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Abstract
Due to the numerous challenges in hit identification from random RNAi screening, we have
examined current practices with a discovery of a variety of methodologies employed and
published in many reports; majority of them, unfortunately, do not address the minimum
associated criteria for hit nomination, as this could potentially have been the cause or may well be
the explanation as to the lack of confirmation and follow up studies, currently facing the RNAi
field. Overall, we find that these criteria or parameters are not well defined, in most cases arbitrary
in nature, and hence rendering it extremely difficult to judge the quality of and confidence in
nominated hits across published studies. For this purpose, we have developed a simple method to
score actives independent of assay readout; and provide, for the first time, a homogenous platform
enabling cross-comparison of active gene lists resulting from different RNAi screening
technologies. Here, we report on our recently developed method dedicated to RNAi data output
analysis referred to as the BDA method applicable to both arrayed and pooled RNAi technologies;
wherein the concerns pertaining to inconsistent hit nomination and off-target silencing in
conjugation with minimal activity criteria to identify a high value target are addressed. In this
report, a combined hit rate per gene, called “H score”, is introduced and defined. The H score
provides a very useful tool for stringent active gene nomination, gene list comparison across
multiple studies, prioritization of hits, and evaluation of the quality of the nominated gene hits.
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INTRODUCTION
RNAi screening technology is viewed by many as a promising exploratory tool and
researchers worldwide have embarked on it to reap the benefits from its ability to allow for
single gene knockdown. RNAi, often referred to as the scientist’s Holy Grail, has since been
adapted to conduct up to genome-wide screens to study the entire genome repertoire and to
advance our current understanding of gene function and its role in various disease states [1].
Despite the assuring progress in the discovery of a wide array of gene candidates, none of
them have come to fruition especially as novel molecular targets for therapeutic
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intervention; and in most cases, failed further validation. More recently, the RNAi field has
been faced with the challenge of poor reproducibility and lack of confirmatory studies [2-4].

In 2008, three HIV host-virus interaction siRNA screens were published by Konig [5] and
co-workers, Brass and co-workers [6], and Zhou and co-workers [7]; and in the following
year an additional shRNA screen was also reported by Yeung and co-workers [8].
Intuitively, one would have expected to observe a significant overlap among the genes
causing the strongest phenotypes across the four screens irrespective of the type of RNAi
technology used. Surprisingly, none of the genes overlapped across all four screens; while
only three genes overlapped across the three siRNA screens namely, RELA, MED6 and
MED7 [2,3]. This obviously has caused a big dent in the field and questioned the
sophistication of the sequence predicting algorithms used by the various vendors in the first
place followed by a strong call for standardization of the RNAi field. Additionally, a follow
up study summarizing the screening meta data from three reports (Konig, Brass, and Zhou)
concluded that overall the three screens, though not having identified the identical genes;
they nevertheless identified their molecular pathways as an explanation for the lack of
overlap [2]. Unfortunately, a few more examples have posed similar concerns of poor cross
study overlap, and are now begging the question as to the true merits of hits identified
through RNAi screening [4, 9-10]. From a screening analysis perspective, the observed
screening output discordances could well be explained by the following three statements: 1)
Inconsistent methods of phenotypic scoring, 2) Minimal criteria of overall gene activity, and
3) Disregard for prevalent off-target effects (OTEs) in nominated hits. Each statement has its
own merit in identifying artifactual hits from random RNAi screening.

During the conception days of RNAi screening, investigators applied the common hit
selection practices applied for many years to chemical screening for hit identification.
However, by doing so, a major aspect of the 1:1 relationship of compound to observed
activity versus 1: many RNAi targeting sequences per gene relationship was totally ignored.
Various groups still use multiple methods for hit selection in RNAi screening such as
percentage inhibition of activity, z-score, B-score, statistical test, and various other ranking
methods [11]. In 2007, strictly standardized mean difference (SSMD) method was
developed specifically for RNAi screening data analysis as an siRNA duplex ranking
method based on the duplex’s effect size relative to the negative control and was proposed to
yield hits with reduced false positive and false negative rates when compared to the
traditional methods like z-score and percentage inhibition [12]. Although this method
enabled active duplex identification, yet it did not address the minimal active gene
identification criteria for RNAi experiments. Later in the same year, the redundant siRNA
activity (RSA) method was introduced, and it partly addressed the issue of the combinatorial
nature of RNAi screens for the first time as it assigned a p-value to a gene based on the
performance of all its corresponding duplexes [13]. However, the RSA method ranks a gene
based on the collective activity of all its corresponding duplexes and thus it is likely that the
performance of ill-behaved duplexes might consequentially skew the analysis results.
Therefore, although the minimal criterion for determining gene activity is crucial due to the
inherent combinatorial nature of RNAi screening, yet it has always remained a widely
ignored parameter in the published data analysis workflows.

Off-target silencing has become a major handicap in RNAi screening and efforts have been
directed towards designing oligonucleotides with maximal target specificity [14]. Recent
studies have widened our understanding regarding the off-target silencing, attributing this
behavior to a microRNA (miRNA) like mimic activity of the exogenous oligonucleotides
[15-16]. Meanwhile, the role of seed sequences in determining the target specificity has also
been described. Based on these observations, various computational approaches have been
developed to identify off-target in the screening results. These approaches rely on one or the
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other factors that putatively lead to off-target effects (OTEs), such as seed over-
representation in hits, miRNA enrichments, or 3′UTR enrichments [17-19]. Despite the
development of these computational tools for OTE identification in RNAi screening data,
none of the reported strategies have been currently incorporated into a standardized hit
nomination workflow. One of the major requirements of the field is to incorporate all these
three factors, and to include them as an integral step in a comprehensive hit nomination
workflow, dedicated solely to identify the high confidence targets from random RNAi
screening campaigns.

