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a b s t r a c t

Human STIL (SCL/TAL1 interrupting locus) protein maintains centriole stability and spindle pole lo-

calisation. It helps in recruitment of CENPJ (Centromere protein J)/CPAP (centrosomal P4.1-associated

protein) and other centrosomal proteins. Mutations in STIL protein are reported in several disorders,

especially in deregulation of cell cycle cascades. In this work, we examined the non-synonymous single

nucleotide polymorphisms (nsSNPs) reported in STIL protein for their disease association. Different SNP

prediction tools were used to predict disease-associated nsSNPs. Our evaluation technique predicted

rs147744459 (R242C) as a highly deleterious disease-associated nsSNP and its interaction behaviour

with CENPJ protein. Molecular modelling, docking and molecular dynamics simulation were conducted

to examine the structural consequences of the predicted disease-associated mutation. By molecular dy-

namic simulation we observed structural consequences of R242C mutation which affects interaction of

STIL and CENPJ functional domains. The result obtained in this study will provide a biophysical insight

into future investigations of pathological nsSNPs using a computational platform.
c© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The biology of the centrosome is an area of research that is in its

infancy. Mutation of the STIL protein functional domain and its partic-

ipation in recruitment process of essential centrosomal proteins are

two very important features in cancer, the underlying mechanisms

for which are obscure. The centrosome acts as a main microtubule

organising centre and regulates cell cycle progression [1–3]. Its dupli-

cation is initiated at G1/S transition phase by the sequential recruit-

ment of a set of highly conserved proteins. STIL belongs to one of these

highly conserved centrosomal protein family which along with CENPJ

and hSAS6 (Spindle assembly abnormal protein 6 homolog) are co-

localised to the base of procentriole [4]. It consists of 1288 amino acid

residue and residues range from 231st to 619th reported to interact

with CENPJ protein residues range from 895th to 1338th position [4].

Further the STIL–CENPJ complex binds to hSAS6 protein and forms

a complex which is important for their co-localisation and centriole

biogenesis. Recruitment and localisation of CENPJ by STIL protein is

shown in Fig. 1. Level of STIL coding gene expression is reported to be
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high at the time of mitotic cell division [5,6], expressed in the devel-

oping cerebral cortex [7] and play an important role in normal human

brain development. Previous researches has shown its role in autoso-

mal recessive primary microcephaly [8–12], holoprosencephaly [13],

embryonic lethality and marked apoptosis of the developing nervous

system [14]. STIL null mouse embryos were lethal in the early stage

of development with abnormal left–right specification [15]. Primary

microcephaly (MCPH) is a congenital disorder in which the head cir-

cumference of a patient is greater than three standard deviations

below the age- and sex-related population mean [9]. It mainly results

from the hypoplasia of the cerebral cortex with a significant reduc-

tion in the brain [9]. Mutations in STIL have also been observed in

causing MCPH due to the aberrant spindle positioning in progenitor

cells during brain development [16]. STIL was also found to be ex-

pressed in several cases of cancers where its expression is correlated

with an elevated mitotic index and cancer progression [17–22] pro-

viding a further insight into role of STIL protein in regulating mitotic

cell cycle mechanism. The main objective of our investigations are, to

analyses what are the mutations in STIL functional domain which can

contributes to oncogenesis, to understand that how mutation in STIL

protein can affect its conformational state in complex form and to un-

derstand disruption of recruitment process of STIL associate protein.

Advances in high-throughput genotyping and next generation se-

quencing have generated a vast amount of human genetic variation

data. Single nucleotide polymorphism within protein coding regions

are of particular importance owing to their potential to give rise to

amino acid substitutions that affect protein structure and function
vier B.V. All rights reserved.
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Fig. 1. STIL, CENPJ and hSAS6 protein co-localisation process. STIL protein functional

domain (in maroon colour) residues range from 230th to 619th and CENPJ protein func-

tional domain (in green colour) residues range from 895th to 1338th. The STIL–CENPJ

complex further binds to hSAS6 protein (in dark blue colour). Formation of STIL–CENPJ–

hSAS6 complex is vital for their co-localisation to centrosome. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article.)

2.2. Disease-associated SNP prediction

2.3. Homology modelling

Residue ranges from 231st to 619th of STIL protein interacts with

895th to 1388th of CENPJ protein and are considered as crucial for
which may ultimately lead to a disease state. SNP (single nucleotide

polymorphism) refers to the variations in the nucleotide at the ref-

erence site from one nucleotide base to other [23]. Non-synonymous

SNPs occurring in coding regions result in single amino acid polymor-

phisms (SAPs) that may affect protein function and lead to pathogenic

phenotypes [24]. Non-synonymous single nucleotide polymorphisms

(nsSNP) has the potential to alter the function of their corresponding

protein, either directly or via disruption of structure. Hence they are of

particular interest as candidates for further experimental assessment.

About 41,744,328 rs human SNPs have been validated and submitted

in NCBI dbSNP database [25]. Most of them are still uncharacterised

in terms of their disease causing potential. The future of SNP anal-

ysis greatly lies in the development of personalised medicines that

can facilitate the treatment of genomic variations induced disorders

at a higher extent [26]. Here we used an effective set of computa-

tional techniques to prioritise the most deleterious nsSNPs reported

in STIL gene. Accurate prediction of disease-related SNPs will facili-

tate in development of their potential cure through target based drug

discovery and at the most newest evolving stage will promote the

concept of personalised medicine in cancer treatment. To unravel the

uncharacterised nsSNP’s in STIL gene, here we used the computational

techniques that help in predicting the alteration in structure, func-

tion and post-translational modification properties of the protein. Our

approach was to combine empirical, statistical, neural network (NN)

and Support Vector Machine (SVM) based analysis along with the

tools that can predict the molecular changes introduced in the pro-

tein in order to predict the pathogenic nsSNPs from the given datasets.

