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CD47 and SIRP

CD47 is an ubiquitously expressed 50 kDa transmembrane 
glycoprotein that consists of a highly glycosylated extracel-
lular IgV domain, a hydrophobic multiple membrane-span-
ning domain, and a short alternatively spliced cytoplasmic 

tail [1]. It was originally discovered as an integrin-associated 
protein associated with v 3 integrins in the placenta and in 
neutrophil granulocytes (hence its alternative name integrin-
associated protein, IAP), with the capacity to regulate in-
tegrin-mediated responses to RGD-containing extracellular 
matrix proteins [2, 3]. IAP was found to be identical to the 
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Summary
The ubiquitously expressed cell surface glycoprotein 
CD47 is expressed by virtually all cells in the host, where 
it can function to regulate integrin-mediated responses, 
or constitute an important part of the erythrocyte band 3/
Rh multi-protein complex. In addition, CD47 can protect 
viable cells from being phagocytosed by macrophages 
or dendritic cells. The latter mechanism is dependent on 
the interaction between target cell CD47 and SIRP  on 
the phagocyte. In this context, SIRP  functions to inhibit 
prophagocytic signaling from Fc receptors, complement 
receptors, and LDL receptor-related protein-1 (LRP-1), 
but not scavenger receptors. The expression level and/or 
distribution of CD47 may be altered on the surface of ap-
optotic/senescent cells, rendering the phagocytosis in-
hibitory function of the CD47/SIRP  interaction reduced 
or eliminated. Instead, the interaction between these 2 
proteins may serve to enhance the binding of apoptotic/
senescent target cells to the phagocyte to promote 
phagocytosis. 
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Zusamenfassung
Das ubiquitär exprimierte Oberflächenglykoprotein CD47 
wird von praktisch allen Wirtszellen exprimiert, wo es in-
tegrinvermittelte Antworten reguliert bzw. einen wichti-
gen Teil des erythrozytären Band 3/Rh-Multiproteinkom-
plexes darstellt. Zusätzlich kann CD47 lebensfähige Zel-
len vor der Phagozytose durch Makrophagen oder dend-
ritische Zellen schützen. Letzterer Mechanismus hängt 
von der Interaktion zwischen CD47 auf der Zielzelle und 
SIRP  auf dem Phagozyten ab. In diesem Zusammen-
hang fungiert SIRP  als Inhibitor der prophagozytären 
Signalvermittlung durch Fc -Rezeptoren, Komplement-
Rezeptoren und LRP-1 (LDL receptor-related protein-1), 
nicht jedoch Scavenger-Rezeptoren. Auf der Oberfläche 
apoptotischer/alternder Zellen kann der Grad der Expri-
mierung und/oder Verteilung von CD47 verändert sein, 
was die Phagozytose hemmende Funktion der CD47/
SIRP -Interaktion vermindern oder beseitigen würde. 
Stattdessen könnte die Interaktion zwischen den beiden 
Proteinen dazu dienen, die Bindung apoptotischer/al-
ternder Zielzellen an den Phagozyten zu verstärken und 
somit die Phagozytose zu fördern.
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based inhibitory motifs ( ITIMs) [20], and has been shown to 
be expressed in myeloid cells, neurons, endothelial cells and 
fibroblasts, but not by T cells or B cells [21]. However, SIRP  
gene expression was detected following B cell receptor cross-
linking in the Burkitt’s lymphoma cell line BL2 [22], and a 
subset of human CD34– CD19+ bone marrow B cells were 
found to express SIRP  [23], suggesting expression of the re-
ceptor in specific B cell subsets. SIRP  plays important roles 
in regulating cell migration in several cell types [24], and mi-
gration of cultured fibroblasts from mice that lack the intrac-
ellular domain of SIRP  is markedly reduced [25]. Integrin 
engagement by extracellular matrix proteins induces tyrosine 
phosphorylation of the SIRP  cytoplasmic domain [26–29], 
which is suggested to be mediated by the Src-family kinase 
Lyn [30]. Such integrin-mediated phosphorylation is CD47-
independent in myeloid cells, but dependent on CD47 in en-
dothelial cells [27]. 

