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Key points

• Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron
output (neural drive to the muscle) in an approximately linear way if these inputs are common
to all motor neurons.

• The neural drive to the muscle is transformed in the EMG signal that can be thus used to
extract information on the oscillatory inputs to motor neurons.

• The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the
rectified EMG depending on the energy of the raw and rectified motor unit action potentials
at the input frequency and on the degree of amplitude cancellation.

• Amplitude cancellation negatively influences the effectiveness of EMG rectification in
identifying with linear methods oscillatory inputs to motor neurons, so that rectification
is preferable over the raw EMG only when the degree of cancellation is low.

Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the
motor neuron output with coherence analysis. Linear transmission is possible despite the motor
neuron non-linearity because the same input is sent commonly to several neurons. Because of the
linear transmission, common input components to motor neurons can be investigated from the
surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an
open debate on the utility and appropriateness of EMG rectification. The present study addresses
this issue using an analytical, simulation and experimental approach. The main novel theoretical
contribution that we report is that the spectra of both the rectified and the raw EMG contain input
spectral components to motor neurons. However, they differ by the contribution of amplitude
cancellation which influences the rectified EMG spectrum when extracting common oscillatory
inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG
rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed
by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume
conductor of EMG generation and by experiments conducted on the first dorsal interosseous and
the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded
that when the contraction level is relatively low, EMG rectification may be preferable for identifying
common inputs to motor neurons, especially when the energy of the action potentials in the low
frequency range is low. Nonetheless, different levels of cancellation across conditions influence
the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons
when using the rectified EMG.
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Introduction

Oscillatory inputs in various frequency bands, which may
have cortical or peripheral origin (Conway et al. 1995;
Pfurtscheller & Lopes da Silva, 1999; Pohja & Salenius,
2003; Riddle & Baker, 2005), are transmitted to the
motor neuron output (neural drive to the muscle) and
can be identified with linear analysis methods (Stegeman
et al. 2010; Negro & Farina, 2011a). The transmission of
oscillatory components to the motor neuron output is
possible despite the motor neuron non-linearity because
the same input is sent to several neurons (Negro &
Farina, 2011a, 2012). This distribution of common input
linearizes the input–output system made by an array of
neurons.

The neural drive to the muscle is transformed into EMG
by convolution of the motor neuron spike trains with the
motor unit action potentials. Since this transformation is
linear, any frequency component present in the neural
drive to the muscle is also present in the EMG signal
(intramuscular or surface), if it is within the band-
width of the signal. Because the EMG signal has a
relatively large bandwidth, it can in principle reveal
oscillatory components at both low and high frequencies.
Experimental studies have indeed identified spectral
components related to cortical oscillations from the
surface EMG in a variety of conditions (Conway et al.
1995; Baker et al. 1997). Similarly, oscillations that are
supposed to have cortical origin have been identified
from the coherence analysis of (intramuscular or surface)
EMG signals recorded from the same muscle (in different
locations) (Halliday et al. 2003) or from different muscles
(Evans & Baker, 2003; Boonstra et al. 2007; Danna-Dos
Santos et al. 2010; Poston et al. 2010; Keenan et al. 2012).

The presence of oscillatory input components in the
raw EMG can be satisfactorily explained by the above
reasoning (Negro & Farina, 2011a). However, the
empirical observation that the rectified EMG (where the
negative phases of the raw signal are transformed into
positive values) may also reveal these components is more
difficult to justify. This is due to the fact that rectification
is a non-linear operator that changes the frequency
components of the signal to which it is applied. Even more
striking is the fact that often EMG rectification seems to
facilitate the detection of oscillatory input components by

enhancing spectral lines associated with these components
(Mima & Hallett, 1999; Yao et al. 2007). For this reason,
rectification is often suggested as a pre-processing step
for extracting oscillatory drives (Halliday & Farmer,
2010), despite some researchers strongly disputing this
suggestion (Neto & Christou, 2010; Stegeman et al. 2010;
McClelland et al. 2012). The main problem that arises with
rectification is that by rectifying a signal, components at
frequencies not present in the original raw signal may
arise because of non-linearity, as can be exemplified by
the rectification of a pure sinusoid (one spectral line)
that results in a signal with a series of infinite spectral
lines.

Because of its obscure role in transforming the
signal frequency spectrum, rectification has been strongly
criticized by some researchers who observed that this
pre-processing is fundamentally ‘flawed in engineering
and digital signal processing’ (McClelland et al. 2012).
These criticisms are based on the consideration that
rectification changes the frequency content of a signal,
as observed above, but this is a general statement, not
necessarily relevant in this debate. Indeed, the correct
question to pose when discussing the appropriateness of
rectification of the EMG is whether oscillatory common
components at the input of motor neurons (which are
non-linear) can be better detected in the spectrum of the
raw or rectified EMG. In this reasoning, better detection
means a transmission of the oscillatory component which
is closer to a linear transmission (i.e. with change
in amplitude and phase but not in the frequency of
oscillation and without introduction of new frequencies
of oscillation). In the ideal case of an input component
which is ideally linearly transmitted to the output of a
general system, the coherence between input and output
is maximal. Therefore, we should ask the question,
‘how close to linear transmission is the transmission of
oscillatory input components to the raw or rectified EMG’?
To answer the above question, in this study we analytically
compute the Fourier transform of the EMG signal, with
and without rectification, resulting from the activity of
motor neurons that receive a common oscillatory input
and we provide a clear and unambiguous explanation
for the conditions in which rectification may be useful.
Realistic simulations and experimental results support the
theoretical derivations.
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Methods

Theory

The theory focuses on a pool of motor neurons that
receives an oscillatory input. The motor neuron output
is transformed into EMG that can be analysed as raw
signal or after signal rectification. The theory provides
an analytical computation of the Fourier transform of the
raw and of the rectified EMG when the pool of motor
neurons receives a single oscillatory input. The closer the
transmission is to a pure linear transmission, the greater
would be the coherence between input and output (better
detection of the input component by a linear method).
Ideal linear transmission corresponds to the presence at
the output of exclusively the input frequency (potentially
changed in amplitude and phase). Thus, the larger the
amplitude of the input component at the output (raw or
rectified EMG) is, with respect to the other components
generated at the output by the non-linearity of the motor
neurons, the greater would be the coherence between
input and output. With the above reasoning, the Fourier
analysis of amplitude spectra of the raw and rectified EMG
provides all the information for understanding the role of
rectification in coherence analysis.

