical Accelerator Systems Integrated Studies (LOASIS): http://loasis.lbl.gov/
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3. Application I: 3D Gene Expression Data
With the availability of 3D PointCloud gene expression data, new ways for analyzing the
complex genetic regulatory networks controlling animal development are becoming
possible. PointCloud data describes the output of these complex networks quantitatively.
The information stored in a PointCloud can be represented as a table in which each row
represents a single cell of the embryo containing information about: i) the location of the cell
in physical space (x,y,z), ii) its neighbors, iii) the estimated cell-volume and surface normal,
and iv) the recorded expression levels for currently up to ≈ 100 genes at multiple time
intervals. PointCloud data effectively transforms hundreds of gigabytes of image data into a
for computation easily accessible format, enabling analysis of the spatial patterns of gene
expression, their temporal variation, and regulation.

PointCloudXplore (PCX) [17] is a visualization and analysis system specifically developed
for the analysis of 3D PointCloud data (Figure 2). PCX supports analysis of spatial gene
expression patterns via dedicated 2D and 3D physical model representations of the embryo
blastoderm [18]. The 3D embryo views show the morphology of the embryo blastoderm and
allow biologists to study the spatial expression patterns of genes relative to the shape of the
embryo. The 2D embryo views describe 2D projections of the embryo blastoderm and
provide an overview of all blastoderm cells of the embryo. Dedicated information
visualizations (abstract views) provide means for exploration of gene expression space and
identification of relationships between genes. Parallel coordinates and scatter-plots are used
for analysis and comparison of the expression of multiple genes in all cells of the embryo
while the Cell Magnifier provides an overview of all expression values of a single cell via a
bar-graph view. The concept of cell selection (brushing) allows the user to correlate the
information shown in different views [19]. The user can select cells of interest in any view,
e.g., via drawing on the embryo surface or via thresholding in parallel coordinates. This
mechanism allows features of interest to be defined and highlighted in any view, making
PointCloudXplore an effective tool for rapid data exploration (Figure 3).

While visualization is a powerful approach for knowledge discovery from complex data sets,
visual detection of all existing features is very difficult in this case due to the large number
and subtlety of features and intricate nature of 3D gene expression data. A typical feature of
interest defines, e.g., various groups of cells behaving similarly with respect to the
expression of several genes or a single gene over time. In the context of conceptually
simpler forms of expression data — such as microarray experiments — data clustering has
already shown to be able to reveal details hidden in the data [20]. However, appropriately
defining clustering parameters — such as the number of clusters — as well as validation and
interpretation of clustering results, is still complicated.

PCX integrates data clustering directly with the visualization. Using a combination of
visualization and dedicated algorithms for evaluating the quality of clustering results, the
user can intuitively identify appropriate clustering parameters [21]. A cluster defines a
selection of cells behaving similarly with respect to the expression of the set of genes used
in the clustering process. Similar to user-defined cell selections, PCX can directly display
and highlight automatically computed clusters in any view. The meaningful integration of
data clustering with the visualization improves the visualization as well as the clustering
process. Data clustering supports automatic detection and highlighting of data features in the
visualization, enabling a more focused and accurate analysis process. Visualization provides
effective means for accurate definition of clustering input parameters and allows intuitive
validation and interpretation of clustering results.
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In particular in the context of novel scientific data — such as PointCloud data — researchers
need to be able to quickly develop new analysis functions. PCX addresses this need by
providing an interface to MATLAB (The Math- Works Inc., Natick, MA, USA), allowing
researchers to integrate custom analysis capabilities with PCX and providing biologists
faster and more convenient access to advanced analysis functions [22]. With its interface to
MATLAB, PCX supports fast prototyping and testing of new ideas, thus facilitating
communication between bioinformatics researchers and experimental biologists. The close
integration of MATLAB with the visualization improves the visualization by providing
simple access to new, advanced analysis capabilities as well as the analysis implemented in
MATLAB by providing efficient means for validation and exploration of analysis results.