In this report, we introduce a simple method, referred to as the BDA method (Fig 1), as a
standardized workflow pipeline in general encompassing most of the issues described above;
we also introduce the H score and the OTE filtering specifically enhancing confidence in hit
nomination from random RNAi screening. We perform a control-based analysis to best
address the systems heterogeneity while also incorporating OTE filtering to address the
prevalence of OTEs, and have streamlined a workflow to standardize the hit selection
methodologies. We also introduce the concept of hit rate per genes referred to as an H score
to address the combinatorial nature of the RNAi screening as an attempt to avoid the pitfalls
of calling an outlier a high value gene target. We have applied our newly developed
methodology to data obtained from two published shRNA screens as case studies, with one
report using an arrayed shRNA approach against 19 cell lines [20] and the second using a
pooled shRNA approach against 102 cell lines [21]. We report on our findings as to
nominated hits using the BDA method versus those published gene lists.

MATERIALS AND METHODS
Sequence Databases

Human genome-wide 3′UTR sequences were obtained from the University of California at
Santa Cruz (UCSC) genome browser assembly GRCh37/hg19 (genome.ucsc.edu, [22]). The
nucleotide (nt) sequences less than 10 nt in length were excluded from the analysis. The
human microRNA (miRNA) sequences were obtained from miRbase release 18
(mirbase.org, [23]) and the information relating to their experimentally validated targets was
obtained from Tarbase 6.0 [24]. The 330,687 oligonucleotide sequences for the TRC library
were downloaded from the Broad Institute portal (www.broadinstitute.org/IGP/home).

Seed Sequence Heptamer Selection
The 7-mer seed sequence, referred to as the seed heptamer, was selected from the antisense
(guide) strand (Fig 2A). Guide strand is selected over passenger strand due to its
predominant role in OTEs [14, 17, 25]. The choice of a heptamer seed over 6-mer or 8-mer
seed was based on previous findings regarding higher specificity of a heptamer [25-26]. For
siRNA duplexes, the seed heptamer was defined as the 7 nt long sequence with its start
position determined at the second nt from the 5′ end of the guide strand. For shRNA
hairpins, the seed heptamer was defined as the 7 nt long sequence with its start position
determined by two methods: 1) theoretically, based on the ideal seed start position on the
oligonucleotide, and 2) empirically, based on the duplex performance in the screen using a
method developed by Dr. Eugen Buehler (NIH, MD), referred hereafter as empirical seed-
selection (ESS) (Fig 2B). This enables us to generate two lists of the seed heptamers to
perform OTE filtering analysis on them separately and merge the results into one list of
High Confidence OTEs (HC_OTEs).
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The BDA Method
The BDA method is comprised of five steps (Fig 1) defined below, and takes into account
activities of “duplexes” referring to either siRNA duplexes, shRNA hairpins, or esiRNA
duplexes:

1) Active duplex identification—The active duplexes were scored based on a threshold
determined at the mean (μ) ± 2 standard deviations (2σ) of the controls. The outliers in the
control data maybe identified and removed using the interquartile range before determining
thresholds. The selection of controls and determination of threshold is screen dependent.
The RNAi screening raw data does not necessarily follow a classic Gaussian distribution;
and is more often bimodal in nature [27]. Therefore, we incorporated the control-based
analysis allowing for hit selection in the two distributions observed independent of the
duplex performance distribution.

By setting a control-based threshold for active duplex identification, we would miss those
with activities just below the cuts. Thus, after actives identification, we find it important to
examine breakpoints in output values of all the duplexes to assess where strong activity
breakpoints are located. This analysis is done in order to determine clear breaks in the
readout values and to score such duplexes as active if no clear performance differential is
observed. We present two examples of 10 genes each, one for a gain of function assay
measuring EGFP fluorescence enhancement against an siRNA library with a control based
threshold set at > 259; and the second example is a lethal shRNA hairpin assay measuring
residual nuclei count with a control based threshold set at 2,440. The analysis identifies and
re-scores as active those duplexes which have values around the set threshold (Suppl Fig 1).

2) Active gene identification—Active genes were identified from the active duplexes
obtained from step 1 and based on two criteria described as follows:

a) H score to identify active genes: The active genes were nominated from the active
duplex list using a hit rate per gene score (H score) with a threshold set at ≥ 60. An H score
of 60 translates into 2 active siRNA/esiRNA duplexes or 3 active shRNA hairpins in a
typical RNAi library comprising of at least 3 siRNA/esiRNA duplexes or 5 shRNA hairpins
targeting each gene, respectively; yielding a hit rate of > 60% under each scenario (Fig 3).
The H score is defined as follows:

Considering the inherent gene coverage heterogeneity of most RNAi libraries (Table 1),
where we do find a percentage coverage of > 3 duplexes for si/esi- and > 5 duplexes for
shRNA hairpins and ranging from 0.11 to up to 21%, we have made provisions to the H
score analysis whereby a t-test is performed to determine if the performance of the active
duplexes was significantly different from the performance of the inactive ones as described
below. Genes with coverage of < 2 duplexes in any given RNAi library were completely
excluded from the analysis to maintain high level of stringency.

b) Statistical test to assess duplex performance: On average, an RNAi library either
contains 3 siRNA or 5 shRNA hairpins per gene; these numbers do vary. It is important,
however, to account for differential performance amongst duplexes for such genes
especially in scenarios where high H scores of ≥ 80 would otherwise be expected; 4 active
shRNA hairpins or 3 active duplexes based on the average library statistics. This also helps
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to assess the possibility of inactive duplexes for genes targeted by high numbers of duplexes
in the library as being inactive. The duplexes targeting such genes were divided into two
categories, those active in the screen and those inactive in the screen; and a statistical t-test
was applied to assess the difference in the performance between the two categories. The null
hypothesis (H0) was defined as no difference in the mean of performance between the two
categories and the H0 was rejected at a p-value threshold set at < 0.05 [28]. The t-test was
performed using the Statistics::TTest module in PERL.