We assume that a common input signal is delivered at
the input of N motor neurons. For clarity, we consider this
signal as a simple sinusoidal signal (extension to the sum
of sinusoids is trivial):

I (t) = K cos(2πf mt + φm) (1)

where K is the modulating index (amplitude of the input),
fm is the oscillatory frequency of the input, and φm its
phase.

For the theoretical derivation, we model each motor
neuron as a perfect integrate and fire (PIF) neuron, which
is an approximation with respect to the model used for
the simulations (see below) but that includes the main
non-linear characteristics of the neuron. The Fourier
transform of the output of a PIF neuron that receives the
input described in eqn (1) is given by the Fourier trans-
form of the expression of the integral pulse frequency
modulation process (Bayly, 1968; Nakao et al. 1997; Negro
& Farina, 2011a):

U(f , t0) = f 0δ(f ) + K

2
f 0ej φm [δ(f + f m) + δ(f − f m)]

+
+∞∑

−∞

+∞∑

−∞
r(k, n)e−j θ(k,n,t0)δ(f + k f 0 + n f m),

(2)

where f 0 is the average discharge rate of the motor neuron,
t0 is the instant of the first discharge of the motor neuron,
and the terms r(k, n) and θ(k, n, t0) are the module and
phase of the frequency components that are generated
by the non-linearity of the system. The exact analytical

expressions for r(k, n) and θ(k, n, t0) can be found in
(Bayly, 1968) but are not relevant for the subsequent
discussion.

The motor unit action potential train recorded at the
skin surface and generated by the PIF motor neuron
considered above is the convolution of the motor unit
action potential and its innervation process:

x(t) = p (t) × u(t) (3)

where p (t) represents the motor unit action potential, u(t)
is the inverse Fourier transform of the expression in eqn (2)
(output of the motor neuron that drives the muscle),
and ∗ is the convolutional operator. In this model, p (t)
accounts both for the shape of each action potential and
for propagation delays and volume conduction through
the tissues to the skin surface. Assuming that the action
potential has zero mean (this assumption is not necessary
but it is used here to simplify the notations), the Fourier
transform of x(t), which represents the frequency content
of x(t), is obtained as:

X (f ) = P (f )U(f )

= K

2
f0ej φm [(P (−fm)δ(f + fm) + P (fm)δ(f − fm)]

+
+∞∑

k=−∞

+∞∑

n=−∞
r(k, n)ej θ(k,n)P (−k f0 − n fm)

× δ(f + k f0 + n fm)
(4)

From eqn (4), the frequency component of the input
(fm) is present in the Fourier transform of a single motor
unit action potential train. The strength of this input
component depends on the amplitude of the input (K)
as well as on the average motor neuron discharge rate (f 0)
and on the value of the Fourier transform of the motor
unit action potential at the input frequency [(P(fm))]. It
has to be noted that for an ideal linear and time-invariant
system, the expression eqn (4) should contain only the δ
function at the input frequency, thus the second term of
eqn (4) expresses the non-linearity of the motor neuron.
The larger the strength of the first term in eqn (4) with
respect to the second, the closer the system approximates
a linear transmission of the input. This depends on the
term P(fm), so that frequencies that correspond to the
maximum energy of the action potential are transmitted
more effectively than others.

We now extend eqn (4) to the case of N motor neurons,
all receiving the same input of eqn (1). In this case, the
sum of output motor unit spike trains has the following
expression:

y(t) =
N∑

i=1

xi(t), (5)

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society



2406 D. Farina and others J Physiol 591.10

where xi(t) is the action potential train for the i-th motor
unit and has the Fourier transform as in eqn (4) indexed by
i to identify the i-th action potential shape (p i(t)) and the
corresponding spike train (ui(t)) (eqn (3)). Equation (5)
is valid because of the linearity of the convolution in
space and time that determines the action potential. The
term y(t) in eqn (5) is the raw EMG signal made of the
summation of N motor unit action potential trains. Its
Fourier transform is the following:

y(f ) =
N∑

i=1

X i(f ) =
N∑

i=1

K i

2
f i

0 ej φm [Pi(−f m)δ(f + f m)

+ Pi(f m)δ(f − f m)]

+
N∑

i=1

+∞∑

k=−∞

+∞∑

n=−∞
ri(k, n)ej θi (k,n)Pi

(−k f i
0 − n f m

)

× δ
(
f + k f i

0 + n f m

)

(6)

The input frequency fm is present in the Fourier trans-
form of the EMG signal and it is multiplied by the
amplitude of the input signal, by the sum of the average
discharge rates of the N motor units, and by the sum
of the values of the Fourier transform of the action
potentials associated to the N motor neurons at the input
frequency. Therefore, with respect to the case of a single
motor neuron transmitting the input, with N motor
neurons the input frequency term is amplified significantly
whereas the second term does not sum equally, due to the
differences in the discharge rates of the motor units. With
sufficient motor neurons, the input term becomes the
dominant in the expression eqn (6), which is equivalent
to an approximately linear transmission. Therefore, the
raw EMG contains frequency components corresponding
to oscillatory common inputs to the motor neurons. It is
underlined again here that these inputs should be common
to the motor neurons to be visible at the output.