The interaction between CD47 and SIRP  during cell-cell 
contact can generate intracellular signaling from both pro-
teins, and has been found to regulate several important bio-
logical systems (one of these, inhibitory regulation of host cell 
phagocytosis, is further described in subsequent sections). 
CD47 and SIRP  are both expressed in the brain, in particu-
lar in synapse-rich areas of the hippocampus, cerebellum, and 
retina [31]. In addition, these proteins are involved in regulat-
ing osteoclast formation [32–34], osteoblast function [33], 
lymphocyte homeostasis [35, 36], dendritic cell (DC) matura-
tion [37], proper localization of certain DC subsets in second-
ary lymphoid organs [38–40], and cellular transmigration [41, 
42].

Phagocytosis of Viable Host Cells Is Negatively  
Regulated by Target Cell CD47

Macrophages or DCs can discriminate between self and non-
self. ‘Self’ is represented by CD47, recognized by SIRP  on 
macrophages or DCs where it functions as an inhibitory re-
ceptor [43, 44]. This is a regulatory system which turned out to 
be analogous to that described for natural killer cells [45], 
where activation is regulated by a large number of activating 
receptors and different inhibitory receptors. In general, im-
mune inhibitory receptors have cytoplasmic domains contain-
ing ITIMs [45] which, when tyrosine phosphorylated, can bind 
the tyrosine phosphatases SHP-1 and SHP-2 [20, 26] to inhibit 
tyrosine kinase-dependent signaling pathways [46]. CD47–/– 
blood cells are rapidly cleared from the circulation of wild-
type (Wt) but not CD47–/– mice [43, 44, 47]. For erythrocytes, 
this clearance mechanism is independent of complement and 
antibody, but virtually entirely based on clearance by splenic 
F4/80+ red pulp macrophages [44]. By blocking SIRP  on iso-
lated splenic macrophages, the level of phagocytosis of Wt 
erythrocytes can be increased to that seen with CD47–/– 
erythrocytes [44]. These findings suggested that all erythro-

Rh-related protein CD47 [4] and the OA-3/OVTL3 antigen 
highly expressed on most ovarian carcinomas, and also to be 
homologous to a protein family of variola and vaccinia vi-
ruses [1]. Since CD47 is highly expressed by erythrocytes and 
mature erythrocytes do not express integrins, other impor-
tant functions were expected for CD47 in these cells. A close 
relationship to Rh proteins was early suggested as erythro-
cytes from Rh-null individuals, expressing none of the Rh 
complex proteins, only express about 25% of the normal lev-
els of CD47 [4, 5]. Rh polypeptides form a complex with 
many other proteins in the erythrocyte membrane (e.g. Rh-
associated glycoprotein (RhAG), glycophorin B, LW, and 
CD47) [6]. The band 3 protein forms another complex with 
several proteins (e.g. glycophorin A, protein 4.2, and an-
kyrin) which are supposed to be involved in anchoring the 
spectrin cytoskeleton to the erythrocyte membrane [7, 8], 
and it was found that the Rh complex and the band 3 com-
plex may be associated in the erythrocyte membrane [9]. 
Mutations in band 3 or complete band 3 deficiency in hu-
mans result in reduced expression of Rh polypeptides and 
RhAG [10], and almost complete absence of CD47 [9]. In 
addition, human erythrocytes lacking protein 4.2 have a 
marked deficiency in CD47 and altered glycosylation of 
RhAG [11]. Together, this suggest that CD47 of the Rh com-
plex may form a link to the band 3 complex by binding to 
protein 4.2 [9]. Despite the established link between CD47, 
the Rh complex, and protein 4.2 in human erythrocytes, the 
interactions between CD47 and the same proteins in murine 
erythrocytes is not well understood since erythrocytes from 
CD47-deficient mice contain normal amounts of murine Rh 
and RhAG polypeptides [12], and erythrocytes from protein 
4.2-deficient mice have normal amounts of CD47 [13]. In ad-
dition, erythrocytes from band 3-deficient mice have little or 
no Rh polypeptides whereas expression of CD47 is only 
slightly reduced [9].

