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Uncovering epidemiological dynamics in
heterogeneous host populations using
phylogenetic methods

Tanja Stadler and Sebastian Bonhoeffer

Institut für Integrative Biologie, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland

Host population structure has a major influence on epidemiological

dynamics. However, in particular for sexually transmitted diseases, quanti-

tative data on population contact structure are hard to obtain. Here, we

introduce a new method that quantifies host population structure based

on phylogenetic trees, which are obtained from pathogen genetic sequence

data. Our method is based on a maximum-likelihood framework and

uses a multi-type branching process, under which each host is assigned

to a type (subpopulation). In a simulation study, we show that our

method produces accurate parameter estimates for phylogenetic trees

in which each tip is assigned to a type, as well for phylogenetic trees in

which the type of the tip is unknown. We apply the method to a Latvian

HIV-1 dataset, quantifying the impact of the intravenous drug user epidemic

on the heterosexual epidemic (known tip states), and identifying super-

spreader dynamics within the men-having-sex-with-men epidemic

(unknown tip states).
1. Introduction
Epidemiological dynamics shape the genetic structure of measurably evolving

populations such as RNA viruses. Increasing amounts of viral genetic sequence

data together with novel statistical tools allow a better understanding of the

epidemiological dynamics based on viral sequence data to be obtained. The

general idea is to reconstruct the phylogeny of viral sequence data sampled

from different infected hosts in an epidemic. The resulting phylogeny is a

proxy for the transmission chain. This transmission chain is typically incom-

plete as often only a fraction of all infected individuals are sampled for any

given epidemic. Characteristics of the phylogeny, identified using statistical

methods, reveal epidemiological dynamics. For example, the basic reproductive

number of hepatitis C virus [1], the geographical spread of influenza [2,3] and

dengue [4], the interaction between transmission groups in HIV [5] or the

dynamics of norovirus outbreaks [6] have been investigated.

Recently, new methods were introduced which in addition allow the quanti-

fication of transmission rates parametrized by standard epidemiological models

[7–9]. The underlying models assume a homogeneous mixing population,

implying that an average transmission rate for the whole population is esti-

mated. However, in particular, for sexually transmitted diseases, we expect

heterogeneous transmission dynamics owing to a heterogeneous contact struc-

ture. For example, it has been observed that in the Swiss HIV epidemic, the

transmission group men-having-sex-with-men (MSM) maintain a subepidemic,

whereas the heterosexuals (HETs) together with the intravenous drug users
(IDUs) form transmission clusters [5]. In that study, the tips of a phylogenetic

tree were labelled with the corresponding transmission group (MSM, HET,

IDU), and the transmission group composition of large clusters was investigated.

A further study of population structure in the Swiss HIV epidemic [10] showed a

significant amount of structure also within these two subepidemics, MSMs and

HETs/IDUs. This result was obtained by comparing phylogenetic trees that were

simulated assuming a homogeneous mixing population to phylogenetic trees
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Figure 1. The MTBD model trees. (a) Complete transmission tree induced by the MTBD-2 model, the black dots correspond to sampled individuals. (b) Sampled tree
obtained by pruning all non-sampled tips from the complete tree. Note that in the sampled tree, we record only the state of the tips, but not the state of the
ancestral lineages (as in the data, we also know only the states of sampled individuals). When calculating the likelihood for a sampled tree, we calculate DNi(t)
along the tree, where DNi(t) is the probability density that an individual N at time t in state i produces the observed sampled tree (here indicated with the dashed
oval). The initial values for DNi(t) are calculated at the tip times, here the left tip was sampled at time t.
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assuming a structured population. The comparison revealed

that phylogenetic trees from a structured population are

significantly less balanced than phylogenetic trees from a

homogeneous mixing population. The empirical HIV trees

were found to be more similar to simulated trees from a

structured population than to trees from a homogeneous

mixing population.

Here, we develop a method that allows quantification of

the transmission dynamics in structured populations. Our

method is based on a multi-type birth–death branching

(MTBD) process. Under such a process, each individual

is characterized by a type, and gives rise to secondary infec-

tions with type-dependent transmission rates. Furthermore,

each type has its characteristic death or recovery rate. We

derive a set of differential equations for the likelihood

of the MTBD parameters given a phylogeny under the

MTBD process. The likelihood is evaluated by solving

the differential equations numerically.

Our maximum-likelihood method allows estimation of

the type-dependent epidemiological parameters based on

phylogenetic trees in which each tip is assigned to a type.

In a second step, this method is extended to identify and

quantify heterogeneous transmission patterns from trees in

which the tips are not assigned a priori to types.

We first demonstrate the performance of our method in a

simulation study. We then illustrate the method on a Latvian

HIV dataset [11,12]. Focusing on the subtype A epidemic

among HETs and IDUs, we assign the tips to the correspond-

ing transmission group, and quantify the direction and

amount of mixing between the two transmission groups. By

focusing on the subtype B epidemic among MSMs, we use

the method to detect evidence for superspreaders. Because

we do not know a priori whether or not an individual is a

superspreader, we analyse the observed phylogenetic tree

without assigning types to the tips of the tree. The simulation

procedures are available in the R package TREESIM [13], and

the likelihood inference method is available in the R package

TREEPAR [14].
2. Methods
(a) The multi-type birth – death branching model
The MTBD process generalizes a constant rate birth–death

process as a model for transmission [8,15]. Under the

MTBD-m process, each individual has a unique state out of

m possible states 1; . . . ;m. The process starts with a single

individual in one of the m possible states, where the initial

state might be chosen according to different rules (e.g. fixed

state, or each state is equally likely, or the state is picked

from an equilibrium distribution, see below). Through time,

each individual in state i gives birth (transmission) to an indi-

vidual in state j with rate li,j. Each individual dies with a rate

di. Upon death, the individual may be sampled with prob-

ability si. The process is stopped after time t0. In summary,

the parameters of the model are

l ¼ ððl1;1; . . . ;l1;mÞ; ðl2;1; . . . ; l2;mÞ; . . . ; ðlm;1; . . . ;lm;mÞÞ;
d ¼ ðd1; . . . ; dmÞ;
s ¼ ðs1; . . . ; smÞ;
t0:

The MTBD-m process gives rise to a tree with sampled

and non-sampled individuals. The tree spanning only the

sampled individuals is called the sampled tree (figure 1). In

the sampled tree, the states of the tips are recorded, whereas

all ancestral states are omitted.