We conclude the theoretical derivations by showing the
relations between the Fourier transform of the raw EMG
and that of the rectified EMG. This will explain for the first
time the effect of rectification on the spectral component
corresponding to the input frequency fm. We begin by
considering an EMG signal made of a single motor unit
action potential train x(t), as defined in eqn (3). This is a
particularly simple case in which rectifying the signal (i.e.
rectifying x(t)) results in a signal with the same expression
as in eqn (3) but with the action potential rectified:

|x(t)| = |p (t)| × u(t) (7)

The relation in eqn (7) does not hold in general but
only for the specific case in which the action potentials in
the train do not overlap in time with each other, which
is verified for a single motor unit action potential train.
However, this assumption is not correct for the EMG signal

comprising the sum of several trains. The Fourier trans-
form of eqn (7) has the same expression as in eqn (4),
with the Fourier transform of the rectified action potential
P ′(f ) instead of the raw action potential P (f ):

F [|x(t)|] = P ′(f )U(f ) = f 0P ′(0)δ(f )

+ K

2
ej φm f 0[P ′(−f m)δ(f + f m)

+ P ′(f m)δ(f − f m)] lim
x→∞

+
+∞∑

k=−∞

+∞∑

n=−∞
r′(k, n)ej θ′(k,n)P ′( −k f i

0 − n f m

)

× δ
(
f + k f i

0 + n f m

)
,

(8)

where F [·] denotes the Fourier transform. By comparing
eqns (4) and (8), it appears that the only difference
between the rectified and raw EMG for a single train of
action potentials is that the input frequency component
is multiplied by the Fourier transform of the rectified or
raw action potential shape, respectively. Therefore, for a
single train of action potentials, the rectified signal reveals
oscillatory input components to motor neurons in a better
way than the raw signal (i.e. transmits the input in a more
linear way) if the energy of the rectified action potential at
the input frequency is greater than that of the raw action
potential (relative to the second term in eqns (4) and (8)).
The latter condition is almost always verified since the
oscillatory drive has frequencies below 30–40 Hz where
the energy of the raw action potentials is low and it is
increased in the rectified EMG.

Further, we consider the full EMG signal after
rectification. Its expression is the following:

|y(t)| =
∣∣∣∣∣

N∑

i=1

xi(t)

∣∣∣∣∣ (9)

The property of eqn (7) is not valid any more when
different action potentials overlap in time. Nevertheless,
we can write the following inequality, which is always valid,
being a special case of the Cauchy–Schwarz inequality:

|y(t)| =
∣∣∣∣∣

N∑

i=1

xi(t)

∣∣∣∣∣ ≤
N∑

i=1

|xi(t)|. (10)

Equation (10) expresses the concept that the absolute
value of the sum of signals is never greater than the
sum of the absolute values. Interestingly for the successive
derivations, the inequality eqn (10) is exactly the definition
of the so-called amplitude cancellation in the EMG signal
(Day & Hulliger, 2001; Keenan et al. 2005), i.e. the
rectified sum of the action potential trains (EMG) is
less than the sum of the rectified action potential trains
(the so-called no-cancellation condition, Keenan et al.
2006) and the difference is the amplitude cancelled by the
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generation process of the EMG (Day & Hulliger, 2001).
Assuming c(t) as the cancelled signal that expresses the
difference between the rectified EMG and the sum of the
rectified spike trains, by simple algebraic transformation
and Fourier transforms, we obtain:

F [|y(t)|] =
N∑

i=1

f i
0 P ′

i (0)δ(f )

+
N∑

i=1

K i

2
f i

0ej φm
∣∣P ′

i (−f m)δ(f + f m)

+ P ′
i (f m)δ(f − f m)

∣∣

+
N∑

k=1

+∞∑

k=−∞

+∞∑

n=−∞
r′

i(k, n)ej θ′
i (k,n)P ′

i (−k f 0 − n f m)

× δ(f + k f 0 + n f m) − F [c(t)]
(11)

Apart from the term at zero frequency (first term),
that we can neglect since it is not of interest for the
spectral analysis of the EMG, the spectral content of
the rectified EMG (eqn (11)) and that of the raw EMG
(eqn (6)) have the same form, with the differences that:
(1) the input frequency component is multiplied by the
Fourier transform of the raw (for raw EMG) or rectified
(rectified EMG) action potentials, evaluated at the input
frequency, as for the case of the single action potential
train (eqn (8)); and (2) the spectrum of the rectified EMG
contains the Fourier transform of the cancellation term
(F [c(t)]), which is absent from the expression of the
spectrum of the raw EMG. It is important to specify here
the obvious consideration that the latter statement does
not imply that the raw EMG amplitude is not affected
by cancellation. The Fourier transform of the sum of
signals is the sum of the transforms of the signals whereas
amplitude, defined as the standard deviation of the signal
and estimated by root mean square or other estimators of
standard deviation, is influenced by cancellation even for
uncorrelated signal components (the standard deviation
of the sum is lower than the sum of standard deviations)
(Farina et al. 2008). Conversely, rectification introduces
cancellation in the spectrum of the rectified signal (the
Fourier transform of the rectified signal is different from
the sum of the transforms of the rectified action potential
spike trains). Therefore, rectification does not eliminate
amplitude cancellation but actually also introduces it in
the amplitude spectrum and not only in the amplitude.
This is due to the fact that rectification of the raw EMG
signal is obviously different from the rectification of each
action potential spike train.