Besides its interaction in cis with integrins, the CD47 IgV 
domain also binds the cell-binding domain of the extracellular 
matrix protein thrombospondin [1]. The receptor signals via 
the 3 integrin cytoplasmic tail, and in a pertussis toxin-sensi-
tive manner via heterotrimeric G proteins and adenylate cy-
clase [1]. At present, it is unclear how much these 2 signaling 
pathways overlap. CD47 has the ability to induce a caspase-
independent form of apoptosis in activated T or B cells fol-
lowing cross-linking of the receptor [14–16]. It also augments 
Fas-induced apoptosis, making CD47-deficient Jurkat T cells 
or primary murine T cells resistant to Fas-induced killing [17]. 
This is not a general apoptosis defect, since CD47-deficient 
cells can undergo apoptosis in response to other apoptosis-in-
ducing stimuli.

Besides being a receptor for thrombospondin, CD47 is also 
a ligand for SIRP , an interaction originally identified in neu-
rons [18]. SIRP  (also known as SHPS-1, MyD-1, BIT, MFR, 
CD172a, P84, or PTPNS1 [19]) has 3 extracellular Ig domains 
and an intracellular tail with 2 immuno-receptor tyrosine-
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pared with that when the opsonized cell lacks CD47. Al-
though the interaction between CD47 and SIRP  regulates 
phagocytosis in a similar way in all species investigated, the 
interaction is very species-specific [57], which is one of the ex-
planations for the rapid phagocytosis seen when xenogenic 
cells are transplanted [58]. However, expression of CD47 
from the host in xenogenic cells results in marked tolerance 
by host macrophages following transplantation [59]. Recently, 
a number of studies have also shown that overexpression of 
CD47 is a way for human tumor cells to avoid phagocytosis by 
macrophages, and antibodies against CD47 were found to be 
effective in mediating enhanced phagocytosis and killing of 
tumor cells [60].

Phagocytosis of Apoptotic Cells Is Not Inhibited But  
Rather Promoted by CD47

Apoptosis is an important process where aged, damaged, or 
potentially destructive host cells are removed by a pro-
grammed and physiological form of cell death [61]. Apop-
totic cells are preferentially cleared by macrophages or DCs 
to prevent release of toxic or immunogenic intracellular 
components as a result of cell lysis [62–64]. Uptake of patho-
gens normally stimulates macrophages or DCs to release 
proinflammatory substances, whereas uptake of apoptotic 
cells will rather stimulate resolution of inflammation [65]. 
Several studies have indicated that recognition and ingestion 
of apoptotic cells is a complex process where many 
prophagocytic receptors, bridging molecules, and several 
‘eat-me’ markers on apoptotic cells are involved, together 
controlling phagocyte behavior during the phagocytosis of 
these cells [61, 66]. Phosphatidylserine (PS) is normally 
present in the inner plasma membrane leaflet, but flips to 
the outer leaflet early in the apoptotic process, which has 
been found to stimulate phagocytosis [67]. Other cell surface 
changes are alterations in the pattern of glycosylation of 
glycoproteins and glycolipids [67, 68], changed expression 
levels of specific molecules, and non-specific changes such as 
surface charge [69, 70]. Alterations in sugar chains, surface 
charge, and oxidation result in the generation of sites resem-
bling oxidized lipoprotein particles, thrombospondin (TSP) 
binding sites, sites capable of binding lectins or the comple-
ment proteins C1q and C3b, as well as various collectin-bind-
ing sites. These surface alterations, resulting in new binding 
sites for receptors, have important implications for the re-
moval of the apoptotic cell [71–73]. 