While the different methods—i.e., scientific visualization, information visualization, and
automated data analysis — are each useful in their own right, it is ultimately the
combination and close integration of all these methods that allows us to effectively analyze
PointCloud data. Automatic data analysis methods are commonly used for feature detection
and to manipulate and summarize large amounts of information. Data visualization provides
effective means for data exploration as well as analysis, validation, and control of the
automatic data analysis.

4. Application II: Laser Wakefield Particle Acceleration Data
Analysis of and knowledge discovery from large, complex, multi-dimensional laser
wakefield particle accelerator (LWFA) simulation data is a challenging task. Scientists of
the LOASIS project model LWFA experiments computationally via particle-in-cell (PIC)
simulations using VORPAL [10] to better understand nonlinear plasma response, beam
trapping, self-consistent laser propagation, and beam acceleration—processes not accessible
to analytic theory. In PIC simulations, collections of real charged particles are modeled as
computational macro-particles while the electromagnetic field is spatially discretized via a
computational grid. Particles are moved under Newton-Lorentz force obtained through
interpolation from the fields. The current carried by the moving particles is then deposited
onto the simulation-grid to solve Maxwell’s equations for the fields. For each dump —i.e., a
snapshot of the simulation at a particular point in time — data about the particles, fields, and
auxiliary state data is saved. For the analysis discussed here we mainly focus on the particle
data. Each particle is represented as a vector describing the physical location (x, y, z),
momentum (px, py, pz), identifier (id), and weight (wt) of the macro-particle. One main
feature researchers are interested in are beams of high-energy particles formed during the
course of LWFA simulations. To enable efficient and accurate data analysis, dedicated
mechanisms for beam selection and detection are needed.

Figure 4 provides an overview of the system for knowledge discovery from LWFA
simulations. The index/query system FastBit [23] serves as main interface to the data
enabling fast computation of conditional histograms, threshold queries, ID-based queries,
and particle tracing. The close integration of FastBit and the state-of-the-art visualization
system VisIt [24] supports fast visual exploration of very large datasets [8]. VisIt
implements an efficient rendering method for parallel coordinates based on 2D histograms,
computed directly using FastBit. Histogram-based parallel coordinates serve as the main
interface for defining multi-dimensional range queries used for selection of particle beams
(Figure 5a). Once a subset of particles of interest has been identified, the particle IDs are
saved as a named selection. Named selections can be applied to any plot in VisIt, enabling
effective linking of multiple physical and abstract data views (Figure 5b, c). While parallel
coordinates serve as the main interface for data selection, VisIt also supports creation of
named selections based on a large range of other views allowing the user, e.g., to select
particles in physical views using a bounding box. Common methods used for visualization
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of the particle data include point-based pseudocolor and scatter plot visualizations as well as
density-based visualizations, such as histogram views and parallel coordinates. For
visualization of the field data we commonly use vector plots, volume rendering, and iso-
surface-based visualizations. The close integration of multiple views via the concept of
named selections together with efficient data management supports interactive data
exploration based on the iterative refinement and validation of data queries.

While interactive selection of particle beams is effective, it requires substantial manual input
from the user and can be time-consuming. Automating the detection of particle beams
supports a more focused and efficient analysis process [9, 25]. The beam path analysis
algorithm [25] defines an efficient analysis pipeline that supports fast detection of particle
beams (Figure 4 right). First, each time step is analyzed independently to detect individual
particle bunches. The derived information is merged to define a single description for each
main particle beam. Finally, the algorithm computes the different temporal phases of each
beam — defining, e.g., the time frame when a beam was formed and accelerated — as well
as two distance fields ds and dmdefining the distance of particles to the beam in physical and
momentum space, respectively.

The automated beam detection is linked with the visualization in two ways. First, the beam
path analysis automatically creates a set of named selections — one per detected beam —
that can be applied to any plot in VisIt, enabling a fully automated beam analysis process.
Second, a set of complementary files is created, containing additional information about the
particle paths. These files can be visualized directly in the context of the simulated data and
enable a more efficient manual data exploration process by providing information about: i)
the temporal phases of a beam, ii) an appropriate reference time step for each beam, and iii)
the beam distance fields ds and dmenabling a faster and more accurate selection of particle
beams. Linking the automated beam detection with the visualization improves the
visualization by enabling a more streamlined and focused analysis process as well as the
automated analysis by providing effective means for investigation and validation of analysis
results.