The above derivations relate to the spectrum of the EMG
given an input to the pool of motor neurons innervating
the corresponding muscle. As discussed at the beginning of
Methods, these derivations provide the full information on
the factors influencing the transmission of input through

the motor neurons and the results can be extrapolated
directly to coherence analysis. For example, if the input
signal modelled above is assumed to be a cortical input, the
estimated strength of this signal in the EMG is associated
to the degree of coherence between a signal containing this
input (cortical recording) and the EMG. Given the same
relative energy of the input signal in the cortical recording,
in this example, the stronger (i.e. closer to pure linear) is
the transmission of that signal to the EMG recording,
the greater the coherence between the cortical recording
and the EMG. The same reasoning can be used if the
modelled input signal is part of a second EMG recording
(for example, from another muscle). The comparison
between eqns (6) and (11) indicates that the choice
between rectified and raw EMG depends on which of the
two signals maximize the strength of the input component
relative to the other components (which are created by the
non-linearity of the motor neurons). This depends on
the factor multiplying the input component, which differs
in the two cases since it depends on the Fourier trans-
form of the rectified/raw action potentials at the input
frequency, and on the cancellation signal. Rectification of
the EMG will be effective when the Fourier transform of
the action potentials at the input frequency is greater when
rectifying the action potentials than for raw potentials
and for low levels of amplitude cancellation. Since the
strongest factor influencing amplitude cancellation in
the EMG is the actual contraction level (Farina et al.
2008), rectification would be effective for low forces
up to a maximum force when cancellation becomes
an important term in eqn (11). Therefore, amplitude
cancellation impairs the effectiveness of rectification in
extracting oscillatory input components to motor neurons
from the EMG analysis. Without amplitude cancellation,
rectification would always tend to increase the relative
power of the input frequency component if the energy
of the rectified action potential at the input frequency is
greater than that of the raw action potential. The latter
condition is often verified, especially for intramuscular
EMG action potentials for which the signal power at low
frequencies is negligible, since rectification increases the
energy in the low frequency band where the oscillatory
inputs usually occur. Nevertheless, it is worth noting that
absence of amplitude cancellation never occurs in practice
for biphasic action potentials, thus it is a purely abstract
condition.

Simulations

The simulations were based on a model of populations of
motor neurons that received common and independent
inputs and a model of volume conductor and surface EMG
generation. A similar modelling approach has been used
in previous studies (e.g. Negro & Farina, 2011b) and will
be briefly described here.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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The motor neuron model was based on that
described by Cisi & Kohn (2008). It consists of
two compartments, six conductances (with three
voltage-dependent conductances, INa, IKf and IKs), and
four state variables. The pulse-based simplification used
in the original model was removed in the present study
and a full formulation, previously proposed (Traub et al.
1991), was used instead. The motor neuron parameters
were the same as used by Cisi & Kohn (2008; their Table 2)
and selected according to an exponential distribution over
the pool of motor neurons (Fuglevand et al. 1993). The
number of motor neurons varied in the simulations up to
a maximum of 300.

The input to motor neurons included one sinusoid,
as described in eqn (1), at a frequency that varied across
simulations, that was assumed common to all motor
neurons. A second source of input was independent noise
and was simulated as an independent signal for each motor
neuron. This input described the membrane noise and
was modelled as a band-limited (0–100 Hz), white (in the
bandwidth) Gaussian signal (Maltenfort et al. 1998). The
input to the motor neuron pool was the linear combination
of the two input sources with a total variance determined in
order to obtain a coefficient of variation for the interspike
interval of approximately 15% (Maltenfort et al. 1998).
Limitations of this model, such as the absence of plateau
potentials and of saturation in discharge rate, discussed
previously (Negro & Farina, 2011a), do not impact the
results of this study.

The EMG model was based on a cylindrical volume
conductor, as described by Farina et al. (2004c) and applied
in several previous studies (e.g. Keenan et al. 2007; Farina
et al. 2008). The parameters of the EMG model were
the same as in Keenan et al. (2007). Single muscle fibres
were independently simulated and the surface-recorded,
motor-unit potentials comprised the sum of the action
potentials of the muscle fibres belonging to each motor
unit. EMG signals were computed at 4096 samples s−1

and down-sampled to 1000 Hz. The signals were recorded
with electrodes of circular shape (radius 1 mm), arranged
in bipolar derivation with 20 mm interelectrode distance.

The full model (motor neuron and surface EMG) was
implemented in MATLAB. The system of differential
equations for the motor neuron model was solved with
the Adams–Bashforth–Moulton PECE solver (Shampine
& Gordon, 1975), using optimized time steps within inter-
vals of 1 ms. Each simulation was 10 s long, resulting in
10 segments of 1 s duration.

Experiments

The experiments consisted of the recording of two
bipolar surface EMG signals from the first dorsal inter-
osseous (FDI) and the abductor pollicis brevis (APB)
muscles during pinching. In these conditions, it has

been previously shown that the coherence level between
EMG signals is significant (e.g. Danna-Dos Santos et al.
2010, using intramuscular EMG). The main aim of the
experiments was to support the analytical and simulation
findings with experimental data. For this purpose, it was
important to vary the level of EMG amplitude cancellation
and to study the effect of rectification on coherence. A
way to vary the level of cancellation involves changing the
level of muscle activity, as it was done for the simulated
conditions. However, by following this method, it would
not be possible to separate the changes in coherence due
to changes in cancellation from those due to physiological
changes in the strength of the common input to the two
muscles. Therefore, another approach is proposed here. It
is known that the level of amplitude cancellation depends
on the duration of the motor unit action potentials
(Keenan et al. 2005). The duration of the motor unit action
potentials can be increased (thus increasing amplitude
cancellation) by low-pass filtering the interference EMG
signal. Indeed, since such filtering is a linear operation,
filtering the interference signal is equivalent to filtering
each action potential in the signal. By low-pass filtering
the signal, it is thus possible to change the level of
amplitude cancellation in the signal without changing
any other condition. Therefore, we applied filters with
different cutoff frequencies to the raw experimental signals
and we analysed the corresponding level of coherence.
It was hypothesized, in accordance with the analytical
derivations and the simulations, that decreasing the
cutoff frequency of the pre-filter would increase the
amplitude cancellation level in the signal which would
in turn decrease the level of coherence obtained by signal
rectification (rectification was obviously applied after the
pre-filtering in such a scheme). Conversely, the level of
coherence obtained without signal rectification would be
maintained unchanged by the low-pass pre-filtering.