3) OTE Filtering—The overall active duplexes corresponding to the active genes
nominated in step 2 were assessed for OTEs. The OTE activity was defined for the seed
heptamer corresponding to individual duplexes. The seed heptamer was subjected to three
analyses for OTE filtering, defined as follows:

a) Seed heptamer enrichment in hits: The seed heptamer enrichment was determined
based on the hypergeometric distribution [29] to find the probability of obtaining the number
of matches for seed heptamer in the active duplexes at least as extreme as actually observed.
The H0 was defined as to observe the number of seed heptamer matches in the active
duplexes by chance and the threshold for rejecting H0 was determined at < 0.05 [28],
therefore indicating an over-representation of a seed heptamer in the list of active duplexes
versus the inactive duplexes. If, l is a seed heptamer; N is the total number of seed
heptamers in the library; n is the total number of seed heptamers in the active duplexes; k is
the number of l in the library; x is the number of l in the active duplexes, then, the p-value
for l is calculated as follows:

b) Seed heptamer enrichment in 3′UTR sequences: The seed heptamer enrichment was
found in the 3′UTR sequences and the percent (%) 3′UTR enrichment is calculated as
follows:

The multiple seed heptamer matches within a single 3′UTR sequence were considered. We
calculated the percent % 3′UTR enrichment of the unique seed heptamers obtained from the
four RNAi libraries. The distribution plot for the % 3′UTR enrichments from the RNAi
libraries revealed two peaks, one peak at approx. 2%, indicative of the seed heptamers with
minimal enrichments, and the second peak at 10%, representative of highest enrichment
among the seed heptamers with higher number of matches in the 3′UTR sequences (Fig
4A). Based on these findings from the four different library enrichments, the threshold for
scoring high enrichments in 3′UTR sequences was set at greater than 10%.

c) Seed heptamer enrichment in miRNA sequences: The seed heptamers with exact seed
heptamer match with the miRNA sequences are likely to mimic the corresponding
endogenous miRNAs and therefore, a potential avenue for off-target silencing. Thus, the
seed heptamer matches had to be evaluated to rule out the miRNA mimics as a plausible
cause of OTEs. Analysis of the TRC shRNA hairpin library revealed on an average one
exact seed heptamer matches with seed heptamers from the library (Fig 4B). Therefore, the
human genome miRNA sequences were scrutinized for an exact seed heptamer match and
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the threshold was set at observing a minimal of one exact seed heptamer match. The
experimentally validated targets for the identified miRNAs were retrieved from Tarbase 6.0
[25] and used to identify putative off-target transcripts.

The active duplexes that qualified in all three criteria described above represented strong
off-target candidates and were therefore deemed HC_OTEs. The HC_OTEs were eliminated
from further consideration and analysis. The duplexes that qualified in at least two criteria
were flagged as low-confidence OTEs (LC_OTE) but retained for subsequent analysis. It is
important to tag LC_OTEs in the list, as this information would act as filter in selecting
candidates for confirmatory studies. Duplexes qualifying in utmost one criterion were
ignored based on our selection threshold and deemed no OTE duplexes.

4) Re-scoring & final hit nomination—The active gene list was then re-scored by
recalculating the H score for the remaining active duplexes deemed not affected by OTEs.
After re-scoring, the genes candidates that failed to meet the criterion of an H score > 60
were filtered out as false positives due to OTEs (Fig 3). The step of re-scoring after OTE
filtering is critical to re-assess the H score association with the active genes and to remove
the ones which, after OTE filtering, fail to the score. For the genes targeted by greater than
the average duplexes in the RNAi library, p-values for the differential performance between
active versus inactive duplexes were considered. The remaining genes constituted the final
list of nominated gene hits wherein the duplexes with strong potential OTEs had been
eliminated. Statistical analysis for hit identification was performed using PERL scripts and
Sigmaplot (SYSTAT, CA).

5) Biological Classification—Biological classifications were performed using the
available bioinformatics resources and were used to identify enrichments in the following
three categories: 1) Gene networks or clusters, 2) Functional classes, and 3) Canonical
pathway associations. Cytoscape’s MiMI plug-in was first used to create a master network
from the list of nominated genes. The protein-protein interaction (PPI) databases used to
construct the networks available within MiMi were BIND, CCSB, DIP, HPRD, KEGG,
MDC, MINT and REACTOME [30]. Cytoscape’s MCODE plug-in was used to find over-
connected gene clusters within the master network [31]. BiNGo was used to visualize
enriched GO categories in Cytoscape [32]. The nominated hits were annotated with the
corresponding GO identifiers and the functional classes were assigned to the nominated hits
based on enrichments determined using DAVID Functional Annotation Tool
(www.david.abcc.ncifcrf.gov/) [33] and PANTHER classification system [34]. Canonical
pathway analysis was done using Gene Go’s Metacore software (www.genego.com/
metacore.php). Threshold for statistical level of significance was determined at a p-value of
< 0.05.