In the epidemiological context, a state might be a trans-

mission group, birth corresponds to a transmission event,

and death is ‘becoming-non-infectious’ (which might be

due to host death, recovery, behaviour change or successful

treatment). Sampling corresponds to the infected individual

being enrolled into the study such that the pathogen

sequence data can be used to infer a sampled tree using

phylogenetic methods. In the sampled tree, we typically

have information about the states of the sampled tips, but

no information about ancestral tips.



rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120198

3
(b) Basic reproductive number of the MTBD-m model
The basic reproductive number R0 is defined as the expected

number of secondary infections caused by a single infected

individual [16]. Clearly, if R0 . 1, then the epidemic may

spread, whereas R0 , 1 causes the epidemic to die out.

The probability that an individual in state i infects k
individuals during its lifespan isPm

j¼1 li;jPm
j¼1 li;j þ di

 !k
diPm

j¼1 li;j þ di
;

which is a geometric distribution. The expected number of

infections caused by an individual in state i isPm
j¼1 li;j

di
:

Note that an individual may cause in expectation more than

one secondary infection but the epidemic will nevertheless die

out: for example, with m¼ 2, we may have l1;1 ¼ l2;1 ¼
l2;2 ¼ 0 and l1;2 ¼ 2; d1 ¼ d2 ¼ 1, meaning an individual in

state 1 infects on average two individuals (of state 2), but because

individuals in state 2 cannot transmit, the epidemic will die out.

In fact, for calculating R0, we need to consider fi, the fraction

of individuals in state i when the process is in equilibrium (i.e.

the proportions of the different states do not change; an

expression for fi is provided in the electronic supplementary

material, equation (S2) for the case m ¼ 2). We obtain the basic

reproductive number of the process (Keeling & Rohani [17]),

R0 ¼
Xm

i¼1

fi

Pm
j¼1 li;j

di
: ð2:1Þ

We will compare the basic reproductive number of the

MTBD-m process to the basic reproductive number assuming

the states are isolated (i.e. li,j ¼ 0 iff i=j ),

R0i ¼
li;i

di
:

(c) Calculating the likelihood given a tree
Our goal in this section is to calculate the probability density

of a sampled tree given the parameters l,d,s,t0, i.e. we want to

calculate the likelihood of the parameters given the data

(sampled tree). For the calculation of the likelihood, we use

ideas developed by Maddison [18].

We define time at present to be 0 and time to be increasing

going into the past, i.e. we measure the time between today

and an ancestral event. For an arbitrary edge N of the sampled

tree, we define the probability density DNi(t) as follows. Let

the individual being represented by edge N at time t to be in

state i. DNi(t) is the probability density that this individual

evolved between time t and the present as the sampled tree

(figure 1). We note that DNi(t0) is the probability density of

the sampled tree with the initial individual being in state i.
In order to calculate DNi(t0), we additionally require Ei(t),
the probability that an individual in state i (i [ f1; . . . ;mg) is

not sampled and has no sampled descendants after time t.
(i) Calculating DNi(t)
We calculate DNi(t) backwards in time, starting at the leaves

of the sampled tree. Consider a leaf of the sampled tree in

state j, having been sampled at time t in the past (figure 1).

An individual at time t in state i produces the tree as

observed (i.e. a sampled leaf in state j ) if j ¼ i and the

individual at time t is sampled instantaneously. Recall

that sampling occurs with probability si directly after

becoming-non-infectious with rate di. Thus,

DNiðtÞ ¼ disi; for j ¼ i; DNiðtÞ ¼ 0; for j = i: ð2:2Þ

Now, we derive a system of differential equations for

DNi(t) for t . t. Based on DNi(t), we calculate DNiðtþ DtÞ,
where Dt is a very small time step. Along edge N
during time step Dt, either no event happens or birth

events happen:
DNiðtþ DtÞ ¼ 1�
Pm
j¼1

li;j þ di

 !
Dt

 !
DNiðtÞ ðno birth or deathÞ

þ
Pm
j¼1

li;jDtEjðtÞDNiðtÞ ðbirth of an ind: j; lineage j produces no samples in time tÞ

þ
Pm
j¼1

li;jDtEiðtÞDNjðtÞ ðbirth of an ind: j; lineage i produces no samples in time tÞ

þOðDt2Þ ðmore than one birth event during time Dt:Þ
For Dt! 0, we obtain

d

dt
DNiðtÞ ¼ �

Xm

j¼1

li;j þ di

0
@

1
ADNiðtÞ

þ
Xm

j¼1

li;jEjðtÞDNiðtÞ þ
Xm

j¼1

li;jEiðtÞDNjðtÞ: ð2:3Þ

This differential equation will be used to obtain the quan-

tity DNi(t0). However, in order to solve this differential

equation, we need an expression for Ei(t), which is derived

in the following section.
(ii) Calculating Ei(t)
In this section, we derive a differential equation for Ei(t). An

individual, at time t ¼ 0, is not sampled (otherwise, the indi-

vidual would have become non-infectious and thus been

removed), i.e. we have for i [ f1; . . . ;mg,

Eið0Þ ¼ 1: ð2:4Þ

We derive differential equations for Ei(t) analogous to

above. Suppose that for time t, we obtained the probability

Ei(t). Then,
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Pm
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For Dt! 0, we obtain

d

dt
EiðtÞ ¼ ð1� siÞdi �

Xm

j¼1

li;j þ di

0
@

1
AEiðtÞ þ

Xm

j¼1

li;jEiðtÞEjðtÞ:

ð2:5Þ

Solving the differential equations for Ei(t) (equation (2.5))

and DNi(t) (equation (2.3)) with the initial values given in

equations (2.4) and (2.2) allows us to calculate DNi(t) along

an edge N. Section 2c(iii) explains how to proceed at the

branching events in the sampled tree.