The tools used in this analysis have their different functionality. SIFT

[27], Polyphen tool [28] and PANTHER [29] were used in order to

identify structural basis of amino acids alteration and its functional

significant in mutant STIL proteins. PhD-SNP [30], Pmut [31] and Mut-

Pred tool [32] were used to predict the molecular changes induced

by the predicted mutations and their pathological status. Combining

the results obtained by these classifiers we finally predict one novel

mutation that may potentially disrupt the normal mechanism asso-

ciated with STIL protein. Model structures native and mutant STIL

protein and its biological partner CENPJ protein were generated by

homology modelling and were used to investigate protein–protein

interactions. Conformational flexibility of a protein molecule affects

its interaction with ligand and its biological partners at different level

[33–37]. In this work we have shown an effective way to predict
Open Bio 2 (2012) 285–293

disease associated nsSNPs and its possible structural consequences

by using computational platform. Our data address these important

questions by demonstrating that STIL mutation is the cause of ane-

uploidy and leads to structural damage of STIL–CENPJ complex by

increased conformation flexibility.

2. Material and methods

2.1. Dataset collection

Human STIL [accession ID: NP 001041631] and CENPJ [accession

ID: NP 060921] protein sequence data was collected form national

centre for biological Information (NCBI) protein sequence database

[38]. SNP information for our computational analysis was obtained

from NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/) [25]. Tem-

plate structures [PDB ID: 1SEZ, 1GKA, 1YVV, 1TH0, 1ZR6, 2VVM, 3CHN,

1S58, 1WOR, 2YZS, 2VVM] were obtained from Brookhaven protein

data bank [39] for homology modelling.
The single nucleotide polymorphism occurring in the protein cod-

ing region may lead to the deleterious consequences in its 3D struc-

ture and thus may lead to disease-associated phenomena. Here we

used SIFT [27], Polyphen [28], PANTHER [29], PhD-SNP [30], Pmut [31]

and MutPred [32] tools in order to examine the disease-associated

nsSNP occurring in the STIL protein coding region. SIFT uses sequence

homology-based approach to classify amino acid substitutions [27].

The prediction score <0.05 is considered to be deleterious. The ac-

curacy level of the SIFT program show 88.3–90.6% specificity and

67.4–70.3% sensitivity [27], when tested with different datasets of

human variants. Polyphen checks if the amino acid change is occur-

ring at the site that is highly conserved and the variation has any

deleterious effect on the protein structure [28]. The position-specific

independent count (PSIC) score difference of 1.5 and above obtained

from Polyphen server is predicted to show functional and structural

impact on protein [28]. In addition to this, we used PANTHER pro-

gram which is a protein family and subfamily database and predicts

the frequency of occurrence of amino acid at a particular position in

evolutionary related protein sequences. The threshold subPSEC score

of −3 has been assigned below which the predictions are considered

as deleterious [29]. We filtered the nsSNPs that were combinedly

predicted to be deleterious and damaging from these three servers.

Further we used PhD-SNP, Pmut and MutPred tools to examine the

disease-association of these filtered nsSNPs. PhD-SNP is SVM based

classifier, trained over the million amino acid polymorphism datasets

using supervised training algorithm whereas [30]. It predicts if the

given nsSNPs has pathological effect. Pmut is a neural network based

program which is trained on large database of neutral and patholog-

ical mutations [31]. MutPred is a web based tool, used to predict the

molecular cause of disease related amino acid substitution [32]. It

utilises several attributes related to protein structure, function, and

evolution. It uses SIFT [27], PSI-BLAST [40], and Pfam profiles [41],

along with some structural disorder prediction algorithms, including

TMHMM [42], MARCOIL [43], B-factor prediction [43], and DisProt

[44]. Functional analysis includes the prediction of DNA-binding site,

catalytic domains, calmodulin-binding targets [45], and posttransla-

tional modification sites [46–48]. Thus by combining the scores of

all three servers, the accuracy of prediction rises to a greater extent.

Finally we filtered the most pathological mutation by combining the

scores of above servers.

ncbi-p:NP_001041631
ncbi-p:NP_060921
http://www.ncbi.nlm.nih.gov/snp/
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their centrosomal co-localisation [4]. We modelled these functional

domains by Modeller9.9 software package [49] in order to evalu-

ate their structural and functional properties. 3D coordinates of PDB

ID 1SEZ, 1GKA, 1YVV, 1TH0, 1ZR6 and 2VVM were used as tem-

plate to model native and mutant STIL functional domain and PDB ID

3CHN, 1S58, 1WOR, 2YZS and 2VVM were used as template to model

CPENJ functional domain protein. Modelled structures were refined

by means of loop refining, checking wrong bond contacts and adding

hydrogen atoms. The best selected structures were energy minimised

by charmm27 forcefield for 5000 iterations using Gromacs 4.5.3 pack-

age [50]. Qualities of models were validated using ProCHECK [51] and

ProSA server [52]. ProSA returns z-score that indicates overall model

quality based on the Cα positions in 3D space.