RESULTS
Fundamental consideration in random RNAi screening hit nomination

Data analysis to identify meaningful information from RNAi screens has four major
considerations: 1) quality control assessment (QC), 2) hit identification process, 3) OTE
detection and filtering, and 4) biological classification. A systematic implementation of
these considerations in a data processing pipeline filters the raw data to yield a final set of
biologically relevant gene candidates (Fig 5A). The QC step incorporates the assessment of
the overall screen performance including controls and library duplexes; and can be
determined using various QC metrics for example, signal to background (S:B) ratio,
coefficient of variation (CV) and Z’ factor; though low Z’ values have been observed in
RNAi screening data output [11, 35, 36]. In addition, we have also observed that RNAi
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screening data does not necessarily follow a classic bell-shaped Gaussian distribution; in
that the data distribution is very heterogeneous and with high standard deviations
[Djaballah et al, unpublished observations]. Bimodal distributions have also been
observed in some siRNA duplex screen outputs [27].

These two observations indicate that the heterogeneity and inherent noise of an RNAi screen
data are typical culprits and therefore, brings into question the value of RNAi data pre-
processing via normalization, which are based on either control data or library data [11].
Most of the data normalization techniques assume a Gaussian distribution and their data
scaling is sensitive to outliers. Moreover, few normalization techniques assume the library
data to behave as negative controls against which the data values are adjusted, and might be
misleading if there are multiple actives within a plate [11]. As an example, 19 frequency
distributions plots are illustrated for B-score normalized data from an arrayed shRNA
hairpin cell viability screen by Barbie and co-workers [20] (Suppl Fig 2). It was observed
that the normalized B-score values appear to have low noise and to follow a near normal
distribution, possibly because the B-score normalization tends to alter the plate data to
behave as de facto negative controls and might excessively modify data in case no real
systematic errors exist. Therefore it might be more informative and prudent to use raw
screening data for the purpose of analysis.

In the second layer of hit identification, a suitable data analysis strategy can be selected
based on the control well performances during the screen. Due to the combinatorial nature of
the RNAi screen, it becomes critical at this stage to set a minimal selection criteria to call a
gene active based on the number of active duplexes. To inspect this aspect of the current
trends of data analysis, we have reviewed methodologies used in approx. 300 published
RNAi screens. Importantly, we have observed inconsistent methods of hit selection across
all studies and also found that majority of the studies did not use the minimal active duplex
threshold for nominating a hit. We have found 33 different hit selection methodologies in 80
representative reports (Fig 5B), highlighting the urgent call for standardization of data
analysis in random RNAi screens. Of prominence in the methodologies was the z-score,
followed by fold change and percent inhibition for hit selection. The z-score, although
convenient to implement, does not take into account the controls of the screen, which might
serve as valuable reference points in the RNAi screen output. In addition, z-score also
assumes the underlying data to follow normal distribution. The other two commonly used
methods, percent inhibition and fold change, fail to take into account the inherent data
variability. Of note, the fold change method was observed predominantly for analysis of
pooled shRNA hairpin screens conducted to measure relative hairpin depletions.

In the third layer of OTE detection and filtering, duplexes corresponding to active genes
must be assessed for potential sequence-dependent off-target activity; and we observed that
most of the published RNAi screen results were not subjected to filtering through an OTE
detection strategy. Recent studies have reported prominence of OTEs in their top scoring
hits especially due to miRNA like mimic activity exhibited by the exogenous RNAi seed
sequences [16, 18, 25]. Taken together, these facts indicate an urgency to incorporate a
concept based OTE filtering strategy in the data analysis workflow wherein seed heptamer
enrichments within the active duplexes, 3′ UTR sequences and miRNA sequences must be
evaluated.

Finally, it becomes important to perform a knowledge-based enrichment through biological
classification of the hits. In order to understand their relevance in a biological context, the
resultant functional and canonical pathway perturbations along with the network
associations need to be elucidated. However, the applicability of this step is limited to our
current understanding of functional genomics, and thus a recommended strategy might be to
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incorporate maximal bioinformatics tools and resources available to identify significant
biological interactions within the RNAi screen results.

Attributes of RNAi screening libraries
We took advantage of the in-house availability of four RNAi libraries obtained from three
different sources and used them as representatives to study the attributes of library duplexes
in general (Table 1). We have evaluated the duplexes thus obtained for three characteristics
1) duplex frequency per gene in the library, 2) 3′UTR enrichments of the seed heptamers
corresponding to the unique duplexes in the library, and 3) miRNA enrichments of the seed
heptamers corresponding to the unique duplexes in the library. A breakdown of hairpin
frequencies per gene revealed on an average 3 duplexes per gene in an siRNA duplex library
and 5 hairpins per gene in an shRNA hairpin library; deviations from the average duplex
numbers were observed across the board (Table 1).

Next, we extracted the seed heptamers from the unique duplex sequences constituting the
four libraries and evaluated them individually for 3′UTR enrichments, also taking into
account multiple matches within 3′UTR sequences. Interestingly, the frequency plots of the
enrichments for all the four libraries revealed a similar pattern and we observed two distinct
distributions; one being representative of minimal 3′UTR sequence matches up to 4%
perhaps originating from random seed heptamer matches, while the second being
representative of relatively stronger 3′UTR enrichments (> 4%). In the second distribution,
we have observed a peak at 10%, indicating that the highest number of seed heptamers in the
library had 10% enrichment within the 3′UTR sequences (Fig 4A). This observation can be
instrumental to determine thresholds for 3′UTR enrichments in OTE filtering for active
duplexes identified in a random RNAi screen.