Seven subjects (3 females, age 24–38 years) participated
in the experiments. All subjects were health volunteers,
with no known neurological disorders at the time of
testing. The subjects provided written informed consent
before participation and the local ethical committee
(University Medical Center Göttingen, Germany) gave
approval to the study, and warranted its accordance with
the Declaration of Helsinki.

During the experiments, the subject sat comfortably
with the dominant hand resting on the table. Two pairs of
surface EMG electrodes (Ambu NeuroLine 720, Ballerup,
Denmark) were placed over the belly of the FDI and
APB muscles. The subject was instructed to pinch his/her
thumb and index finger against each other. The EMG
signals were acquired by an EMG amplifier (EMG-USB2,
OTBioelettronica, Turin, Italy, 2048 Hz sampling rate, and
gain 1000). The acquired signals were presented to the
subjects as visual feedback by a customized MATLAB
(Mathworks Inc., Natick, USA) program, which also saved

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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the acquired data for offline processing. The subject was
instructed to maintain the pinch for 2 min with constant
EMG amplitude in the two channels (muscles). The level
of EMG amplitude was chosen based on the level that felt
comfortable to the subject and that could be maintained
for 2 min. This level corresponded to 5–10% of the
maximum EMG amplitude, depending on the subject.
The precise EMG (or force) level was not relevant for
the purpose of these experimental tests since the aim was
to investigate the coherence level between the two EMG
signals with and without EMG rectification, by varying
the level of cancellation with low-pass pre-filtering. The
level of EMG crosstalk (Farina et al. 2004a,b) was tested by
selective contractions of the two muscles and recordings
from both sites and was negligible in all subjects tested.

The EMG signals were divided into intervals of 1 s
and the coherence function (Fourier transform of the
cross-correlation function) was computed from these
intervals and averaged over the 120 intervals extracted
from the 2 min contractions. The coherence in the beta
band was quantified by the area under the coherence
function between 15 Hz and 25 Hz. The coherence level
was calculated from the raw and rectified EMG signals after
pre-filtering with a Butterworth low-pass filter (order 4)
with cutoff frequency varying between 800, 600, 400, 200,
80, 60 and 40 Hz. The coherence levels were graphically
reported normalized by the coherence value obtained
from the raw EMGs without pre-filtering. Normalized
coherence values were statistically compared between the
rectified and raw signal with a two-way ANOVA with
factors the pre-filtering cutoff frequency and the presence
of rectification (rectified or raw EMG), followed by the post
hoc Student–Newman–Keuls test. Statistical significance
was set at P < 0.05 for all comparisons and results are
reported as means and SD.

Given the low contraction level, it was expected that
the coherence value extracted from the rectified EMG
would be greater than from the raw EMG for large
cutoff frequencies of the pre-filter. Conversely, the value
of coherence would decrease for the rectified EMG for
decreasing values of the low-pass cutoff frequency because
of the increase in the amplitude cancellation term in
eqn (11).

Results

Simulation and experimental results are reported and
interpreted with the predictions based on the analytical
derivations.

Simulations

Figure 1 shows the raw and rectified EMG signal and
their respective amplitude spectra (magnitude of the

Fourier transform) for two simulations in which 30 or
300 motor units were active. In these simulations, the
motor neurons received a common input at 20 Hz and
independent inputs (power ratio between the common
and independent input ∼0.01). The different number
of active motor units determined a different level of
amplitude cancellation in the two simulations (37% and
63%) because the level of muscle activation increases
the degree of cancellation (Farina et al. 2008). In both
simulations and for both the rectified and raw signals, a
peak at 20 Hz, corresponding to the input, can be identified
from the signal spectrum. However, the amplitude of the
input signal peak in the spectrum of the raw EMG does
not change substantially with the increase in number
of active motor units (and thus with the increase in
cancellation in the signal). Conversely, the amplitude of the
input spectral peak in the spectrum of the rectified EMG
relative to the other spectral components is substantially
different for the two levels of amplitude cancellation.
For a moderate level of cancellation, this spectral peak
is enhanced in the rectified EMG with respect to the
raw EMG spectrum (Fig. 1A). In the case of a high level
of cancellation, however, the input peak is less clearly
detected in the rectified than in the raw EMG spectrum
(Fig. 1B). This behaviour exactly reflects the analytical pre-
dictions. Specifically, the rectified EMG spectrum presents
the cancellation component (eqn (11)) that confounds
the detection of the input peak and that is not present
in the spectrum of the raw EMG (eqn (6)). Figure 1 also
indicates that, although the peak of the input signal may
be enhanced by rectification in some conditions, the same
strength of common oscillatory input to the motor neuron
pool may result in substantially different spectral peaks in
the rectified EMG depending on the cancellation level. In
the representative example of Fig. 1 the cancellation level
is changed by the number of active motor units whereas in
more general conditions this level will also depend on the
membrane muscle fibre properties, length of the muscle
fibres, volume conductor characteristics, and features of
the detection system (Keenan et al. 2005). Therefore, the
strength of the input frequency peak of the spectrum of
the rectified EMG cannot be associated directly with the
strength of the oscillatory common input received by the
motor neurons. Although this is also true for the raw EMG,
because the peak level depends on the spectrum of the
motor unit action potentials (eqn (6)), the cancellation
level does not influence the peak amplitude in the raw
EMG spectrum which is thus less variable with contraction
level and muscle anatomical properties (Fig. 1).