2.4. Protein–protein interaction analysis

ClusPro is a fully automated web server for the prediction of

protein–protein interactions [53]. It consists of two docking platform,

DOT and ZDOCK, both of which are based on fast Fourier transform

correlation techniques. DOT program was selected for our study as

it uses electrostatic potential and surface complementarity between

the two structures which helps in retaining the structures with good

conformations. It runs on 128 Å × 128 Å × 128 Å grid, using a grid

spacing of 1 Å. Obtained structures are then filtered using distance-

dependent electrostatics and empirical potential energy scores. Clus-

tering is carried out on the basis of pairwise RMSD scores. Obtained

final structure is then refined by applying CHARMm forcefield. Opti-

mised structures of each native and mutant STIL functional domain

and CENPJ functional domain were used as an input set for docking

analysis. Further we used InterProSurf [54] to decipher the interfa-

cial residues in native and mutant complexes obtained from ClusPro

server.

2.5. Molecular dynamics simulation

Molecular dynamics simulation was performed by using Gromacs

4.5.3 package [50] running on a single 2.8 GHz Pentium IV IBM ma-

chine with 3 MB RAM and running Ubuntu 11.10 Linux package. Com-

plex structure of native and mutant STIL were used as starting point

for MD simulations. Systems were solvated in a rectangular box with

TIP3P water molecules at 10 Å marginal radius. At physiological pH

the complex were found to be negatively charged, thus in order to

make the simulation system electrically neutral, we added sodium

ions (Na+) to the simulation box using the genion tool that accom-

panies with Gromacs package. Initially the solvent molecules were

relaxed while all the solute atoms were harmonically restrained to

their original positions with a force constant of 100 kcal/mol for 5000

steps. After this, whole molecular system was subjected to energy

minimisation for 5000 iterations by steepest descent algorithm im-

plementing GROMOS96 43a1 forcefield. Berendsen temperature cou-

pling method [55] was used to regulate the temperature inside the

box. Electrostatic interactions were computed using the Particle Mesh

Ewald method [56]. The ionisation states of the residues were set ap-

propriate to pH 7 with all histidine assumed neutral. The pressure was

maintained at 1 atm with the allowed compressibility range of 4.5e−5

atm. SHAKE algorithm was used to constrain bond lengths involving

hydrogen, permitting a time step of 2 fs. Van der Waals and Coulomb

interactions were truncated at 1.0 nm. The non-bonded pair list was

updated every 10 steps and conformations were stored every 0.5 ps.

Position restraint simulation for 500 ps was implemented to allow

solvent molecules to enter the cavity region of structure. Finally, sys-

tems were subjected to MD simulation for 5 ns. We then computed

the comparative analysis of structural deviations in native and mutant

structure. RMSD, RMSF, SAS and Rg analysis were carried out by using

g rms, g rmsf, g sas and g gyrate tool respectively. Number of distinct

hydrogen bonds formed by specific residues to other amino acids

within the protein during the simulation (NH bond) were calculated

using g hbond. NH bond determined on the basis of donor–acceptor

distance smaller than 0.35 nm and of donor–hydrogen-acceptor. We

used g analyze tool to calculate the average values and standard devi-

ations of simulation output dataset. All the graphs were plotted using

XMGRACE program.

2.6. Principal component analysis

The calculation of the eigenvectors and eigenvalues, and their pro-

jection along the first two principal components, was carried out using

essential dynamics (ED) method according to protocol [57] within the

Gromacs software package. The principle component analysis or ED

is a technique that reduces the complexity of the data and extracts

the concerted motion in simulations that are essentially correlated

and presumably meaningful for biological function [57]. In the ED

analysis, a variance/covariance matrix was constructed from the tra-

jectories after removal of the rotational and translational movements.

A set of eigenvectors and eigenvalues was identified by diagonalising

the matrix. The eigenvalues represents the amplitude of the eigen-

vector along the multidimensional space, and the displacement of

atoms along each eigenvector shows the concerted motions of pro-

tein along each direction. The movements of structures in the essen-

tial subspace were identified by projecting the Cartesian trajectory

coordinates along the most important eigenvectors from the analy-

sis. Backbone C-alpha bonds trajectories were obtained using g covar

and g anaeig of Gromacs utilities.

3. Results

3.1. Prediction of deleterious nsSNP

SIFT server was used to calculate the tolerance score of the nsS-

NPs obtained from dbSNP database. Total 60 nsSNPs were computa-

tionally analyzed for their disease-association. Out of 60 input nsSNP

dataset, 22 of them (V57L, N75I, R104L,H156R, Q228H, M238T, R242C,

R281Q, S296F, R327W, E354Q, R734T, T762I, V788I, S811F, S874C,

V1023L, S1086L, A1119E, P1194L, V1272I and V1278A) were pre-

dicted to be deleterious with tolerance index ≤0.05 (Table 1). Among

these 22 deleterious nsSNPs 9 of them (R104L, Q228H, M238T, R242C,

R281Q, S296F, V788I, A1119E and V1272I) were reported to be highly

deleterious, with tolerance index = 0. To validate the deleterious

SNPs predicted using SIFT program, we further used Polyphen pro-

gram to examine the damaging probability of all the nsSNPs. Thirty

mutations N75I, A86V, R104L, H156R, Q228H, M238T, R242C, R281Q,

S296F, R327W, Q421P, K463M, Q468R, L485F, P497A, H677N, R734T,

T762I, S811F, P851S, Q959H, H969R, H985R, V1008L, S1086L, A1119E,

P1194L, R1232Q and V1278A were found to be deleterious with PSIC

score > 1.5. Among these 30 deleterious nsSNPs out of which 12 mu-

tations N75I, R104L, H156R, Q228H, M238T, R242C, S296F, Q468R,

P851S, H969R, S1086L and P1194L were reported to be highly delete-

rious with PSIC score > 2. A good correlation was observed between

SIFT and Polyphen scores. Total of 18 mutations N75I, R104L, H156R,

Q228H, M238T, R242C, R281Q, S296F, R327W, Q421P, Q468R, R734T,

T762I, S811F, S1086L, A1119E, P1194L, and V1278A were identified to

be deleterious in SIFT as well as Polyphen server (Table 1). Combining

the evolutionary conservation analysis and structural dependency of

amino acid substitution over protein functionality we predicted 18

deleterious mutations which are dispersed in several structural do-

mains of STIL protein. To further validate these results we carried

HMM based statistical prediction method to identify the functionally

significant point mutations using PANTHER tool. The mutations with

subPSEC score < −3 has been reported to be probably deleterious.