In the third part of the analysis, we searched for identical seed heptamer matches between
the RNAi libraries and the human microRNA sequences. Similar to 3′UTR enrichment
findings, we have observed results of miRNA enrichments to be consistent across all four
libraries wherein the maximal number of duplexes did not have an identical seed heptamer
match with the miRNA sequences under consideration. Importantly, highest proportion of
the remaining seed heptamers had identical match with utmost one miRNA (Fig 4B). On the
extreme end of the distribution spectrum, we have found four seed heptamers (AAAGTAA,
AAGTGCT, TCTAGAG, and GAGGTAG) in total from the four libraries which had an
identical match with > 10 miRNAs; wherein seed heptamer TCTAGAG was found in
duplexes of all four libraries (Suppl Table 1). A total of 45 miRNAs were associated with
these four seed heptamers and belong to 9 distinct miRNA families. We also observed that
21% miRNAs with seed heptamer GAGGTAG found to be members of the let-7 family, and
were identified to have approx. 400 targets in Tarbase 6.0 (Suppl Table 1). Therefore, it is
critical at this stage to be cautious of these seed heptamers in active duplexes, as they might
be hot spots resulting in putative OTEs.

The BDA method: a simple and systematic workflow for hit nomination
Based on the considerations described above, we have introduced a standardized analysis
workflow referred to as the BDA method for hit nomination. The method systematically
addresses the current bottlenecks of RNAi data analysis in five steps: 1) Active duplex
identification, 2) Active gene identification, 3) OTE filtering, 4) Re-scoring, and 5)
Biological classifications (Fig 1). In the first step of active duplex identification, we
determine the controls to be used in the analysis based on the biology of the assay under
consideration and the threshold is defined at μ ± 2σ of the controls. The selection of the
controls is conceptual for example, puromycin treated non-transduced wells can be used to
determine the threshold for essential gene in a cell viability shRNA hairpin screen
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[Djaballah et al, unpublished observations]. μ ± k σ is a simple and common data
analysis practice of hit selection in high throughput screens (HTS) and is more than often
used for threshold determination in transformed data, for example data converted to z-scores
or B-scores [11]. Theoretically, k = 2 gives the probability of a data value being within the
range of (μ − 2σ, μ + 2σ) and is approximately equal to 0.9545 for a normally distributed
data.

In the second step of active gene identification, we have introduced the H score to quantify
the duplex activity per gene. H score emerges as a powerful metric due to its flexibility in
incorporating the duplex activity information when compared to a static number based
threshold and proportionally adjusts to accommodate the varying duplex frequency per gene
(Fig 3). The threshold for the H score must be > 60 to identify only those genes that have
maximal duplex activity. The total number of duplexes per gene may well be higher than the
average within a given RNAi library. Therefore, it would be a logical consideration to assess
the performance difference amongst the active versus inactive duplexes. To address this, we
applied a statistical test for those genes that have > 4 active duplexes. A p-value score is
indicative of a statistically significant difference in mean performance of the active duplexes
versus their inactive counterparts. The genes targeted by less than three shRNA hairpins or
less than two siRNA duplexes in the RNAi library were excluded from the analysis to
maintain a stringent hit nomination process.

In the third step of OTE filtering, seed heptamers are first determined in the guide strand
from nt position 2 to 7 from the 5′ end (Fig 2A). The guide strand yields prominent OTEs
compared to the passenger strand, and therefore was the selected for OTE filtering [14, 17,
19, 25]. Of note, heptamers inherently harbor hexamers and are also reportedly a preferred
seed length [25, 26]. Compared to siRNA duplexes, seed determination in shRNA hairpins,
is more complicated owing to their intracellular processing by dicer cleavage, which might
not be specific [37, 38]. Taking that into consideration, we have selected seed heptamers
using two methods: 1) theoretically, based on the ideal location at nt position 33 on the
oligonucleotide and 2) empirically, based on the positions calculated by the ESS method
(Fig 2B). The ESS method reports on the correlation values calculated from screen data
output for each nt position on the oligonucleotide; highest correlation value indicative of the
start of seed heptamer. Of note, two distinct peaks can be observed when the correlation
values are plotted on a histogram, and are representative of the passenger strand and the
guide strand respectively (Fig 2C). More than often we have observed an offset of 2 nt in the
empirically determined start position as compared to the theoretically determined start
position

Next, the active duplexes corresponding to the active genes identified in step two are
subjected to a three-tier analysis for seed heptamer enrichments in 1) active duplexes
relative to the library, 2) 3′UTR sequences, and 3) miRNA sequences; The thresholds for
3′UTR enrichments and miRNA seed matches are determined based on the RNAi library
attributes wherein we had observed the highest 3′UTR enrichments at 10% (Fig 4A) and
highest miRNA identical seed heptamer matches at one (Fig 4B). OTE filtering for siRNA
duplexes is performed for the seed heptamers identified in the guide strand; while that for
shRNA hairpins is performed for the heptamers obtained from the two methods of seed
determination independently and results are merged for a comprehensive OTE profile.
Furthermore, a stringent segregation of the OTE filtering output reveals those duplexes that
qualify in all 3 criteria, therefore HC_OTEs, those that qualify in at least two criteria,
therefore LC_OTEs, and those that qualify in utmost one criterion, therefore No OTEs.
HC_OTEs were deemed as highly likely off-targets as they represent strong enrichments
across the board, and were removed from subsequent analysis while the LC_OTEs were
only flagged in the list of active genes.
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In the fourth step of re-scoring, we re-calculate the H score for the active genes after
removing the HC_OTEs and the genes that now fail to meet the minimal H score criterion of
at least 60, thus resulting in final list of nominated candidates with a much higher degree of
confidence. Rescoring successfully allows maintaining a high stringency in hit nomination
by preserving only those genes that, after successive steps of filtering still retain maximal
active duplexes. In the fifth and final step of biological classifications, we analyze the
nominated hits through a combination of available bioinformatics tools and review
enrichments in three categories: 1) Gene networks/clusters, 2) Functions, and 3) Canonical
pathways. This step can be viewed as a strategy for hit prioritization as the most probable
hits are likely to form statistically significant networks or be involved in perturbation of
specific canonical pathways and cellular functions.