Figure 2 shows that without cancellation (a condition
never existing experimentally), EMG signal rectification
optimally enhances the input frequency component. This
figure is generated by similar simulations to those in Fig. 1
(at high cancellation) but with an input frequency of
30 Hz. Moreover, the no-cancellation condition is also
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shown. This condition corresponds to rectifying the action
potential trains before summing them to generate the
surface EMG and it is thus a condition that cannot be
obtained experimentally. The no-cancellation condition
is equivalent to extending eqn (8), which is valid for a
single motor unit action potential train, to the full motor
neuron pool. In this condition, the signal properties are
equivalent to those of an EMG signal made of rectified
action potentials, without cancellation.

Figure 3 summarizes the representative results shown
in Figs 1 and 2 with data from three simulations where
the number of motor neurons was varied. In these
simulations, input signals at 10, 20 or 30 Hz were
delivered as common inputs to a progressively greater
number of motor neurons. The resulting surface EMG
signals had various levels of cancellation, depending on
the overall muscle electrical activity. The results in Fig. 3
are reported as a function of the number of active motor
units (an increase in active units determines an increase

in amplitude cancellation). The reported variable is the
ratio between the spectral peak corresponding to the
input signal in the spectrum of the raw, rectified, or
no-cancellation EMG and the same peak as observed in
the cumulative motor unit spike trains (see graphical
explanation of this measure in the inset of Fig. 3). The
rationale for this performance measure is that the ideal
condition would be to detect the peak as it appears in
the neural drive to the muscle (cumulative spike train
of all active motor units). It has to be noted that this
condition could in principle be reached experimentally
by a full decomposition of the EMG signal (Farina
et al. 2010). For the three input frequencies, for a
small number of motor units, which correspond to low
cancellation levels, the rectified and the no-cancellation
EMG performs substantially better than the raw EMG.
For a very small number of active units, the rectified
and no-cancellation EMG performed similarly, with an
increase in performance index with increasing number

Figure 1. Effect of cancellation on spectral peaks of raw and rectified EMG
Two simulations are presented in which an input at 20 Hz is sent to 30 (A) and 300 (B) motor neurons. The
surface EMG signal is simulated and the level of cancellation corresponds to 37% (A) and 63% (B). The common
oscillatory input at 20 Hz is summed with noise (see Methods for the properties and power of the independent
noise components). The raw and rectified EMG and their respective amplitude spectra are shown. au: arbitrary
units.
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of active units. This behaviour is expected since the first
term in eqn (11) is becoming progressively larger relative
to the second term with increasing number of active
units. This same effect is also visible in the case of the
raw EMG and is explained in the same way (first vs.
second term in eqn (6). After reaching a peak value, the
performance index decreases due to two terms for the
rectified EMG: the second and third (cancellation) term in
eqn (11). Conversely, the decrease for the no-cancellation
condition is only due to the second term in eqn (11) (since
cancellation is artificially not present). Consequently, the
rate of decrease in the spectral input peak with respect
to the cumulative spike train input peak is much faster
for the rectified than for the no-cancellation EMG. For
the same reason, such rate of decrease is also much faster
in the rectified EMG with respect to the raw EMG. Due
to the different rate of decrease in peak amplitude with
respect to number of active units, for input frequencies of

20 and 30 Hz there is point (approximately 60 active units
for 20 Hz and 30 units for 30 Hz, in these simulations)
after which the peak amplitude for the rectified EMG
becomes smaller than that obtained from the raw EMG.
Conversely, the peak amplitude is always greater in the
case of the no-cancellation condition, as predicted by the
analytical derivations. Therefore, for a small number of
active units the rectification may be beneficial whereas it
would not be useful for a greater number of active units.
Note that in these simulations, the input at 10 Hz is always
transmitted better in the rectified than in the raw EMG
(Fig. 3A). This is due to the progressively lower power
of the surface action potentials at lower frequencies.
Obviously the exact number of active units (or EMG level)
after which rectification is not useful any more depends
on a variety of parameters that influence amplitude
cancellation (Keenan et al. 2005; Farina et al. 2008)
with respect to the other terms in eqn (11). Therefore, it

Figure 2. The no-cancellation condition corresponds to ideal transmission
Raw, rectified and no-cancellation EMG (see text for the definition of the no-cancellation EMG) signals when
activating 300 motor neurons with a common oscillatory input at 30 Hz and additive noise as in Fig. 1. The signals
and corresponding spectra are shown. au: arbitrary units.
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is not possible to determine it exactly or to provide an
exact suggestion for deciding on the best choice. It is only
possible to provide the general consideration for which
rectification may be effective in extracting spectral input
peaks mainly for low contraction forces. In addition, as
also underlined when discussing Fig. 1, it has to be noted
that the amplitude peak varies much more over the range
of active motor units investigated for the rectified than
for the raw (and no-cancellation) conditions (consider
that the strength of the input signal is always the same in
Fig. 3). This implies that the spectral peak in the rectified
signal is more influenced by the level of muscle activity
than the raw EMG (see also Fig. 1).

Figure 4 reports the comparison between the different
signal modalities with a different performance index with
respect to Fig. 3. In this case, the coherence peak value
at the input frequency is computed between the EMG
signals (raw, rectified, and no-cancellation) and the peak
in the neural drive to the muscle (Fig. 4A) or the actual
simulated input (Fig. 4B). These coherence values are
alternative indices to indicate the capability of the different
signal modalities to extract the input frequency. These
indices are closer to the practical applications of EMG
for extracting oscillatory components with EMG–EMG
coherence or EMG–EEG coherence methods. The results
are reported as a function of the number of motor
units, as for Fig. 3, and for an input at 20 Hz (similar
observations can be done for other input frequencies).
The coherence peak with respect to the spike trains
(Fig. 4A) is approximately constant over the number of
active units for both the raw and the no-cancellation
conditions whereas it decreases for the rectified EMG
condition. This result is fully explained by the analytical
analysis since the rectified EMG condition is the only
one in which the cancellation term has an effect (third
term in eqn (11)). This term decreases the coherence with
the spike train which does not contain cancellation. The
coherence with the actual input signal (Fig. 4B) increases
with the number of active units for all modalities due
to the relative increase in the linear part of transmission
with increasing number of active motor neurons (eqn (6))
and eventually it saturates (Negro & Farina, 2011a). The
coherence value is greater for the rectified than the raw
EMG for a low number of units whereas it is lower for a
large number of units, in accordance with the theoretical
predictions.