(iii) Pruning two subtrees
We now calculate the probability of obtaining the two sub-

trees descending from the bifurcation event A at time t in

state i, DAi(t). Let the two edges descending from A be

N,M. We have two scenarios, either the individual corre-

sponding to N has given birth (i.e. transmitted) to the

individual corresponding to M or the individual correspond-

ing to M has given birth to the individual corresponding to

N. Therefore,

DAiðtÞ ¼
Xm

j¼1

ðli;jDMiðtÞDNjðtÞ þ li;jDMjðtÞDNiðtÞÞ: ð2:6Þ
(iv) At the root
Solving the differential equations and pruning the subtrees

going backwards in time until time t0 (the origin of the pro-

cess and thus of the sampled tree) yields the probability

density of the sampled tree given the root is in state i,
DNi(t0) for i [ f1; . . . ;mg. It was shown that rate estimates

are more accurate if the initial individual at time t0 is con-

ditioned to give rise to at least one sampled individual [19].

This conditioning makes intuitive sense: in all analyses, we

neglect non-sampled transmission chains, thus we should

calculate the likelihood given we have a sampled chain.

Thus, we divide the tree probability densities by the prob-

ability of obtaining at least one sample: DNiðt0Þ=ð1� Eiðt0ÞÞ.
Overall, the probability density of a tree with the first

individual at time t0 and conditioned on observing at least

one sampled individual is, with fi being the probability that

an individual at time t0 is in state i,

pðT jl; d; s; t0Þ ¼
Xm

i¼1

fi
DNiðt0Þ

1� Eiðt0Þ
: ð2:7Þ

It remains to specify a distribution for fi. We could

assume that fi ¼ 1/m for i ¼ 1; . . . ;m. However, if we

assume that the relative number of individuals in each state

reached the equilibrium, we can use the equilibrium fre-

quency for each state, which is calculated in the electronic
supplementary material for the MTBD-2 model (see the elec-

tronic supplementary material, equation (S2)). Note that

pðT jl; d; s; t0Þ is the likelihood of the parameters given the

data (i.e. the sampled tree), meaning this function is used

for parameter inference.

In the electronic supplementary material, we further

show that equation (2.7) for the MTBD-1 process is equivalent

to the equations derived for the constant rate birth–death

process (which is the MTBD-1 process) [8,15].

(d) Unknown states
Until now, we have assumed that we know the state of each

sampled individual. For a sampled tree where not all

states of the sampled individuals are known, we can use the

framework provided in this section for the unknown states.

Furthermore, with the framework in this section, we

can investigate scenarios under which we do not know

the state of any of the sampled individuals. Having no

knowledge about states is for example the case when consi-

dering sexually transmitted diseases with the two states

being ‘regular’ individuals and superspreaders (i.e. individ-

uals who transmit the disease much more rapidly than

regular individuals).

For obtaining the probabilities DNi(t) for a sampled tree

with unknown tip states, we have to change the initial con-

ditions of DNi(t) for the tips with unknown states: the rate

of an individual in state i to be sampled instantaneously at

time t is sidi, which leads to the initial condition for all i,

DNiðtÞ ¼ sidi:

It is easy to check that the differential equations for

DNi(t) (equation (2.3)) remain unchanged. For Ei(t), the initial

conditions (equation (2.4)) and the differential equation

(equation (2.5)) remain the same.

(e) Model extensions
The framework introduced earlier can easily be generalized

in a number of different directions to accommodate particular

properties of the various infectious diseases and datasets. We

briefly discuss two extensions.

(i) State change of an individual
We can extend the MTBD-m model such that additional to the

events transmission, death and sampling, each individual

may change from state i to state j with rate gi,j. Thus, we

have m2 2 m additional parameters,

g ¼ ððg1;1; . . . ; g1;mÞ; ðg2;1; . . . ;g2;mÞ; . . . ; ðgm;1; . . . ; gm;mÞÞ;

with gi,i ¼ 0 for i [ f1; . . . ;mg. Changing states might for

example be due to migration between geographical locations,



rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120198

5
or due to change of infection state (e.g. acute versus chronic

infection; drug-sensitive versus drug-resistant infection).

The initial conditions for D and E remain as above

(equations (2.2) and (2.4)). The differential equations are

modified to:

d

dt
DNiðtÞ ¼ �

Xm

j¼1

ðli;j þ gi;jÞ þ di

0
@

1
ADNiðtÞ þ

Xm

j¼1

li;jEjðtÞDNiðtÞ

þ
Xm

j¼1

li;jEiðtÞDNjðtÞ þ
Xm

j¼1

gi;jDNjðtÞ;

d

dt
EiðtÞ ¼ ð1� siÞdi �

Xm

j¼1

ðli;j þ gi;jÞ þ di

0
@

1
AEiðtÞ

þ
Xm

j¼1

li;jEiðtÞEjðtÞ þ
Xm

j¼1

gi;jEjðtÞ:

The equilibrium frequencies are provided under the

extended MTBD-2 model in the electronic supplementary

material.
(ii) Contemporaneous sampling
In some circumstances, individuals may be preferentially

sampled today, meaning that an individual in state i at pre-

sent (time 0) is sampled with probability ri. Compared

with above, only the initial values change. For a tip in state

j sampled at present, we have

DNið0Þ ¼ ri for j ¼ i; DNið0Þ ¼ 0 for j = i:

Further,

Eið0Þ ¼ 1� ri:

Parameter combinations c ¼ 0 and r . 0 (i.e. only

sampling of contemporaneous individuals) correspond to

models introduced for species phylogenies: Maddison [18],

FitzJohn et al. [20] for li,j ¼ 0 iff i = j, and g � 0; Magnuson-

Ford & Otto [21], Goldberg & Igić [22] for general l and g.