BDA method to assess nominated hits in published RNAi screens
Case Study One: Arrayed shRNA hairpin Screening Data Re-Analysis—We re-
analyzed the data from published arrayed shRNA hairpin screens performed by Barbie and
co-workers [20]. They reported a set of 45 genes essential specific for cells harboring KRAS
mutation with TBK1 emerging as a high value target. The shRNA hairpins were deemed
active below a threshold determined at a B-score value of −1. We found that majority of the
genes had either one or two active duplexes (Suppl Fig 3). We have calculated the H score
and found that approx. 6% of the genes in the library were targeted by greater than five
shRNA hairpins and therefore subjected them to a statistical test to evaluate the statistical
difference in the overall performance. The active duplexes corresponding to the active genes
were subjected to the OTE analysis. When using the ESS method, we have found eleven cell
lines with a seed heptamer start position determined at nt position 35 and the remaining
eight cell lines with a seed heptamer start position determined at nt position 36; four
representative correlation histograms are shown (Fig 2C). An evaluation of the miRNAs
identified in the HC_OTE list revealed the involvement of 136 distinct miRNAs (Suppl
Table 2). Post OTE filtering, the H scores were recalculated. In summary, the BDA
workflow yielded a set of 192 combined candidate genes across the 19 cell lines (Suppl Fig
4 & Fig 6A). Biological classification of the resulting candidates was split into 95 KRAS-wt
specific and 51 KRAS-mu specific genes and revealed differentially enriched pathways and
functions between the two groups (Figs 6B & 6C). We compared our results to the 45 genes
reported by Barbie, and found a marginal overlap of 19 genes (Suppl Fig 5), 6 genes were
KRAS-wt specific, while the remaining 4 genes were common between the two groups.
Surprisingly, TBK1 did not emerge as a high value target but was rather inactive across all
19 cell lines based on the BDA method.

Case Study Two: Pooled shRNA hairpin Screening Data Re-Analysis—We re-
analyzed the data from published genome-wide pooled shRNA hairpin screens performed by
Cheung and co-workers, where they have also reported cell-lineage specific essential genes
for cancer [21]. We obtained the FC values for the shRNA hairpin library for the 102 cell
lines from the Broad Institute (Suppl Table 3). We used the FC values for the negative
control pools, and calculated a threshold for individual cell lines based on the μ − 2σ of the
FC values corresponding to the controls. We found a prominence of less than equal to two
active shRNA hairpins per gene (Suppl Fig 6). We have calculated the H score for each gene
based on the corresponding active duplexes. We found that approx. 2% of the genes in the
library were targeted by greater than five shRNA hairpins where we applied a statistical test
as described above. OTE filtering analysis was subsequently performed. Using the ESS
method, we found that 101 cell lines had a seed heptamer start position determined at nt 35;
whereas only one cell line (QGP-1) had seed heptamer start position determined at nt 36
(data not shown). Post OTE filtering, the H scores were recalculated. In summary, the BDA
method nominated 2,083 combined candidate genes across the 102 cell lines (Suppl Table 4;
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Suppl Fig 7). Interestingly, we found miR-145 which was found in active duplexes for 3
genes (FOLR1, KCNK5, RET); miR-145 has previously been shown to be associated with
off-target silencing [16]. None of the nominated genes were active across all with only 25 of
them active in approx half of the cell lines. We categorized the hits into three groups of
KRAS-wt, KRAS-mu, and KRAS-unk. An overlap analysis revealed 812 genes in common,
1,057 genes specific to KRAS-wt, and 214 genes specific to KRAS-mu (Fig 7A); the
KRAS-wt and KRAS-mu candidates were subjected to biological classifications as
described above and reveals some critical differences in classifications between the KRAS-
wt and KRAS-mu cell lines (Figs 7B & 7C).

Furthermore, to compare the hits nominated in BDA method to those identified by Cheung,
we obtained the published list of hits reported as lineage specific genes; which are 582
essential genes in 25 ovarian cell lines, 584 essential genes in 6 GBM cell lines, 567
essential genes in 18 colon cell lines, 578 essential genes in 7 esophageal squamous cell
lines, 588 essential genes in 13 pancreatic cell lines, and 594 essential genes in 8 NSLC cell
lines. Similarly, we grouped our nominated hits from the cell lines based on the tumor type
and have performed an overlap analysis with the ones provided Cheung. We observed that
most of the hits reported were filtered out based on H score threshold of 60 (Suppl Fig 8 &
Suppl Table 5). Interestingly, we were not able to nominate PAX8, identified as a high value
target in ovarian cell lines by Cheung. PLK1, routinely used control in RNAi screens [36,
39-40], emerged as inactive across all 102 cell lines. Similarly, FRS2 and RPTOR failed to
qualify above the threshold set for H score (Fig 8).