The fact that apoptotic cells are efficiently taken up by 
phagocytes, whereas viable cells are not, suggested that re-
duced inhibition through the CD47/SIRP  interaction could 
be one mechanism contributing to facilitated phagocytosis. In-
deed, several changes occur in CD47 on apoptotic cells in 
both mice and humans. First, the cell surface levels of CD47 
was found to be reduced on apoptotic fibroblasts and neu-

cytes are recognized by splenic macrophages when SIRP  is 
blocked, and that these macrophages must have a receptor for 
erythrocytes. Indeed, the endocytic receptor LDL receptor-
related protein (LRP-1) was found to mediate uptake of 
CD47–/– murine erythrocytes by binding to calreticulin on the 
erythrocytes [48, 49]. However, it still needs to be proven to 
what extent LRP-1-mediated uptake of erythrocytes is in-
volved in the clearance of murine or human erythrocytes in 
vivo. The inhibitory signals generated by macrophage SIRP  
upon ligation of CD47 also affects prophagocytic signaling via 
Fc  and complement receptors [50, 51]. As a result, CD47–/– 
mice are more sensitive to experimentally induced autoim-
mune cytopenias, such as autoimmune hemolytic anemia 
(AIHA) [52] and immune thrombocytopenic purpura (ITP) 
[47], when antibodies against erythrocytes or platelets are in-
jected into recipient mice. Autoimmune-prone non-obese dia-
betic (NOD) mice are mostly known for their high spontane-
ous incidence of type 1 diabetes, but NOD mice not develop-
ing diabetes may instead develop a milder form of AIHA at 
an older age [53]. Interestingly, CD47–/– NOD mice succumb 
from an accelerated form of AIHA at a fairly young age [52]. 
The exact explanation behind this is not known, but it is most 
likely closely associated with the autoimmune phenotype of 
NOD mice, since CD47–/– mice on non-autoimmune-prone 
genetic backgrounds (e.g. C57BL/6 or Balb/c) do not sponta-
neously develop AIHA. However, since CD47–/– erythro-
cytes are phagocytosed at a much higher rate than equally op-
sonized Wt erythrocytes both in vitro and in vivo, it is possible 
that the accelerated development of AIHA in CD47–/– NOD 
mice is due to a higher rate of antigen uptake, antigen presen-
tation, and autoantibody production [54]. The fact that lack of 
CD47 on erythrocytes does not per se result in AIHA devel-
opment in mice, suggests that AIHA should not be expected 
in the rare examples of complete CD47 deficiency in humans, 
unless the CD47 deficiency is combined with enhanced sensi-
tivity to develop AIHA. In macrophages, SHP-1 is predomi-
nantly recruited to SIRP  upon CD47 binding [50], and SHP-
1-deficient motheaten viable (mev/mev) mice have severely 
reduced CD47/SIRP  signaling [51]. However, in other cell 
types, SIRP  associated with SHP-2 has been implicated in 
positive regulation of cell migration [55]. It has been sug-
gested that SHP-1-mediated dephosphorylation of non-mus-
cular myosin IIA at the phagocytic synapse between the 
phagocyte and a host cell is responsible for phagocytosis inhi-
bition by the CD47/SIRP  interaction [56]. 