Note that for c ¼ 0 and r ¼ 1, Ei(t) is the probability of an indi-

vidual giving rise to no extant individuals after time t, i.e. the

probability of clade extinction.
( f ) Parameter estimation
Calculating the likelihood of the MTBD-2 parameters given

a sampled tree based on equation (2.7) is implemented in

the R package TREEPAR [14], assuming an MTBD-2 model.

Finding the maximum-likelihood parameters is done using

the optimization function optim in R (with maxit ¼ 10 000,

others default).

For the MTBD-1 process, the three parameters l, d and s
are non-identifiable, and only two of the three parameters

can be estimated: when conditioning the process on survival,

the likelihood depends only on l 2 d and lds while a third

parameter is free to vary [23]. Thus, we fix s throughout

(the probability of an individual being sampled when becom-

ing non-infectious). We fix s (rather than any other

parameter), because for this parameter, we can get a priori
information based on the individual cohort studies from

which the considered data is taken. We emphasize that we

could not generalize the MTBD-1 result towards stating all

parameter correlations in an MTBD-m process analytically.
(g) Simulation study
We implemented a forward-in-time simulation algorithm

available in the R package TREESIM [13] in order to obtain

sampled trees. We stop the simulation algorithm once a

fixed number of sampled individuals is obtained (but one

could easily implement other stopping criteria such as

the age of the tree). We performed a number of different

simulations in order to investigate the accuracy and power

of the method. Always, the first individual was assumed to

be in a random state taken from the equilibrium distribu-

tion; for each parameter combination we simulated 100

sampled trees.

We present the results for simulated trees with 200 tips and

a sampling probability of s1 ¼ s2 ¼ 1
4 in the main text. In order

to further investigate the impact of sampling probability and

tree size, we modified this setting by simulating trees using

s1 ¼ s2 ¼ 0.05 and 200 tips as well as s1 ¼ s2 ¼ 0.05 and 50

tips (see the electronic supplementary material).

We asked the following three questions:
— Can we accurately estimate l and d? We simulated sampled

trees using parameters l1;1 ¼ 15; l1;2 ¼ 3; l2;1 ¼ 5;l2;2 ¼
7; d1 ¼ 6; d2 ¼ 2 and re-estimated the maximum-

likelihood parameters assuming an MTBD-2 model and

known tip states.

— Can we distinguish a heterogeneous population from a homo-
geneous population? We re-estimated parameters based on

the trees with tip states from the previous paragraph),

assuming that an individual in any state i infects an indi-

vidual in state j with the same rate li,j (i.e. state-

independent rate) and that all individuals die at the same

rate. In the case of two states, we thus have l1;1 ¼ l2;1,

l1;2 ¼ l2;2 and d1 ¼ d2. Note that li;j . li;k accounts for a

larger host population j than k, whereas all individuals

transmit and become non-infectious under the same

dynamics (li;j ¼ li;k would furthermore enforce the same

size of population j and k, which may rarely be the case).

We performed likelihood ratio tests to investigate how

often the model with identical states is correctly rejected.

Vice versa, we simulated 100 trees with l1;1 ¼ 10;

l1;2 ¼ 5; l2;1 ¼ 10; l2;2 ¼ 5; d1 ¼ 4; d2 ¼ 4, i.e. a scenario

where both states are identical as each individual gives

rise to a secondary infection with rate 15 and becomes

non-infectious with rate 4 (note though that the state-1

population is twice as large as the state-2 population).

Again, we re-estimated parameters under non-identical

and identical states. We performed likelihood ratio tests

to investigate how often the model with identical states is

accurately not rejected.

— Can we identify superspreader dynamics? We simulated

sampled trees using parameters l1;1 ¼ 2;l1;2 ¼ 20;l2;1 ¼
0:1; l2;2 ¼ 1; d1 ¼ 2; d2 ¼ 2. We re-estimated maximum-

likelihood parameters assuming an MTBD-1 model as

well as an MTBD-2 model. We did not use the tip states

for the re-estimation but assumed that the states are

unknown (§2d ). Vice versa, we simulated trees under

MTBD-1 (l ¼ 4, d ¼ 2) and re-estimated the parameters

assuming MTBD-1 as well as MTBD-2. Note that in

contrast to the simulations in the previous paragraph,

we can simulate under MTBD-1 directly and then analyse

under MTBD-2, as we neglect the states in this analysis for

both models. In all of these analyses, we fixed the death
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rate (arguing that in that respect all individuals are alike)

as well as constraint l2;2 :¼ l2;1ðl1;2=l1;1Þ.
We point out that our parameter choice indeed reflects a

superspreader scenario: individuals in state 1 have an x
(here 20) times higher transmission rate than individuals

in state 2 (l1;1=l2;1 ¼ l1;2=l2;2 ¼ x). Furthermore, the popu-

lation consists of y (here 10) times more ‘regular’ spreaders

than superspreaders (l1;1=l1;2 ¼ l2;1=l2;2 ¼ 1=y). These

superspreader parameters yield l2;2 :¼ l2;1ðl1;2=l1;1Þ
which we fix in the inference. Furthermore, these con-

straints yield the fraction of superspreaders in the

population at equilibrium which is #S/(#S þ y � #S) ¼

l1,1/(l1,1 þ l1,2), where #S is defined as the number of

superspreaders in the population. Equivalently, the frac-

tion of superspreaders can also be established using the

electronic supplementary material, equation (S2)), which

simplifies to f1 ¼ l1;1=ðl1;1 þ l1;2Þ.