Fifteen mutations with subPSEC score < −3 was characterised to be

deleterious. Two mutations R242C and S296F were predicted to be

extremely deleterious with subPSEC score −5.68888 and −5.00677
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respectively. These two mutations were also predicted to be highly

deleterious by SIFT as well by Polyphen tools. Since result of PAN-

THER solely depends on the MSA profile, so the priority for prediction

shall be given to SIFT and Polyphen scores. We filtered 10 muta-

tions R104L, Q228H, M238T, R242C, S296F, R327W, S811F, A1119E,

P1194L and V1278A that were commonly predicted to be deleterious

mutants from all three servers (Table 1). Significant correlation be-

tween Polyphen and SIFT results was observed where they showed

Pearson correlation coefficient value 0.403, whereas between SIFT

and PANTHER it was 0.321 and between Polyphen and PANTHER it

was 0.454. Our observation showed that there was higher correla-

tion between Polyphen and PANTHER scores whereas the correlation

between SIFT and PANTHER was significantly low. This shows that

PANTHER program when combined with Polyphen, may provide a

promising platform for in-silico SNP analysis.

3.2. Prediction of disease-associated nsSNPs

The goal of our work was to predict the most deleterious nsSNP

in STIL protein coding gene that could disrupt its recruitment process

to centrosomal region and thereby deregulating the centriole bio-

genesis and duplication mechanism. To further classify the predicted

deleterious nsSNP’s as disease related, we used Support Vector Ma-

chine based PhD-SNP tool. In total, 10 SNPs were selected for carrying

out disease association study on the basis of the common SNPs pre-

dicted to be deleterious in SIFT, Polyphen and PANTHER tools, (Table

2). Prediction carried out by PhD-SNP depends on intensive super-

vised training for over million amino acid polymorphism datasets

[56] and so the prediction efficiency is remarkably higher. Out of 10

input SNP dataset, 6 mutations R104L, Q228H, M238T, R242C, S296F

and A1119E were predicted to be disease-associated (60%). To con-

firm this prediction, we further used artificial neural network (ANN)

based Pmut tool, that predicted 7 pathological mutation out of the 10

which were given as input (Table 2). Six mutations M238T, R242C,

S296F, R327W, A1119E and P1194L were found to be showing high

pathological phenotype having pathogenicity index > 0.8. MutPred

tool was the used to predict the SNP disease-association probability

and probable change in the molecular mechanism in the mutant. We

found 5 disease-associated mutations of which 3 mutations R104L,

M238T and R242C were commonly reported by PhD-SNP and Pmut

tool (Table 2). One mutation P1194L was predicted to be significant

by MutPred and Pmut tools but was predicted to be non-disease-

associated by PhD-SNP. Mutation R242C was found to be extremely

deleterious with General probability ( g) score 0.781 and was also pre-

dicted to induce methylation at the neighbouring residue at 243rd po-

sition ( P = 0.0191) with a confident prediction hypothesis (Table 2).

Hence it was selected for further structural and interaction studies.

Other two mutations (R104L and M238T) were showing actionable

hypothesis for their deleterious property with relatively low confi-

dence of prediction as obtained from MutPred results (Table 2). Thus

R104L and M238T were considered as unfit for further analysis. The

correlation of prediction results obtained from PhD-SNP and Pmut,

PhD-SNP and MutPred, and Pmut and MutPred was 0.356, 0.251 and

0.534 respectively. This showed that the prediction carried out by

Pmut and MutPred has a significant correlation whereas it was least

when PhD-SNP and MutPred was used. These statistics provided an

insight into the mechanism of prediction which significantly differs

among them as their predictions are based on the diverse range of

biochemical parameters used by these tools.

3.3. Homology modelling and docking analysis

Confidence levels of modelled structures were observed by evalu-

ating ProCHECK and ProSA scores. Native STIL protein model showed

87.2% residues in allowed region, 0.9% in disallowed and z-score value

of −7.86 whereas the mutant STILR242C protein model showed 85.4%

Table 1

Here the PSIC score obtained from Polyphen server, tolerance index obtained

from SIFT server and subPSEC score obtained from PANTHER are displayed.

