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The most salient feature of influenza evolution in humans is its antigenic

drift. This process is characterized by structural changes in the virus’s B-

cell epitopes and ultimately results in the ability of the virus to evade

immune recognition and thereby reinfect previously infected hosts. Until

recently, amino acid substitutions in epitope regions of the viral haemag-

glutinin were thought to be positively selected for their ability to reduce

antibody binding and therefore were thought to be responsible for driving

antigenic drift. However, a recent hypothesis put forward by Hensley and

co-workers posits that cellular receptor binding avidity is the dominant

phenotype under selection, with antigenic drift being a side effect of

these binding avidity changes. Here, we present a mathematical formu-

lation of this new antigenic drift model and use it to show how rates of

antigenic drift depend on epidemiological parameters. We further use

the model to evaluate how two different vaccination strategies can

impact antigenic drift rates and ultimately disease incidence levels. Finally,

we discuss the assumptions present in the model formulation, predictions

of the model, and future work that needs to be done to determine the con-

sistency of this hypothesis with known patterns of influenza’s genetic and

antigenic evolution.
1. Introduction
Human influenza viruses have long been known to evolve by antigenic drift, the

process by which the gradual accumulation of mutations in the viruses’ haemag-

glutinin (HA) surface glycoprotein results in evasion of host immunity [1].

Epidemiological models have therefore focused on understanding how this

process affects influenza’s ecological and evolutionary dynamics. The earliest

models simply incorporated antigenic drift phenomenologically, through

the consideration of susceptible–infected–recovered–(re)susceptible (SIRS)

dynamics [2]. In recent analyses, these SIRS-type models have provided valuable

insights into the drivers of influenza seasonality and the sources of influenza’s

interannual variability [3–5]. A more mechanistic approach for incorporating

antigenic drift into epidemiological influenza models has been through the for-

mulation of multi-strain models [6–13]. Although a subset of these models

have looked at the consequences of antigenic drift on influenza’s ecological

dynamics, most of them have instead addressed how limited genetic and anti-

genic diversity can be maintained in the presence of high mutation rates.

Whether phenomenological or mechanistic in structure, however, mathematical

models of influenza, reflecting current understanding of influenza evolution,

have commonly assumed that antigenic drift is a consequence of immune selec-

tion: viral strains harbouring mutations that reduce the ability of circulating

antibodies to bind to the viral HA have higher fitness than strains without

these mutations, leading to continual viral turnover [14].
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In light of an increasing body of experimental studies

[15–17], Hensley et al. [18] have recently questioned this

model of antigenic drift, noting that viral escape from

polyclonal antibodies by this mechanism would be excep-

tionally difficult. This is because escape mutants, having all

the necessary epitope changes to allow for polyclonal

immune escape, are extremely unlikely to arise within

single hosts given current mutation rate estimates. In place

of this model, they suggest that the evolutionary dynamics

of influenza’s HA are predominantly driven by cellular

receptor binding avidity changes and that antigenic drift is

a side effect of these mutational changes. Evolution can act

on receptor binding avidity because this phenotype affects

the rate at which viruses enter host cells, and thereby their

ability to escape neutralization by circulating polyclonal anti-

bodies. The authors support this new model of antigenic drift

with passage experiments in mice: when passaged through

immune mice, influenza A strains accumulate HA mutations

that increase receptor binding avidity, with a subset of these

mutations located in previously identified HA epitopes;

when passaged through naı̈ve mice, influenza A strains

instead accumulate HA mutations that decrease receptor

binding avidity, with a subset of these mutations again

lying in known HA epitopes. Being appreciably different

from the current model of antigenic drift, this new model

may change our understanding of influenza’s ecological

and evolutionary dynamics. It may also affect the design of

control strategies that aim to reduce disease incidence.

Although some of the dynamical consequences of this new

antigenic drift model could presumably be intuited, others

may be more difficult to predict. This is because the model,

as verbally described, has nonlinear feedbacks between viral

changes in receptor binding avidity, rates of antigenic drift

and host immunity at the population level. Furthermore, it

would be difficult for the verbal model to lead to quantitative

predictions; this is particularly limiting when it comes to

choosing between alternative disease-control strategies. Here,

we therefore develop a mathematical model for the receptor

binding avidity hypothesis outlined by Hensley and

co-authors, with the assumption that selection acts solely

on cellular receptor binding avidity. Through numerical

simulation of the model, we show how epidemiological par-

ameters, such as contact rates and host lifespans, affect

receptor binding avidity levels and rates of antigenic drift.