Experiments

Figure 5A presents the coherence function between the
EMG signals detected from the FDI and APB muscles
of a representative subject. The coherence is computed
for different pre-filtering low-pass cutoff frequencies. In
this subject, a large cutoff frequency (800 Hz), which does
not substantially influence the signal, corresponds to a
coherence peak greater for the rectified than the raw EMG.
However, while the coherence peak when using the raw
EMG does not change with cutoff frequency, the peak
obtained by prior rectification progressively decreases.
Note that in Fig. 5A the cutoff frequencies shown are
always greater than the range of frequencies shown in the
x-axis for the coherence functions. Therefore, the filtering
does not have any effect on the 20 Hz coherence peak
from the raw signals. Conversely, there is an effect after
rectification due to the non-linear nature of rectification.

Figure 5B summarizes the group results. The coherence
levels are normalized with respect to the coherence level
obtained from the raw EMG without pre-filtering. The
level of coherence estimated from raw EMG signals does
not change with the pre-filtering cutoff frequency (note
also that the standard deviation is negligible) whereas
the coherence level estimated from the rectified EMG
decreases with decreasing cutoff frequency. A two-way
ANOVA with factors the cutoff frequency of the pre-filter
and the modality of EMG analysis (raw or rectified)
showed a significant interaction between the two factors
(P < 0.01), with the coherence peak greater for the
rectified than for the raw EMG for frequencies larger
than 200 Hz (P < 0.05) and smaller for frequencies lower
than 200 Hz (P < 0.05) (Fig. 5B). These results are fully
in agreement with the analytical derivations and with
the simulations and are explained by the varying levels
of amplitude cancellation depending on the pre-filtering
cutoff frequency.

Discussion

Rectification of the EMG to detect common oscillatory
input components to the motor neurons is considered
either an important step of pre-processing that should
be adopted (e.g. Halliday & Farmer, 2010) or as an
unnecessary and inappropriate method (e.g. McClelland
et al. 2012). These opposite views currently co-exist

Figure 3. Transmission of spectral peaks from the neural drive to the muscle to the EMG signal
A signal-to-noise ratio (SNR) measure is defined here as the ratio between the spectral peak corresponding to the
oscillatory common input to motor neurons in the raw, rectified and no-cancellation EMG and the same peak in
the cumulative motor unit spike train (expressed as %) (see inset). The simulations are as in Fig. 1 but varying
the number of active motor units (x-axis). The input frequency is 10 (A), 20 (B) and 30 Hz (C). The second inset
represents the relation between the number of active motor units and the level of amplitude cancellation.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society



2414 D. Farina and others J Physiol 591.10

without strong arguments for one or the other. The
present study has clarified this issue by providing an
analytical approach to the problem. The main theoretical
contribution is that the spectra of the rectified and
raw EMG have similar components but differ by the
contribution of amplitude cancellation. Therefore, the
degree of amplitude cancellation is the key factor of
influence on the effectiveness of EMG rectification in
extracting spectral peaks due to common oscillatory
inputs to motor neurons.

A first important aspect to discuss when debating
on EMG rectification is the nature of the information
to be extracted by spectral/coherence analysis of the
rectified/raw EMG. This information is the spectral
component relative to an oscillatory input common to a
population of motor neurons. This may be investigated in
relation to cortical oscillations by EEG–EMG coherence

(Mima & Hallett, 1999) or to common oscillations to
different muscles with EMG–EMG coherence (Evans &
Baker, 2003; Boonstra et al. 2007; Keenan et al. 2012) or
to cortical oscillations to one muscle with EMG–EMG
coherence over a single muscle (Halliday et al. 2003).
These oscillations are not related to the average motor
unit discharge rate (f 0 in the theoretical expressions in
this paper). In debates on EMG rectification, the work
by Myers et al. (2003) is often cited and their results on
the usefulness of rectification for extracting the average
discharge rate of motor units are often discussed in relation
to the more advanced simulations presented by Farina et al.
(2004a). However, these works addressed the problem of
estimating the average motor unit discharge rate and not
common oscillatory inputs to motor neurons.

The theory we proposed indicates that it is possible
to identify the frequency of oscillation of inputs to motor

Figure 4. Coherence between input
and EMG
Coherence values between the raw,
rectified and no-cancellation EMG and the
composite spike train (A) or the input signal
(B), varying the number of active motor
units (and thus cancellation level; see inset).
The common oscillatory input is in this case
set to 20 Hz. The inset represents the
relation between the number of active
motor units and the level of amplitude
cancellation.
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neurons from the EMG because this input is common. The
spreading of common input to populations of neurons
linearizes the input–output relation (Negro & Farina,
2011a). This explains how non-linear transmission in
individual neurons can be identified with linear analysis
methods (coherence). The second important aspect of the
theory is that the oscillatory input components are also
present in the rectified EMG (eqn (11)), even if this is a
non-linear transformation of the raw EMG. Actually these
components may even be strengthened by rectification.
Claims that rectification is not appropriate for EMG
analysis based on signals that do not share the same
structure of the EMG (McClelland et al. 2012) are clearly
not valid. Similarly, simulations of the EMG that do not
consider this structure (Neto & Christou, 2010) are not

appropriate for discussing the issue at hand, as correctly
indicated by Halliday & Farmer (2010).