Deleterious and damaging SNPs are displayed in bold.

rs allele Mutation PSIC score SIFT score subPSEC

rs148783889 T14I 1.461 0.36 −1.50036

rs147576532 Y44S 1.027 0.65 −1.50036

rs61782730 V57L 0.612 0.05 −1.50551

rs144192357 N75I 2.029 0.04 −2.99735

rs147160336 S76L 0.251 1.00 −1.54057

rs3125630 A86V 1.795 1.00 −2.67624

rs143587840 R104L 2.567 0.00 −3.7758

rs141352790 H156R 2.667 0.01 −2.55024

rs148947235 K205R 0.474 0.09 −1.70269

rs145383640 Q228H 2.093 0.00 −3.33271

rs149813552 M238T 2.891 0.00 −4.68992

rs147744459 R242C 2.792 0.00 −5.68888

rs113209638 R281Q 1.892 0.00 −2.32996

rs140282820 S296F 2.133 0.00 −5.00677

rs142574808 R327W 1.540 0.04 −4.05968

rs141678367 R352H 0.569 0.21 −1.25588

rs184044615 E354Q 0.569 0.04 −3.10115

rs75426387 A357T 1.092 0.25 −3.02814

rs149185431 S379F 0.060 0.10 −3.68242

rs28472545 Q421P 1.951 0.22 −3.04438

rs28705368 Q421H 0.796 0.67 −1.65307

rs141830068 K463M 1.746 0.11 −3.06604

rs149867741 Q468R 2.006 0.01 −1.65016

rs139912214 L485F 1.686 0.48 −1.97522

rs114151695 P497A 1.843 0.31 −1.4794

rs114151695 P497S 0.634 0.84 −2.04363

rs144699266 H579L 1.380 0.93 −1.65184

rs140448154 S673G 1.288 0.50 −1.87589

rs185913484 H677N 1.965 0.64 −1.55921

rs141874074 Q698H 0.533 0.65 −1.85194

rs147076169 R734T 1.750 0.02 −2.99245

rs184844868 T762I 1.565 0.02 −2.26164

rs147955048 K786R 1.334 0.20 −2.17844

rs148818578 G787S 0.792 1.00 −2.48601

rs149697952 V788I 1.108 0.00 −1.94137

rs139459123 S811F 1.921 0.03 −3.34182

rs142290334 K819R 1.308 0.26 −2.18138

rs144219237 P851S 2.253 0.18 −2.18439

rs138355120 S874C 1.401 0.02 −4.7463

rs143211398 A909G 1.417 0.13 −2.43026

rs184086211 Q926K 1.150 0.41 −0.83315

rs35447382 S952N 0.202 0.67 −0.99103

rs150267502 Q959H 1.795 0.64 −0.9765

rs148193936 H969R 2.634 0.08 −1.32937

rs78932355 T980A 0.461 0.83 −1.57167

rs13376679 H985R 1.997 0.41 −1.09928

rs144111593 V1008L 1.558 0.07 −2.76718

rs144586803 V1023L 1.498 0.05 −1.95788

rs143956189 N1057S 0.639 0.66 −1.09625

rs190918041 S1086L 2.002 0.02 −2.56936

rs114431636 A1119E 1.881 0.00 −4.58102

rs112563569 D1144N 0.298 1.00 −1.51967

rs3766317 A1146V 1.204 0.28 −1.12085

rs145089798 E1163K 1.364 0.41 N/A

rs139856969 A1191T 0.040 1.00 −1.44233

rs144746030 P1194L 2.224 0.02 −3.69541

rs148592489 R1232Q 1.612 0.38 −2.6037

rs142210835 I1252V 0.098 1.00 −0.98147

rs142282148 V1272I 1.108 0.00 −2.51625

rs138444507 V1278A 1.649 0.01 −3.19615

residues in allowed, 0.9% in disallowed region and z-score value of

−7.13. CENPJ modelled structure showed 83.7% residues in allowed,

0.4% in disallowed region and z-score value of −6.93. Docking of na-

tive and mutant STIL protein with CENPJ was carried out by ClusPro

server. The binding free energy weighted score for native STIL–CENPJ

complex was −1161.1 whereas for mutant STILR242C–CENPJ complex

it was −987.7. Interfacial analysis of each complex was performed

using InterProSurf. Native STIL showed more residues at interface as

compared to mutant STILR242C in their complex with CENPJ protein
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Table 2

The disease-associated SNPs are predicted from PhD-SNP server results, pathogenicity index obtained from Pmut server and g score, P score, molecular variations and prediction

reliability calculated from MutPred server. Here the possible scores with disease-association probability are displayed in bold.

SNP ID

Amino acid

change PhD-SNP result

Pathogenicity

index g score P score

Molecular

variation Prediction reliability

rs143587840 R104L Disease 0.7498 0.600 0.0384 Loss of disorder Actionable

hypothesis

rs145383640 Q228H Disease 0.4502 0.532 0.0587 Loss of

ubiquitination at

K232

No reliable inference

rs149813552 M238T Disease 0.8069 0.616 0.0181 Loss of sheet Actionable

hypothesis

rs149813552 M238T Disease 0.8069 0.616 0.0217 Loss of stability Actionable

hypothesis

rs147744459 R242C Disease 0.8935 0.781 0.0191 Gain of

methylation at

K243

Confident

hypothesis

rs140282820 S296F Disease 0.8879 0.469 0.0016 Gain of sheet No reliable inference

rs142574808 R327W Neutral 0.9749 0.471 0.0028 Gain of sheet No reliable inference

rs139459123 S811F Neutral 0.4233 0.149 0.0241 Loss of

phosphorylation

at S811

No reliable inference

rs114431636 A1119E Disease 0.8542 0.339 0.0472 Loss of MoRF

binding

No reliable inference

rs144746030 P1194L Neutral 0.8819 0.512 0.0402 Loss of disorder Actionable

hypothesis

rs138444507 V1278A Neutral 0.3437 0.271 0.033 Loss of

methylation at

K1279

No reliable inference

Table 3

The interfacial residues of STIL – CENPJ complex. Bold residues are specific to the

respective category and is absent in other.

Protein complex Interfacial residues in complex

Native STIL – CENPJ D282, F283, E284, Q286, K287, E290,

L291, K298, L305, E308, R309, K310,

F312, E313, Y315, T316, A318, A319,

R320, F322, P323, D324, K326, R328,

E329, H356, R358, M380, P464.