H scores for cross-study comparative analysis—we have compared the hits
nominated by the BDA method in the arrayed shRNA hairpin screen performed by Barbie
with the pooled shRNA hairpin screen performed by Cheung. We reviewed the performance
of ten high value candidates, namely BRD4, FFRS2, PAX8, PLK1, RPTOR, STK33, TBK1,
KRAS, RPA2, ICK and STK16; interestingly, none of them qualified under our stringent
criteria (Fig 8). We first filtered out those genes from the analysis that did not overlap
between the two screening libraries used. An overlap was then performed only between 90
genes and 54 genes nominated in Barbie and Cheung screen respectively for KRAs-wt/
KRAS-wt and we found only seven genes in common for both, respectively (Suppl Fig 9).
Additionally, an overlap amongst genes from the two KRAS-mu common cell lines (A549
and DLD-1) revealed only four genes in common (Suppl Fig 10).

DISCUSSION
The current trends in the field in terms of screening data interpretation is left to be desired
for and in most cases not comprehensive enough; leading in part to poor data reproducibility
as the emerging major concerns [2-4, 9-10]. Intuitively, one would have expected that an
observed strong phenotype, associated with a given gene, be consistent across similar
screens irrespective of the RNAi technology used. Unfortunately, cross study comparisons
have revealed poor overlaps suggesting a likely prominence of artifacts in the screening data
interpretation and subsequent results [2]; which can be potentially attributed to target
knockdown specificity of given RNAi duplexes. Furthermore, there have been multiple
instances where gene targeted by ≤ 2 active duplexes has been reported as high value gene
targets [9, 20-21]. Therefore, the caveat of target specificity needs to be addressed at two
levels during the process of hit identification: 1) Minimal number of active RNAi duplexes
per gene and 2) OTE filtering. For this purpose, we have developed the BDA method as a
stringent and comprehensive data analysis workflow resulting in high confidence gene
candidates.
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We reviewed approx 300 published RNAi screens and found an array of methods used for
hit identification (Fig 5B). Through the BDA method, we aim to standardize the hit
nomination process. The use of controls for defining the threshold is highly recommended
for two reasons: 1) To render the analysis independent of the library data distribution, and 2)
To analyze the data based on the performance of the controls. RSA, as a method, was
developed to rank a gene taking into consideration the collective activity of all its duplexes
[13]. In contrast, the BDA method first scores for the individual active duplexes independent
of their concerted performance, followed by the H score to identify active genes based on
maximal active duplexes. This feature renders the H score value independent of assay
readout, RNAi technology, and data processing methodologies used. Since duplex
frequencies per gene vary and most of the duplexes in the library are not necessarily
validated (Table 1), there is a possibility that some of the duplexes associated with genes
with high duplex frequencies might have low knockdown efficiencies and therefore inactive
in the screen. To rule out this possibility, we applied statistical test to assess the activity of
such genes based on the differential performance among the active duplexes versus the
inactive counterparts. We believe that the test for performance difference along with H score
will reduce the scoring of false negatives and false positives respectively.

OTEs are prominent in RNAi screening and besides several attempts been made to design
high specificity RNAi duplexes through the use of sophisticated predicting algorithms,
OTEs remain a major issue in RNAi today [14-16]. Currently, there are few strategies and
tools developed for OTE filtering based on either the seed heptamer over-representation in
the hit list or the 3′UTR sequence matches [17-19]. Our concept-based strategy for OTE
filtering incorporates a stringent approach which takes into account three important criteria;
1) Seed heptamer over-representation amongst active duplexes, 2) 3′ UTR sequence
enrichment, and 3) Seed heptamer identical match with a miRNA sequence. To determine
thresholds for the last two criteria, we have studied the attributes of four RNAi libraries and
the results reveal similar distribution patterns for enrichments in 3′UTR sequences and
miRNA seed heptamers; with maximum library seed heptamers having 10% enrichment in
3′UTR sequences with one miRNA match. The similarity of enrichments across them could
be attributed to an overlap amongst the seed heptamers from the individual libraries or
simply the design algorithms used.

To achieve and maintain high stringency while eliminating putative OTEs, we demarcate the
obtained list of potential OTEs into high and low-confidence; which in turn enable us to
remove highly likely OTEs while also tag the less likely ones; particularly insightful when
proceeding towards confirmatory studies. We believe that this approach will also restrain
from over prediction of OTEs in active duplexes. Our approach also allows for examining
OTE profiles based on the effects of miRNA mimics; however this effort is currently limited
due to the small number of experimentally validated targets for most of the known human
miRNAs.

We applied the BDA method to two shRNA screens published by the same group as they
both used the same TRC libraries and in some instances same cell lines. Irrespective, one
would have expected to observe a higher overlap; but on the contrary, we find a sub-
marginal overlap of only seven genes. Incidentally, the high value targets TBK1 and PAX8
were not nominated as strong candidates as they had less than three active duplexes.
Moreover, we did not find a function or pathway overlap amongst the nominated gene
candidates from the two screens. These results, though not surprising, reflect on the inherent
issues associated with pooled shRNA screens on the one hand, and on the other the dire state
of the field in that it highly concur with the immediate needs to standardize RNAi screening
data analysis, eliminating the unnecessary need to normalize and manipulate raw values, and
to be transparent as to the process of hit nomination. The BDA method, especially the H
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score, is independent of any assay technology and as stringent and transparent as a method
can be. Of note, as we were finishing our manuscript, a perspective was published in
Science by Kaelin [41] addressing the need for prudence when one analyzes random RNAi
screening data if we are to remain in love with the technology beyond the ten years
honeymoon, especially that there is a growing view that RNAi has been abused at times
when studying mammalian gene function.