Based on our parameter choices, a superspreader infects

on average 11 and a ‘regular’ individual infects on average

0.55 individuals (i.e. the ‘regular’ individuals could not

maintain an epidemic). Because 1
11 of the population is

superspreaders, the average R0 is 1.5.
(h) Empirical study: Latvian HIV
We analysed a previously published dataset from the Latvian

HIV-1 epidemic [11,12], using the MTBD-2 model. We

obtained from Balode et al. [12] the alignment of HIV subtype

A sequences both from the p17 and the V3 region (229 and

235 sequences). Furthermore, we obtained the alignment of

HIV subtype B sequences from the V3 region (65 sequences).

The obtained subtype B p17 sequences (n ¼ 63) were una-

ligned. We aligned them using MAFFT [24], excluding sites

340–435 as this region contained many insertions and del-

etions. One sequence was excluded as it contained only

gaps beyond site 435.

Previously, three independent transmission clusters were

identified in the subtype B dataset [12]. We focused on the

largest MSM transmission cluster (39 sequences for p17 and

40 sequences for V3).

We obtained posterior distributions of phylogenetic trees

based on the four alignments using BEAST [25]. We chose a

HKYþ Gþ I substitution model with estimated base frequen-

cies. The sites were partitioned into codon positions 1 þ 2

and 3. Rate heterogeneity across branches was accounted

for by a lognormal-relaxed clock (uncorrelated). We used

the coalescent skyline plot (with 10 categories) as a prior on

trees, as this prior does not enforce us to assume a particular

population size change, such as exponential growth. An

additional prior for the root age was applied to the B-p17

dataset, as otherwise the root was estimated far too old: we

assumed a normal distribution with mean of 18 years and

s.d. 2.5, truncated at the time of the oldest sample (7 years

prior to the youngest sample that was collected in 2005, i.e.

the ‘present’) and 29 years prior to the youngest sample.

We ran the chain for 108 steps (subtype B), and 109 steps (sub-

type A) and excluded 10 per cent as burn-in. The four

analyses converged with sufficiently high effective sampling

sizes (several hundreds for all parameters, smallest was

160). In all four posterior tree sets, we analysed 90 trees

from the posterior (i.e. every millionth tree for subtype B

and every 10 millionth tree for subtype A).
The subtype A dataset was used to investigate the contri-

bution of HETs and IDUs to the subtype A epidemic. As only

eight sequences of A-p17 and seven sequences of A-V3 were

not HET or IDU, we excluded them, yielding trees of size 221

and 228. Tips with unknown status were kept as these tips

most likely are of unknown states as they either belong to

HETs or IDUs. The subtype B dataset represents an MSM

cluster, and we omitted tips with unknown states as they

might be non-MSM, yielding trees with 36 tips for p17 as

well as for V3.

Using our new implementation in TREEPAR [14], we fitted

the MTBD-2 model to the subtype A trees with HET being

state 1 (denoted by H in the following), and IDU being

state 2 (denoted by I in the following). Because it is assumed

that HETs are sampled more frequently than IDUs [12], we

analysed the dataset for sH ¼ 0.1 and sI ¼ 0.01. To investigate

sensitivity of the analysis towards that setting, we addition-

ally analysed the dataset for sH ¼ sI ¼ 0.1 and sH ¼ sI ¼ 0.01.

For analysis of the subtype B datasets, we assigned

state 1 to a superspreader (denoted by S in the following)

and state 2 to a normal spreader (denoted by N in the follow-

ing). We emphasize that we do not know the state of any of

the tips, but we estimated the transmission dynamics associ-

ated with the two states, acknowledging that tip states are

unknown. We assumed no difference in the sampling inten-

sity of the normal spreaders and superspreaders, and thus

we analysed the datasets for sS ¼ sN ¼ 0.1 and sS ¼ sN ¼ 0.01.
3. Results
(a) Simulation study
(i) Can we accurately estimate l and d?
The analysis of the 100 trees simulated under scenario 1 yields

accurate maximum-likelihood parameter estimates (table 1 and

electronic supplementary material, tables S1 and S2).

(ii) Can we distinguish between 1 and 2 states?
In 60 per cent of the trees simulated under the MTBD-2 process,

we correctly rejected state-independent transmission in favour of

state-dependent transmission when performing a likelihood ratio

test, using thex2-distribution as approximation of the test statistic

at the 0.8 level. In 84 per cent of the trees simulated under the

MTBD-1 process, we correctly accepted state-independent trans-

mission over state-dependent transmission (0.8 level). For

the individual parameter estimates, see the table 1. For further

parameter combinations, see the electronic supplementary

material, tables S1 and S2.

(iii) Can we identify superspreader dynamics?
We analysed the trees simulated under our superspreader

parameters, treating all states as unknown (as typically we

have no information whether an individual is a super-

spreader or not). Again, the parameter estimates were very

accurate (table 2 and electronic supplementary material,

tables S3 and S4). Furthermore, statistical power for choosing

the correct model was very high for the chosen parameters in

the main analysis (table 2). In 100 per cent of the simulated

trees, we correctly rejected homogeneous mixing in favour

of superspreader dynamics (0.8 level). In 83 per cent of the

simulated trees, we correctly accepted homogeneous mixing

over superspreader dynamics (0.8 level).



Table 1. Maximum-likelihood parameter estimates obtained from 100 simulated trees with 200 sampled tips (sampling probability s1 ¼ s2 ¼ 0.25). Upper part
(a) shows parameter estimates under MTBD-2, lower part (b) assumes state-independent transmission. Sixty trees correctly reject the state-independent
transmission model in favour of the MTBD-2 model (at the 0.8 level). Eighty-four trees correctly accept the state-independent transmission model over the
MTBD-2 model (at the 0.8 level).