Mutant STILR242C – CENPJ D282, F283, E284, Q286, K287, E290,

K298, E308, K310, F312, E313, Y315,

T316, A319, P323, D324, K326, R328,

E329, H356, R358, M380, F383.

(Table 3). Moreover, L291, L305, E309, A318, R320 and F322 were

not present at interface of mutant STILR242C protein during complex

formation with CENPJ (Table 3).

3.4. Molecular dynamics simulation of native and mutant STIL–CENPJ

complex

We calculated the RMSD for all Cα atoms from the initial structure

(Fig. 2). After 83 ps the native complex structure showed higher RMSD

score till 414 ps, after which an abrupt rise in RMSD score was ob-

served in mutant complex with RMSD value of ∼1.03 whereas native

showed RMSD value of ∼0.65 at 5 ns. Higher RMSF values were seen

for mutant protein complex as compared to the native (Fig. 3). Further

we observed a high increase in energy value of mutant STILR242C–

CENPJ domain docked structure as compared to the native (Fig. 4).

The radius of gyration plot of Cα atoms of the mutant structure fur-

ther showed higher fluctuation level as compared to native (Fig. 5). In

native STIL–CENPJ domain docked structure the average Rg value was

found to be 3.022105e+00 whereas for mutant it was 3.728599e+00.

Further the mutant complex structure showed large Rg fluctuation

with standard deviation score of 5.839118e−02 whereas for native it

was found to be 4.284456e−02. Mutant STILR242C–CENPJ docked struc-

ture indicated greater values of SASA with time while native showed

smaller values of SASA with time (Fig. 6). We observed notable dif-

ferences in hydrogen pattern during simulation, where the mutant

Fig. 2. Time evolution of backbone RMSDs are shown as a function of time of the native

and mutant STIL–CENPJ interaction domain complex at 300 K. The symbol coding

scheme is as follows: native complex (in black colour) and mutant complex (in red

colour). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

complex structure showed less participation in NH bonds formation

with other amino acids, while in native complex structure showed

more number of NH bonds (Fig. 7). The large-scale collective motions

of the native and mutant protein using ED analysis were determined.

The value for trace of the diagonalised covariance matrix for native

protein was 46.3368 nm2 and for mutant it was 121.794 nm2 at 300

K. The mutant structure covered a larger region of phase space par-

ticularly along PC1 plane than native (Fig. 8). The snapshots of each

complex conformation were observed at 0 ns, 0.9 ns, 1.8 ns, 2.7 ns, 3.6

ns and 4.8 ns during the simulations and it is depicted in Fig. 9. The

Phi Psi angle change in native and mutant structure for 243rd position

was examined to understand the structural dependency of prediction

obtained from MutPred tool. A notable collapse in Psi angle at 243rd

position was observed for mutant structure (Fig. 10).

4. Discussion

By the advancement in high throughput sequencing technologies

the amount of data in databases are increasing exponentially. Certain

amino acid substitution occurred as the cause of SNPs could possibly

induce structural and functional damages. These may further lead to

pathological phenotypic consequences. Majority of SNPs available in
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Fig. 3. RMSF of the backbone C-alpha atoms for native and mutant structure at 300

K is shown. The symbol coding scheme is as follows: native complex (in black colour)

and mutant complex (in red colour). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Plot of total energy as a function of time for the MD simulations. The symbol

coding scheme is as follows: native complex (in black colour) and mutant complex (in

red colour). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 5. Radius of gyration of Cα atoms of native and mutant native and mutant structure

versus time at 300 K. The symbol coding scheme is as follows: native complex (in black

colour) and mutant complex (in red colour). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Solvent-accessible surface area (SASA) of native and mutant complex structure.

The symbol coding scheme is as follows: native complex (in black colour) and mutant

complex (in red colour). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

SNP databases are yet to be characterised in terms of their affect on

structural and functional aspects of protein. We used set of compu-

tational tools to examine the nsSNPs in STIL protein coding gene and

prioritised R242C mutation as deleterious and disease associated. The

prediction was based on SIFT, Polyphen, PANTHER, PhD-SNP, Pmut

Fig. 7. Average number of intramolecular hydrogen bonds in native and mutant com-

plex structure versus time at 300 K. The symbol coding scheme is as follows: native

complex (in black colour) and mutant complex (in red colour). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article.)

Fig. 8. Projection of the motion of the protein in phase space along the first two princi-

pal eigenvectors at 300 K. The symbol coding scheme is as follows: native complex (in

black colour) and mutant complex (in red colour). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Surface representation of conformational states of native STIL–CENPJ and mu-

tant STILR242C–CENPJ complex at different time intervals during simulations. STIL pro-

tein is shown in ruby colour and CENPJ shown in deep teal colour. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 10. Phi and Psi angle deviation in native and mutant complex structure. (a) Phi

angle deviation versus time intervals during simulations. (b) Psi angle deviation versus

time intervals during simulations. The symbol coding scheme is as follows: native

complex (in black colour) and mutant complex (in red colour). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article.)

and MutPred tools. Prediction carried out by these tools depends on

their specific criterion and thus by combining the results obtained

from these servers can together provide high prediction accuracy. Sta-

tistically observed, the correlation between the predictions carried by

the multiple servers was not up to a significant level. The correlation

coefficients between the SIFT, Polyphen and PANTHER was 0.32 to

0.45 which is not impressive. It seems as if the simple consensus pre-

diction might not recognise the most deleterious nsSNPs, although

the tools used in this work implements different computational ap-

proaches combinedly to examine the deleterious consequences of

SNPs. It is possible that the consensus prediction might fail to report

SNPs that may induce deleterious consequences on individual phe-

nomenon, but the combined prediction made at the end in this work

includes the usage of algorithms that calculates diverse properties

associated with mutations and hence the accuracy of predicting the

chance of reported SNP to be disease-association is high as compared

to the approaches that implements these methodology separately. To

verify this, we further carried MDS analysis and we observed that

the predicted disease-associated SNP has induced major phenotypic

consequence on the native conformation of the protein as well as its

interaction behaviour.