Activation of phagocytosis in a macrophage or DC in con-
tact with a viable target host cell is a balance between signals 
from activating prophagocytic receptors and the inhibitory 
signal from SIRP  ligated by target cell CD47. Neither signal 
appears to be dominant, but rather the decision to phagocy-
tose is based on an integration of positive prophagocytic sig-
nals and inhibitory CD47-SIRP  signals [51]. Thus, when an 
opsonized cell also expresses CD47, a larger amount of op-
sonin (e.g. IgG) is required for phagocytosis to occur, as com-
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rocytes are very difficult to isolate from blood, makes it chal-
lenging to investigate mechanisms behind macrophage phago-
cytosis of senescent erythrocytes in detail. However, since 
scavenger receptors are likely involved (in concert with Fc  
receptors, complement receptors, and others) in mediating 
macrophage uptake of senescent or apoptotic cells [85], it is 
interesting to note that scavenger receptor-mediated uptake 
of oxidatively damaged murine erythrocytes was found not to 
be regulated by the CD47/SIRP  interaction, whereas Fc  re-
ceptor-mediated uptake of the same cells was still negatively 
regulated [86]. Thus, depending on the combination of 
prophagocytic receptors involved in the phagocytosis of se-
nescent erythrocytes, it is possible that CD47 may or may not 
have an inhibitory effect in regulating this process. Based on 
the observation that CD47 on apoptotic cells becomes clus-
tered and does rather promote phagocytosis of these cells [48, 
74, 75], it is interesting to note that the anti-human CD47 
monoclonal antibody 2D3 can cluster CD47 on erythrocytes 
in a way that results in enhanced binding of SIRP  [57]. Of 
marked interest, clustering of CD47 may occur during eryth-
rocyte senescence, where the CD47/SIRP  interaction will in 
turn result in enhanced binding of erythrocytes to macro-
phages and rather promote erythrophagocytosis [87]. Similar 
to nucleated cells, an accelerated form of cell death (erypto-
sis) can also be induced in erythrocytes [88, 89]. Although 
eryptosis may or may not share similarities with natural senes-
cence, phagocytosis of eryptotic erythrocytes could serve as a 
starting point to further investigate uptake mechanisms that 
may also be involved in the uptake of senescent erythrocytes 
in vivo. Interestingly, CD47 ligands can induce eryptosis in 
human erythrocytes in vitro [90], although the physiological 
relevance of this in vivo has still to be determined.
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trophils, but not on apoptotic Jurkat T cells [48]. Second, 
CD47, which is evenly distributed on the cell surface of viable 
cells, becomes clustered in distinct domains of the plasma 
membrane of apoptotic fibroblasts, neutrophils, and lym-
phocytes [48, 74]. Domains containing clustered CD47 are dif-
ferent from those containing some ligands for prophagocytic 
receptors, suggesting a segregation mechanisms where the 
CD47/SIRP  interaction would not come into play during 
phagocytosis [48]. However, it was also found that macro-
phage phagocytosis of murine CD47-deficient apoptotic cells 
was reduced as compared with that of apoptotic CD47-ex-
pressing cells, showing that the CD47/SIRP  interaction 
could serve to mediate binding of the apoptotic cells to the 
phagocytes without inhibiting phagocytosis [74, 75].

CD47 and Erythrocyte Senescence

Since CD47 can protect viable cells from phagocytosis, and 
damaged or senescent erythrocytes are efficiently phagocy-
tosed by macrophages, possible changes to CD47 have been 
investigated in relation to erythrocyte storage or senescence. 
Indeed, CD47 was reported to be lost from human erythro-
cytes during storage at +4 °C [76, 77], and it was found that 
older circulating erythrocytes in mice had less CD47 on their 
surface [78, 79], raising the possibility that reduced levels of 
CD47 could facilitate uptake of senescent or damaged eryth-
rocytes. In light of the suggested importance of natural anti-
bodies in the recognition and clearance of senescent erythro-
cytes [80], it is interesting to note that the amount of CD47 on 
viable IgG-opsonized murine erythrocytes does indeed deter-
mine the rate of phagocytosis by macrophages [81]. Further 
data indicating that the CD47/SIRP  system may regulate the 
normal clearance rate and lifespan of platelets and erythro-
cytes, comes from studies in mice lacking the signaling SIRP  
cytoplasmic domain. These mice have spontaneous thrombo-
cytopenia and anemia due to accelerated clearance of plate-
lets and erythrocytes [82, 83]. Although senescent erythro-
cytes may display some features similar to apoptotic cells, 
such as vesiculation, cell shrinkage, PS exposure, and binding 
of natural antibodies [84], the mechanisms behind physiologi-
cal erythrocyte senescence in vivo are not completely under-
stood. This, in combination with the fact that senescent eryth-
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