true median 2.5% 97.5% true median 2.5% 97.5%

(a) l1,1 15.00 15.29 8.56 16.50 10.00 10.36 0.00 14.13

l1,2 3.00 2.89 0.75 12.49 5.00 4.13 0.19 12.55

l2,1 5.00 4.22 0 20.97 10.00 8.09 0 25.33

l2,2 7.00 6.49 0 10.42 5.00 5.80 0 13.10

d1 6.00 5.73 3.85 15.36 4.00 3.88 2.56 11.26

d2 2.00 2.31 0.69 10.60 4.00 4.06 1.45 20.87

(b) l1,1 ¼ l2,1 14.07 12.71 15.53 10.00 9.97 8.88 11.28

l2,2 ¼ l1,2 2.19 1.28 3.30 5.00 5.05 4.06 6.04

d1 ¼ d2 4.99 3.73 6.07 4.00 3.97 3.15 4.89

Table 2. Maximum-likelihood parameter estimates obtained from 100 simulated trees with 200 sampled tips (sampling probability s1 ¼ s2 ¼ 0.25). The states
are assumed to be unknown (superspreader scenario). Upper part (a) shows parameter estimates under MTBD-2, lower part (b) assumes state-independent
transmission. One hundred trees correctly reject the MTBD-1 model in favour of the MTBD-2 model (at the 0.8 level). Eighty-three trees correctly accept the
MTBD-1 model over the MTBD-2 model (at the 0.8 level).

true median 2.5% 97.5% true median 2.5% 97.5%

(a) l1,1 2.00 2.11 1.60 2.62 1.59 0.01 3.10

l1,2 20.00 19.79 14.08 26.37 1.73 0.25 18.00

l2,1 0.10 0.10 0.05 0.19 0.88 0.00 2.82

l2,2 1.00 1.02 0.49 1.63 1.52 0.00 2.85

d1 ¼ d2 2.00 1.93 1.53 2.35 1.95 1.63 2.38

(b) l 3.93 3.31 4.76 3.00 3.02 2.75 3.31

d 2.80 2.39 3.19 2.00 1.96 1.71 2.24
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Obviously, the acceptance/rejection percentages and the

accuracy of estimates depend on the choice of parameters

for the simulated trees, and should therefore be regarded as

examples showing that the method works in general. We

chose these parameters in a range that should be realistic

for epidemic dynamics. Below, we present further simulation

results based on the parameter estimates obtained from the

empirical data.

(b) Empirical study: Latvian HIV
(i) Subtype A: dynamics of the HET/IDU epidemic
The analyses of the subtype A trees yield the same parameter

estimates if considering the V3 region or the p17 region

(figure 2). All 90 trees rejected the simpler model in favour

of the MTBD model at the 0.8 level. IDUs are estimated to

have a significantly higher transmission rate than HETs,

and in fact while IDUs transmit to HETs (median

lI;H ¼ 0:15), transmission from HET to IDU appears to be

negligible (median lH;I ¼ 2� 10�6).

Based on the estimates for l and d, we calculated the median

basic reproductive number R0 ¼ 1.13 using equation (2.1).

For HETs, in isolation from IDUs, we estimate a median

R0H ¼ lH;H=d ¼ 0:38 which is significantly lower than 1, mean-

ing the HET epidemic would die out without the IDUs. For
IDUs in isolation, we estimated a median R0I ¼ lI;I=d ¼ 1:13

which is also equal to the overall R0 estimate (figure 3).

By using equation (S2) in the electronic supplementary

material, we predict about 5.1 per cent of this HIV epidemic

to be HET (median based on V3 is 5.2 per cent, median

based on p17 is 5.0 per cent). However, owing to the assump-

tion of more sampling in HETs (10% versus 1% for IDUs), we

expect a fraction of 0.51/(0.51 þ 0.949) ¼ 0.35 of our samples

to be HETs. In fact our p17 dataset consisted of 65 HETs

and 131 IDUs meaning 33 per cent are HETs (the remaining

25 individuals were of unknown state). The V3 dataset con-

sisted of 68 HETs and 131 IDUs meaning 34 per cent are

HETs (29 individuals were of unknown state).

The above results were all obtained assuming sH ¼ 0.1,

sI ¼ 0.01, accounting for the intensified sampling of the HET

population. Figures S1–S4 in the electronic supplementary

material show the results for sH ¼ sI ¼ 0.1 and sH ¼ sI ¼ 0.01.

The results are qualitatively equivalent to above.

In a further analysis, we considered again sH ¼ 0.1,

sI ¼ 0.01, but allowed dH to be different from dI. The results

are shown in the electronic supplementary material, figure S5.

We note that we obtain a dH that is close to zero while dI is

rather high, and such a general model is favoured over equal

death rates when doing a likelihood ratio test. Only if sH , sI ,

we estimate dI and dH to be of similar magnitude (see the
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Figure 2. Transmission rate estimates for the Latvian subtype A dataset for
sH ¼ 0.1, sI ¼ 0.01. (Online version in colour.)
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Figure 3. R0 estimates for the Latvian subtype A dataset for sH ¼ 0.1,
sI ¼ 0.01. (Online version in colour.)

Table 3. Maximum-likelihood parameter estimates obtained from 100 simulated trees with 200 sampled tips (sampling probability s1 ¼ 0.1 and s2 ¼ 0.01).
The parameters l and d are the median estimates from the Latvian subtype A data analysis. Upper part (a) shows parameter estimates under MTBD-2, lower
part (b) assumes state-independent transmission. Ninety-two trees correctly reject the state-independent transmission model in favour of the MTBD-2 model (at
the 0.8 level). Twenty-two trees correctly accept the state-independent transmission model over the MTBD-2 model (at the 0.8 level).

true median 2.5% 97.5% true median 2.5% 97.5%

(a) l1,1 1.38 0.53 0.01 1.78 0.20 0.35 0.00 1.31

l1,2 0 4.07 0 5.93 3.96 4.13 0.68 7.81

l2,1 0.15 0.20 0.12 0.31 0.20 0.20 0.13 0.28

l2,2 4.17 4.04 3.29 4.68 3.96 3.94 3.36 4.53

d1 ¼ d2 3.71 3.75 3.19 4.33 3.70 3.68 3.26 4.30

(b) l1,1 ¼ l2,1 0.21 0.17 0.27 0.20 0.20 0.15 0.26

l2,2 ¼ l1,2 3.91 3.36 4.41 3.96 3.87 3.54 4.41

d1 ¼ d2 3.68 3.14 4.16 3.70 3.62 3.25 4.09
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electronic supplementary material, figure S6 for sH ¼ 0.01, sI ¼

0.1). We found no evidence from other data sources that

dI . dH . However, we found evidence for sH , sI being implau-

sible [12]: the Latvian HIV-1 subtype A epidemic is dominated

by IDUs, and thus HETs were sampled with more effort than

IDUs as otherwise almost only IDUs would be sampled. As

the general model yields implausible results or requires implau-

sible assumptions, we focused our analysis assuming dI ¼ dH . A

reason for the statistical support of the general model may be the

poor performance of model selection in some parts of parameter

space, also see below.