5. Conclusions
The increasing complexity and size of today’s scientific data poses tremendous challenges
for data understanding and knowledge discovery. We have described an integrative
approach for knowledge discovery from multidimensional scientific data based on the
concept of linking visualization and data analysis. We have illustrated the effectiveness of
this methodology by describing how it is applied in practice in the analysis of 3D gene
expression and laser wakefield particle accelerator data.

The challenges we faced in both applications were quite different. First, LWFA simulation
datasets are extremely large (several TBs) making computationally efficient data
management methods, such as FastBit, indispensable. In direct comparison, PointCloud data
sets consist of relatively few data objects —i.e., on the order of 6000 cells in the case of
Drosophila PointCloud data compared to several million particles in LWFA simulation data
— but contain information about many more data dimensions, i.e., gene expressions.
Furthermore, the features researchers are interested in are quite different in the two
applications. Particle beams are very small compared to the complete data. Effective means
for fast data reduction are, therefore, essential for efficient analysis of LWFA simulation
data. In the visual data exploration process, the user step-by-step refines advanced data
queries while using multiple views for analysis and validation of query results. Similarly, the
automatic beam path analysis is aimed at identifying specific small features of interest, i.e.,
particle beams. In contrast, the goal of the automatic data analysis in the context of 3D gene
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expression is usually to manipulate and summarize large amounts of information rather than
extracting a specific small data subset. Data clustering is here often used to subdivide the
complete data into meaningful groups (clusters), each defining a set of cells with similar
expression behavior.

Despite the large differences between 3D PointCloud and LWFA simulation data, the basic
concepts used to analyze these different types of data are similar. While different
applications require different visual representations and analysis methods, it is the powerful
combination and close integration of multiple different methods that enables effective
knowledge discovery. The meaningful integration of visualization, data analysis, and
enabling technologies (including efficient data storage, organization, and access methods)
supports a more efficient, detailed, and focused analysis process than possible based solely
on either visualization or data analysis methods alone.
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Figure 1.
Overview of the basic components we use in combination to enable knowledge discovery
from multi-dimensional scientific data.
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Figure 2.
The system for knowledge discovery from 3D gene expression data. Color indicates the
areas the different components of the system belong to, i.e., enabling technologies (light
blue), scientific visualization (lilac), information visualization (orange), and data analysis
(green).
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Figure 3.
Screenshot of PointCloudXplore showing an expression surface of eve (left) and 2D/3D
scatter-plots of gt, hb, and Kr (right). The user selected a set of cells (red) via thresholding in
the scatter-plots. The same cells are highlighted in the embryo view (left). A characteristic
subset of the selected cells coincides with the second stripe of the pattern of eve, indicating
that gt, hb, and Kr could potentially be involved in the regulation of eve stripe 2.
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Figure 4.
The system for knowledge discovery from laser wakefield particle accelerator simulation
data. Color indicates the areas the different components of the system belong to, i.e.,
enabling technologies (light blue), scientific visualization (lilac), information visualization
(orange), and data analysis (green).
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Figure 5.
a) Parallel coordinates of time step t = 86 of a particle dataset showing all particles with a
momentum in x direction of px > 1e10 (gray) and a selected particle beam (red). b) Semi-
transparent rendering of the paths of the selected particles over time, using time steps 0
through 105. Color indicates px (the momentum in the acceleration direction x) and height
indicates momentum in y direction (py). The particles of the selected beam at time step t =
86 are shown in addition (red). The transition in color from blue to red along the particle
paths shows that the selected particles are constantly accelerated over time. The cork-screw-
like structure of the paths illustrates the oscillating motion of the particles in the wake. c)
Close-up view of the region in figure b showing the selected particles at time step t = 86.
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