To examine the structural consequences of predicted deleterious

and disease-associated point mutation we further modelled the inter-

action domain of native and mutant STIL and CENPJ protein. The mod-

elled structures were subjected to energy minimisation and docking

studies. The binding free energy weighted score for native STIL–CENPJ

complex was −1161.1 whereas for mutant STILR242C–CENPJ complex

it was −987.7. The result obtained from ClusPro docking server impli-

cates towards the loss of binding affinity of mutant STILR242C protein

domain towards CENPJ. It is believed that the amount of atomic inter-

actions between two protein molecules is directly related to number

of interfacial residues present at their interface. Interfacial residual

analysis of each complex was performed to understand the variation

in docking score. Native STIL showed more residues at interface as

compared to mutant STILR242C in their complex with CENPJ protein

(Table 3). Higher docking score of native STIL–CENPJ complex was

due to more interfacial residues of native STIL protein and that were

available for interactions with CENPJ protein while compared to na-

tive STIL, mutant STIL acquired less number of interfacial residues and

it was the reason for less docking score of mutant STILR242C–CENPJ

complex. To investigate the dynamic behaviour of native and mutant

structures in complex, we conducted molecular dynamic simulation

of native and mutant STIL functional domain protein complex with

CENPJ functional domain protein. We highlighted RMSF of C-alpha

carbon by trajectory analysis obtained through MD simulation. Dis-

tinct NH bond analysis was performed to understand the flexibility

behaviour of residues. In order to verify the system stabilised along

the MD simulations, we showed the plot of energy variation for the

MD simulations. We calculated the RMSD for all the Cα atoms from

the initial structure, which were considered as a central criterion to

measure the convergence of the protein system concerned (Fig. 2).

In Fig. 2, mutant STILR242C–CENPJ docked structure showed overall

greater RMSD scores as compared to native, resulting in a backbone

RMSD of ∼1.03 nm and ∼0.6 nm respectively at the end of simulation.

The energy plot was also in accordance to this result. We observed

increase energy values of mutant STILR242C–CENPJ complex as com-

pared to native complex (Fig. 4). Moreover, energy plot STIL–CENPJ

complex clearly indicated that the mutant complex was less energet-

ically stable as compared to native complex.

A more detailed picture of differences in residue mobility within

and between simulations obtained from graph of the RMSF of Cα

atoms relative to the average structure and it is showed in Fig. 3. In

Fig. 3, mutant STIL protein backbone atoms showed more flexibility

as compared to native in their complex form and behaviour also affect

the flexibility behaviour of CENPJ domain in complex. The increased

flexibility of mutant STIL in complex affects its binding behaviour with

CENPJ protein and it was the reason of less docking score in docking

process. We conducted Rg and SASA analysis to further evaluate con-

formational changes in native and mutant STIL protein complex. The

Rg is defined as the mass-weighted root mean square distance of a

collection of atoms from their common centre of mass. Hence, this

analysis gives us insight into the overall dimensions of the protein.

The plot of radius of gyration of Cα atoms of the protein versus time

at 300 K is showed in Fig. 5. We observed the major fluctuation in

both native and mutant between 0 and 5000 ps. The Rg graph impli-

cates towards the high structural deviation of mutant in comparison

to the native. In native complex the average Rg value was found to

be 3.022105e+00 whereas for mutant it was 3.728599e+00 which in-

dicated expanded conformation of mutant complex as compared to

native. The change of SASA of the native and mutant structure with

time is shown in Fig. 6. Mutant STILR242C–CENPJ docked structure

indicated greater values of SASA with time while native STIL–CENPJ

docked structure showed smaller values of SASA with time. The large

fluctuation in radius of gyration in mutant indicated that the protein

might be undergoing a significant structural transition. This was also

supported by the fluctuations in solvent-accessible surface areas (Fig.

6). The expansion of mutant complex structure due to alteration in

flexibility was further validated by observing SASA analysis.

Intermolecular NH bond was calculated for native and mutant

complex during the simulation time and it is depicted in Fig. 8. More

intermolecular NH bonds in native complex help it to maintain rigid-

ity while less tendency of the mutant in NH bonds formation with

neighbouring residues which makes it more flexible. Mutant struc-

ture Cα atoms has exhibited more flexibility and have also shown

less participation in NH bonds with other amino acids, while in na-

tive structure it was more rigid and have more H-bonds. On the basis

of RMSF observation and NH bond analysis, it is confirmed that the

occurrence of the mutation leads to a more flexible conformation due

to the formation of less number of hydrogen bonds.

A better view of dynamical mechanical properties of the inves-

tigated system has been obtained by using essential dynamics (ED)

analysis. To further support our MD simulation result, the large-scale

collective motions of the native and mutant structure using ED analy-

sis were determined. The dynamics of two structures is best achieved

via characterisation of its phase space behaviour. The eigenvectors of

the covariance matrix are called its principle components. The change

of particular trajectory along each eigenvector was obtained by this

projection. The spectrum of the corresponding eigenvalues (Fig. 8) in-

dicates that the fluctuation of the system is basically confined within

the first two eigenvectors. The projection of trajectories obtained at

300 K onto the first two principal components (PC1, PC2) shows the

motion of two proteins in phase space. On these projections, we see

clusters of stable states. Two features are very apparent from these

plots. Firstly, the clusters are well defined in native complex than mu-

tant. Secondly, mutant complex covers a larger region of phase space

particularly along PC1 plane than native and it is depicted in Fig. 8.