Finally, we investigated how the method performs when

analysing the subtype A trees using an MTBD-2 model, but

not assigning the states (i.e. HET or IDU) to the tips. We

assumed that type 1 is sampled with s1 ¼ 0.1 and type 2 is

sampled with s2 ¼ 0.01. Three parameters are being estimated

similar to the analysis when the tip states are known

(l2;1;l2;2;m) (see the electronic supplementary material, figure

S7). The other two parameters l1;1 and l1;2 are different.

These two parameters turn out to be hard to estimate accurately,

in general, as revealed by the following simulations.

In the simulation study, we investigated the accuracy and

power of our method for general parameter combinations. In

order to investigate the performance of our method for the

parameter range suggested by the subtype A dataset, we
simulated and re-analysed trees using the median parameter

estimates under s1 ¼ 0:1; s2 ¼ 0:01 (figure 1).

Table 3 shows the parameter estimates. lH;I ; lI;I and d are

estimated very accurately, whereas lH;H and lH;I have large

confidence intervals. At the 0.8 level, 92 per cent of the

trees correctly reject the simple model in favour of the

MTBD-2 model, whereas only 22 per cent correctly accept

the state-independent transmission model (if increasing the

level to 0.9999, we obtain 27 and 79 instead of 22 and 92).

We note that the power in model selection is significantly

worse for this parameter choice than for the parameters

used in the simulation study (tables 1 and 2).

While having rejected the simple model on all 90 HIV-A

trees based on V3 as well as p17 suggesting some support

for the MTBD-2 model, the high type-1 error revealed by

simulations does not allow us to draw a final, statistically

well-supported conclusion.
(ii) Subtype B: superspreading in MSMs
Again, the analyses of the subtype B trees yield the same par-

ameter estimates for the V3 region and the p17 region

(figure 4). When considering the V3 (resp. p17) region, 63

per cent (resp. 78%) of the trees reject homogeneous mixing

in favour of superspreader dynamics. The parameter
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Figure 4. Transmission rate estimates for the Latvian subtype B dataset for
sS ¼ 0.1, sN ¼ 0.1. (Online version in colour.)
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Figure 5. R0 estimates for the Latvian subtype B dataset for sS ¼ 0.1,
sN ¼ 0.1. (Online version in colour.)

Table 4. Maximum-likelihood parameter estimates obtained from 100 simulated trees with 200 sampled tips (sampling probability s1 ¼ s2 ¼ 0.1). The
parameters l and d are the median estimates from the Latvian subtype B data analysis. The states are assumed to be unknown (superspreader scenario).
Upper part (a) shows parameter estimates under MTBD-2, lower part (b) assumes state-independent transmission. Seventy-eight trees correctly reject the MTBD-
1 model in favour of the MTBD-2 model (at the 0.8 level). Eighty-four trees correctly accept the MTBD-1 model over the MTBD-2 model (at the 0.8 level).

true median 2.5% 97.5% true median 2.5% 97.5%

(a) l1,1 0.16 0.14 0.01 0.35 0.11 0.00 0.46

l1,2 2.42 2.56 0.85 4.67 0.94 0.31 4.10

l2,1 0.02 0.02 0 0.06 0.01 0 0.24

l2,2 0.28 0.31 0.11 0.50 0.41 0.00 0.56

d1 ¼ d2 0.21 0.20 0.08 0.31 0.21 0.08 0.37

(b) l 0.50 0.40 0.64 0.52 0.51 0.45 0.62

d 0.27 0.17 0.39 0.26 0.24 0.14 0.38
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estimates show significantly higher transmission rates

for superspreaders, on average 9 (¼ lS;N=lN;N ¼ lS;S=lN;S)

times as high as normal spreaders, whereas normal spreaders

are about 17 (¼ lS;N=lS;S ¼ lN;N=lN;S) times as frequent as

superspreaders (figure 5).

The R0 estimates for superspreaders and normal spreaders

are largely overlapping (figure 5). Important to note is that

owing to the interaction between groups, the overall R0 is

significantly higher than if the two populations were separated.

The results were obtained assuming sS ¼ sN ¼ 0.1. Results

are comparable when assuming sS ¼ sN ¼ 0.1 (see the

electronic supplementary material, figures S8 and S9).

In the simulation study, we investigated the accuracy and

power of our method for general parameter combinations. In

order to investigate the performance of our method for the

parameter range suggested by the subtype B dataset, we

simulated and re-analysed trees using the estimated median

parameters under sS ¼ sN ¼ 0.1 (figure 4). Table 4 shows

the parameter estimates. All parameters are estimated very

accurately. At the 0.8 level, 78 per cent of the trees correctly

reject the homogeneous mixing model in favour of the super-

spreader dynamics, whereas 84 per cent of trees correctly

accept the homogeneous mixing model.

Again, with 63 per cent (resp. 78%) of the empirical trees

based on the V3 (resp. p17) region rejecting the homogeneous

mixing model in favour of superspreader dynamics, we
have some support for superspreading, but cannot draw a

statistically significant conclusion.
4. Discussion
The amount of structure in a host population together with

the amount of interaction between subpopulations is crucial

for the ability of a pathogen to spread [26–28]. For example,

an isolated population may have a basic reproductive

number R0 , 1, meaning the epidemic is dying out, whereas

the same population having some interactions with other

populations may lead to an R0 . 1. Our Latvian HIV-1

subtype A analysis revealed for HETs an R0 , 1, but since

the HETs interact to some extent with the IDUs, HIV is

maintained in the HET population.