In summary, we have developed and successfully implemented a data analysis method,
referred to as the BDA method, tailored specifically for RNAi screening data, and applicable
to both arrayed and pooled RNAi screening technologies. We introduce and describe the H
score as a novel metric to assess overall duplex activity leading to an active gene nomination
capturing the essence of the combinatorial nature of RNAi and with a high stringency
consideration for active gene nomination. We incorporate an approach for OTE assessment
and filtering of those active duplexes deemed artifactual due to their seed sequence
similarities to miRNAs and/or 3′UTR sequences; thus causing a phenotype through an off-
target silencing. We demonstrate the performance of the BDA method on two independent
and published RNAi screening data sets highlighting the sheer variability in published hits,
especially when both groups used the same library and in some instances the same cell lines.
We hope that the BDA method would provide the initiating steps towards standardization of
the RNAi screening field especially for RNAi data analysis and hit nomination; yielding a
much needed transparent and unified platform for RNAi screening data output convergence,
and potentially leading the technology towards a better forecast to fulfill its premise of
providing us with much needed targets for drug discovery to fight and treat disease.
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Refer to Web version on PubMed Central for supplementary material.
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H score ‘hit rate per gene’ score

OTE off-target effect
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Figure 1.
Schematic workflow of the developed BDA method
The five steps of the BDA method are depicted. HC_OTE: High confidence Off-Target
Effects, LC_OTE: Low confidence Off-Target Effects; No OTE: no Off-Target Effects.
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Figure 2.
Seed heptamer sequence attributes and location on resulting RNAi duplexes
A) Seed heptamer determination in siRNA duplexes. B) Seed heptamer determination in
shRNA hairpins based on differential dicer cleavage scenarios considered in the BDA
method. Seed heptamers are depicted in red. C) Correlation assessment of seed heptamer
starting nucleotide performed using ESS method in four representative screened cell lines
from the Barbie screen. Red line indicates nucleotide position with highest correlation value
in guide strand.
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Figure 3.
Inherent flexibility and diversity of H score
The proportional variance in H score based on the changing numbers of total duplexes
coverage per gene in an overall representation of analyzed RNAi libraries.
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Figure 4.
Frequency distribution and enrichment of the seed heptamer sequences in four analyzed
RNAi libraries
A) 3′UTR enrichment in the four RNAi libraries expressed as percentage of total. Red line
indicates the highest enrichment at 10%. B) miRNA exact seed sequence matches and
frequency distribution in the four RNAi libraries.
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Figure 5.
Hit nomination strategies in RNAi screening data
A) Typical four step considerations towards enrichment in high confidence value of
biologically relevant hits from random RNAi screening. B) Representative and predominant
RNAi screening data analysis methods for hit selection reported in approx 300 RNAi
screening publications.
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Figure 6.
BDA method to nominate genes in 19 cell lines from arrayed shRNA hairpin screen
performed by Barbie and co-workers
A) Heat map plot of the H scores values for the nominated genes per cell line; including an
overlap analysis between KRAS-wt and KRAS-mu cell lines in the study. KRAS-wt
represents cell lines harboring wild type KRAS. KRAS-mu represents cell lines harboring
mutated KRAS. B) Canonical pathways associated with nominated hits in both the KRAS-
wt and KRAS-mu cell lines. C) Functional enrichments associated with nominated hits in
both the KRAS-wt and KRAS-mu cell lines.
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Figure 7.
BDA method to nominate genes in 102 cell lines from pooled shRNA hairpin screen
performed by Cheung and co-workers
A) Heat map plot of the obtained H scores values for the nominated genes per cell line;
together with an overlap analysis between KRAS-wt and KRAS-mu cell lines. KRAS-wt
represents cell lines harboring wild type KRAS. KRAS-mu represents cell lines harboring
mutated KRAS. B) Canonical pathways associated with nominated hits in both the KRAS-
wt and KRAS-mu cell lines. C) Functional enrichments associated with nominated hits in
both the KRAS-wt and KRAS-mu cell lines.
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Figure 8.
Cross-study comparison and evaluation of nominated hits in shRNA hairpin screens
Performance assessment of 11 representative genes in the two published shRNA screens;
using the H score evaluation of actives. X-axis denotes the selected genes and Y-axis
denotes the cell lines. Cell lines are numbered as defined in Suppl Table 3.
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Table 1

Duplex coverage, frequency and library attributes of four analyzed RNAi libraries

Provider Library Technology Coverage Duplex Coverage Duplex Frequency (%) Validated duplexes (%)

Ambion Silencer Select siRNA duplex Genome-wide
(21,565 genes)

1 duplex
2 duplexes
3 duplexes
> 3 duplexes

0.02
0.03
99.83
0.12

4

MSKCC MSK siRNA duplex Druggable Genome
(6,016 genes)

1 duplex
2 duplexes
3 duplexes
> 3 duplexes

6.05
8.99
64.33
20.63

Unknown

Sigma-Aldrich Druggable Genome siRNA duplex Druggable Genome
(6,623 genes)

1 duplex
2 duplexes
3 duplexes
> 3 duplexes

0.39
0.95
97.57
1.09

Unknown

Sigma-Aldrich TRC 1.0 shRNA hairpin Genome-wide
(16,039 genes)

1 hairpin
2 hairpins
3 hairpins
4 hairpins
5 hairpins
> 5 hairpins

0.16
0.41
1.63
9.95
84.19
3.66
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