The input oscillatory component is multiplied in
the EMG spectrum by the Fourier transform of the
action potentials (rectified or raw depending on the
pre-processing step) at the input frequency. If the rectified
action potential has more energy than the raw potential
at the input frequency, then the gain factor is greater
for the rectified EMG. Usually, this is indeed the case
since oscillatory inputs are generally below 30 Hz, a region
where the raw action potential may have negligible energy
(this is more marked for intramuscular EMG than for
surface EMG which explains the need to rectify the intra-
muscular EMG to detect coherence peaks in EMG–EMG
coherence studies; Danna-Dos Santos et al. 2010). For

Figure 5. Experimental results
A, representative coherence functions between EMG signals recorded from the FDI and APB muscles of one subject.
The raw EMG signal has been pre-filtered with a low-pass filter at 800, 200, 80 and 40 Hz, before rectification.
The coherence is shown for the pre-filtered, non-rectified signal, and for the pre-filtered and rectified signal. B,
group data with peak coherence values obtained from the raw (open circles) and rectified (filled circles) EMG
after pre-filtering at varying low-pass cutoff frequencies (x-axis). All values are normalized with respect to the
coherence value obtained from the raw EMG without any pre-filtering. The vertical bars indicate SD (the values
for SD are negligible for the raw EMG results). ∗Statistical significant difference between raw and rectified EMG
results (P < 0.05).
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very low contraction levels when the number of active
motor neurons is relatively small and for low input
frequencies, coherence with the raw EMG may not even
allow the detection of any peak in correspondence to
the input frequency whereas the use of the rectified
EMG may magnify this component because of the
greater energy of the rectified action potential at that
frequency. Therefore, rectification may be necessary in
some conditions. Conversely, when the contraction level
increases, the gain due to the number of active motor
neurons increases and the raw signal spectrum may
show the input peaks. At the same time, the amplitude
cancellation term increases and the rectified signal
spectrum may display a less marked peak at the oscillatory
input frequency because of the cancellation term (Figs 2,
3 and 5). Similarly, in conditions in which amplitude
cancellation is particularly high (for example, with long
action potentials; Keenan et al. 2005), rectification may
be less appropriate than using the raw signal. In general,
it is worth noting that the strength of oscillatory input
components as assessed by the rectified EMG depends
on the level of amplitude cancellation, which changes
with contraction level, fatigue, or across subjects and
muscles. Comparisons among these conditions are thus
complicated by the unknown effect of cancellation on
the expression of oscillatory input peaks in the rectified
EMG spectrum. Conversely, the raw EMG spectrum is
not influenced by cancellation and is thus less influenced
by these factors. The generality of the conclusions drawn
from this study derive from the association between
an effect that has been quantified and investigated
extensively in the past (amplitude cancellation) with the
effectiveness of rectification in enhancing the oscillatory
input components in the EMG signal. Since the conditions
that influence amplitude cancellation have been well
established (e.g. Farina et al. 2008), it is possible to infer the
conditions in which rectification is critical for identifying
oscillatory drives to motor neurons.

Being a general theory, the proposed framework
explains a number of previous observations that were
based on specific simulations and were thus limited to
some conditions. For example, Boonstra & Breakspear
(2012) noted that the uniformity in shapes of the action
potentials across motor units had an influence on the
effectiveness of EMG rectification in identifying common
frequency components at the input of two populations
of motor neurons. It is well known that amplitude
cancellation in the EMG is maximum when all action
potential shapes are the same and in general it decreases
the more heterogeneous are such shapes (Farina et al.
2008). Therefore, the observation by Boonstra & Break-
spear (2012) based on simulations is now explained by the
influence of uniformity in shapes among action potentials
on the degree of cancellation and thus on the spectrum
of the rectified EMG. Similarly, pre-filtering the surface

EMG has an impact on the shapes of action potentials
that in turn influence cancellation (Keenan et al. 2005).
Thus, it is not surprising that pre-filtering may change the
effectiveness of EMG rectification with respect to the raw
signal (Boonstra & Breakspear, 2012). This property, that
was theoretically predicted in this study, has been actually
used for supporting this prediction with experimental
evidence (Fig. 5).

Finally, it is worth noting that the linearization of the
input/output characteristics of a pool of motor neurons
may be a strategy also adopted in other parts of the
nervous system. For example, the decoding of the activity
of a population of retinal ganglion cells shows a rapid
saturation of the information transferred when using just
a few neurons, indicating common projections (Warland
et al. 1997). Similar results have been observed in the
auditory system (Machens et al. 2001) and Baker et al.
(2003) showed this concept in the central nervous system
of primates, with the observation that a small population
of pyramidal track neurons could transmit the cortical
oscillations recorded by local field potentials correctly.
Therefore, apart from the specific methodological focus of
the present contribution, the conclusions on linear trans-
mission by common projections may have a more general
validity.

In conclusion, EMG rectification is not necessarily
an inappropriate way to pre-process the EMG signal to
identify oscillatory common inputs to motor neurons.
Rather, in some cases it may be a necessary pre-processing
step to identify these components. Oscillatory common
components at the input to motor neurons are pre-
sent both in the raw and in the rectified EMG and
may be stronger in one or the other signal depending
on the level of amplitude cancellation. The degree of
cancellation indeed influences the effectiveness of rectified
EMG in transmitting input signal components. As a note
of caution, each time rectification is used, the transmission
of oscillatory inputs to motor neuron outputs cannot
be compared using coherence methods across conditions
in which cancellation may vary (e.g. different subjects,
levels of fatigue, etc.; Keenan et al. 2005). Finally, common
projections of the same input to arrays of neural cells, as
shown for motor neurons in this study, may be a strategy
to linearize the input/output characteristics of a pool of
neurons also adopted in other parts of the nervous system,
such as in the auditory system. In these conditions, the
common input characteristics can be extracted from the
cumulative output of the cell pool.
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