Successful public health strategies rely on a detailed

understanding of epidemiological dynamics. In the above

example, targeting IDUs will clearly have a broader impact

on decreasing the epidemic, as the HET epidemic will be

decelerated as well. In particular if the IDU epidemic is

stopped, then the HET epidemic will die out as this epidemic

has an R0 , 1. Vice versa, if HETs were the main target of

public health interventions, only small transmission chains

may be interrupted, whereas the main IDU epidemic (with

an R0 . 1) would remain unchanged.
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Furthermore, it is unclear to what extent sexually trans-

mitted diseases are driven by superspreader dynamics, i.e.

by few individuals who overproportionally transmit the dis-

ease. To our knowledge, our epidemiological estimates for

Latvian HIV-1 subtype B are the first estimates quantifying

the amount of superspreading (in an MSM population),

revealing about one in 18 superspreaders, with a roughly

nine times higher transmission rate for superspreaders than

regular spreaders.

Previous studies identified IDUs as main drivers of the

HIV-1 epidemic in Switzerland [5] and Latvia [29]. Both

studies did not aim at quantifying the epidemiological par-

ameters. Our analysis of the Latvian dataset supports the

hypothesis of IDUs being a main driver of the HIV-1 epi-

demic. In Graw et al. [29], it was estimated that about 66

per cent of the new HET infections are caused by IDU trans-

mission. In fact, we estimated a transmission rate between

HETs of about 1.38 and a transmission rate from IDUs

to HETs of about 0.15; with our estimate of 5.1 per cent of

the infected HET/IDU population being HETs, we overall

expect 0.15 � 94.9/(5.1 � 1.38 þ 0.15 � 94.9) ¼ 67% of the

newly infected HETs being infected by IDUs. With our new

method, we further quantified the transmission rates in

addition to the proportion of new introductions. Further-

more, our method does not rely on the assumption that

new introductions of the pathogen into a transmission

group from a different transmission group happen only in

one direction (e.g. always from IDU to HET and never from

HET to IDU). Compared with the previous studies [5,29],

we could not test for changes of the epidemiological

dynamics through time though (see also below).

We quantified the amount of structure and the dynamics

of interactions between subpopulations by developing new

phylogenetic tools. Based on a phylogenetic tree, we estimate

the transmission rates within and between subpopulations

using our new maximum-likelihood framework. The tips of

the phylogenetic tree are assigned to the subpopulations to

which they belong. If the state of the tips is unknown (e.g.

in the case of superspreaders), the method can be applied

to test whether there is evidence for population structure in

the epidemic. Our simulations revealed that the parameters

can be inferred accurately for trees of medium size (50–200

sequences), whereas model selection performs poor under

some parameter combinations for that tree size, meaning

that the appropriate model (e.g. d1 ¼ d2 versus d1 = d2)

should ideally be chosen based on data independent of the

genetic sequences.

Several methods have been introduced to take structured

populations into account when performing phylogenetic

analysis [30,31]. These methods allow estimation of the

ancestral states together with migration rates between

subpopulations, based on a phylogeny where the tips are

assigned to the subpopulations. However, a quantification

of the transmission rate, death rate and the basic reproductive
number was not possible directly, as the underlying model,

namely a Markov chain describing state changes on a given

phylogeny, does not parametrize these quantities.

Recently, progress has been made towards explicitly para-

metrizing transmission and ‘becoming-non-infectious’ rates

in structured populations [32]. This method is based on the

coalescent, and thus relies on the assumption of small

sample sizes compared with the total population. A future

next step will be a comparison of our birth–death-based

method and the coalescent-based method. In particular, this

comparison will reveal the impact of the major assumptions

of the two models towards parameter estimates. The main

differences are (i) that birth–death-based models allow for

stochastically varying population sizes, whereas coalescent-

based approaches assume a deterministic population size

(and thus are appropriate if the number of lineages in a tree

is much smaller than the population size) and (ii) that the

birth–death models take the sampling times as part of

the data, while the coalescent conditions on these times.

Our model is a direct extension of methods developed for

the analysis of species phylogenies [18,20–22], with species

being of different types, and the speciation and extinction

rates being type-dependent (rather than hosts being of different

types, and the transmission and ‘becoming-non-infectious’

rates being type-dependent). As species trees are typically on

extant species, the methods work for trees in which all tips

are sampled at one point in time.

A limitation of our epidemiological method as well as

the species methods [18,20–22] is that constant birth and

death rates per type are assumed, which implies that for an

R0 . 1 we obtain an exponential growth of infected popu-

lation. For species phylogenies as well as virus phylogenies,

recent methods allow for a saturation effect, meaning the

initial exponential growth of the tree is decelerated by

having a limited number of ecological niches (macroevolu-

tion [33,34]) or a limited number of susceptible hosts

(epidemiology [23]). It remains a future challenge to combine

the type-dependent models with saturation effects.

Ideally, such models will be directly incorporated into a

statistical framework inferring the phylogeny together with

the transmission rates, rather than, as done in this paper,

first inferring the tree (here using BEAST [25]) and then in

a second step fitting a transmission model to the tree (here

using TREEPAR 14]). In such a joint analysis, the likelihood

has to be calculated for each proposed tree. Thus, a fast

method for numerically evaluating the differential equations

specifying the likelihood is required for a joint estimation of

rates and trees and thus for bringing us closer towards unify-

ing epidemiological and evolutionary methodology.

We thank Thomas Leitner, Helena Skar and Jan Albert for kindly
providing the Latvian HIV-1 dataset and Roland Regoes for helpful
discussions. Both authors thank the Swiss National Science
foundation and ETH Zürich for funding.
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