Our observation thus corroborates with the idea of higher flexibility

of mutant than native at 300 K. The overall flexibility of two proteins
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was also calculated by the trace of the diagonalised covariance ma-

trix of the Cα atomic positional fluctuations. We have obtained the

following values for native protein 46.3368 nm2 and mutant protein

121.794 nm2 again confirming the overall increased flexibility of mu-

tant complex than native at 300 K. After observing RMSD, RMSF, Rg,

SASA, NH bonds and PCA results, it was confirmed that mutation in

STIL protein leads it toward expanded and flexible conformation and

it affect the binding behaviour of mutant protein. The whole picture

was cleared after analysing the snapshots of complex conformation

during simulation (Fig. 9). Mutant complex started to form an open

conformation after 2 ns timescale and continued till the end of sim-

ulation whereas no major unfolding and structural disruption was

observed in native complex. This observation further supports our

hypothesis, pointed towards the deleterious property of STIL protein

R242C mutation.

In MutPred analysis, mutation at 242nd position from arginine

to cysteine in STIL protein was predicted to induce methylation at

243rd position. In notion to understand the dynamic behaviour of

leucine at 243rd position, we plotted the dihedral Phi (Fig. 10(a)) and

Psi (Fig. 10(b)) angles of this residue of mutant and native structure.

We observed a major angular variation in Psi angle of 243rd residue

in mutant structure as compared to the native (Fig. 10(b)). It started

from 200 and reached to 0 at 5 ns whereas in native it started from

230 and reached to 254 at 5 ns. Low relative variations were found

in Phi angle at 243rd position of native and mutant. This observa-

tion showed the level of conformational variation in mutant at 243rd

residue position as compared to the native and this conformational

change might induce methylation as predicted by MutPred server.

Our results reported that the substitution of cysteine at 242nd posi-

tion in STIL has decreased the tendency to bind with CENPJ domain

due to acquiring high flexible conformation and thus play major role

in initiating pathogenic phenotype.

The observation obtained in this work could facilitate in future

SNP characterisation and predicting their functional impacts. In pre-

vious study Kumar et al. [9] has reported mutations that were found

to be directly associated with MCPH disorder. Although the mutations

reported in their work were either nonsense variants or induced nu-

cleotide deletion, which in turn led to the truncated protein, but it

was notable to observe that all the mutations were found to be lo-

cated in the exon18 position, in the C-terminal domain of protein. STIL

protein has been recently shown to assist in the recruitment of CENPJ

and hSAS6 proteins through its N-terminal region. Until now, there is

no previous information regarding the amino acid variants in this re-

gion of STIL that may cause major functional loss or affect its scaffold

cascades. Activity regulations of the cell cycle associated proteins

are significantly dependent on the efficiency and specificity of the

corresponding scaffold cascades. The scaffold mechanisms are main-

tained by the specific conformational and dynamic property of these

proteins. Non-synonymous amino acid variations inducing damag-

ing conformational changes in the protein will significantly affect

its functional behaviour and thus will lead to the disease-associated

phenomena. Our study has first time demonstrated the functional

impact of computationally predicted N-terminal amino acid variant

in STIL and has suggested its pathological consequences owing to the

corresponding conformational changes. Further investigation will be

required to examine the exact molecular mechanisms behind the

pathogenicity that might be associated with this mutation and will

significantly differ from the MCPH associated variants that has been

reported in the C-terminal region of STIL protein [7]. Further it will

also provide an insight into functional characteristics of its N-terminal

region.

5. Conclusion

Non-synonymous SNPs (nsSNPs), account for the majority of hu-

man diseases. This occurs in the coding region of the gene and changes

the amino acid residue at a particular position. Identifying these

disease-associated SNPs and filtering the non-significant ones will

facilitate in future genomics researches and drug discovery. Most of

the traditional computational methods uses sequence or structure-

based prediction techniques but are not much effective in genotype–

phenotype correlation studies. Here we used the combination of dele-

terious SNP detection tools to predict the highly deleterious and dis-

ease associated mutations. Homology modelling, protein–protein in-

teraction analysis and molecular dynamics simulation were further

carried out. Mutation R242C was predicted as most deleterious and

disease associated. Interaction analysis of native and mutant STIL pro-

tein with CENPJ provided clue to investigate the molecular dynamic

behaviour of complex structure. Disorder in functionality of one pro-

tein may adversely affect the entire pathway [58]. Conformational

analysis of STIL–CENPJ and STILR242C–CENPJ complex showed that

mutation at 242nd position from arginine to cysteine drastically af-

fects the native conformation of STIL protein and it might be a key

factor behind disruption of centrosomal localisation of CENPJ protein.

Genome-wide genetic alterations are fundamentally important for

the development of cancers, but the proteomic of these aberrations

is poorly understood. Our findings demonstrate a highly deleterious

STIL mutation is the molecular basis of disruption of essential CENPJ

recruitment process to centromere and causes aneuploidy, provide

a framework for understanding oncogenesis and highlight the rela-

tionship between genomic and structural changes in human cancers.

We believe our observations have critical implications for the under-

standing of STIL associated aneuploidy and the development of novel

therapies for this disease.
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