Finally, we use the model to quantitatively explore the conse-

quences of alternative vaccination strategies on the rates of

antigenic drift and ultimately on rates of disease incidence.
2. A mathematical formulation for the new
model of antigenic drift

We formulate Hensley and co-authors’ new model of anti-

genic drift mathematically by specifying an SIRS model,

with hosts classified into discrete classes of susceptible

hosts (S), infected hosts (I ) and recently recovered and there-

fore temporarily immune hosts (R). We further subdivide

each of these classes of hosts according to the cumulative

number of times a host has been infected (including any cur-

rent infections). The epidemiological dynamics are given by:

dS0

dt
¼ mN � bð0;VÞS0

N
Itot � mS0;
and, for i � 1,

dIi

dt
¼ bði� 1;VÞSi�1

N
Itot � ðgþ mÞIi

dRi

dt
¼ gIi � ðvþ mÞRi

and
dSi

dt
¼ vRi � bði;VÞ Si

N
Itot � mSi;

9>>>>>=
>>>>>;

ð2:1Þ

where m is the birth/death rate, b is the transmission rate, g is

the recovery rate, v is the rate of waning immunity, N is the

total population size and Itot is the total number of infected

hosts, given by
P1

i¼1 Ii: The transmission rate b(k,V ) between

an infected individual and a susceptible host depends on the

number of times the susceptible host has previously been

infected (k) as well as on the binding avidity of the virus

(V ) with which the susceptible host is being challenged.

We let the transmission rate depend on the susceptible

host’s k because we use k as a proxy for immune status: indi-

viduals with a higher number of previous infections are

assumed to have higher levels of circulating antibodies with

which to counter a challenging infection, and thereby lower

susceptibility to infection. A schematic of this model is

shown in the electronic supplementary material, figure S1.

The model of antigenic drift described by Hensley and

co-authors considers the evolutionary dynamics of two

components of viral phenotype: the cellular receptor binding

avidity of the HA protein and, as a side effect, viral anti-

genicity. Here, we first describe how we mathematically

model receptor binding avidity dynamics given the SIRS

model shown in equation (2.1). We then describe how we

include antigenic drift within this framework and analyse

the resulting evolutionary dynamics of this full model.
(a) Modelling the dynamics of cellular receptor binding
avidity

Instead of modelling changes in receptor binding avidity

within each infected individual, we consider how the mean

receptor binding avidity changes at the population level

using a quantitative genetics approach [19,20], an approach

which assumes that the trait under selection has a unimodal

distribution with narrow variance in the population. Further

assuming that receptor binding avidity is the sole phenotype

under selection, we can write that the rate of change of V, the

mean receptor binding avidity, is proportional to its fitness

gradient: dV/dt/ d(fitness)/dV. Fitness in ecological scen-

arios is commonly defined as the per capita growth rate [21],

such that viral fitness in this case is simply given by the

per capita growth rate of infected individuals, (dItot/dt)/
Itot. The rate of change of the mean receptor binding avidity

is therefore given by

dV
dt
¼ kV

dððdItot=dtÞ=ItotÞ
dV

; ð2:2Þ

where the constant kV quantifies the amount of genetic variance

in receptor binding avidity. To simplify this expression, we first

write out the total growth rate of infected individuals as the

sum of the growth rates of all the infected classes:

dItot

dt
¼
X1
i¼1

dIi

dt
¼
X1
i¼1

bði� 1;VÞ Si�1

N
Itot

� �
� ðgþ mÞItot: ð2:3Þ
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Figure 1. The effect of receptor binding avidity and previous exposure history on the transmission rate and its components. (a) The modelled relationship between
binding avidity V and the probability that an infecting virus escapes neutralization by host antibodies, f (k,V ). Curves show f (k,V ), with k ranging from 0 (dark blue
line) to 20 (red line). We let f (k,V ) be given by [1 2 e2p(Vþ1)]rk, with positive constants r and p, where r controls the degree to which previous exposures reduce
the probability of immune escape and p controls the degree to which binding avidity changes affect this probability. Here, we let r ¼ 1 and p ¼ 2. (b) The
modelled relationship between binding avidity and the probability that a virus sufficiently replicates to cause a productive infection, g(V ). We let g(V ) be given by
gðVÞ ¼ e�aV b

; with positive constants a and b, where a controls the rate at which this probability decreases with binding avidity and b controls the shape of this
probability decrease. Here, we let a ¼ 0.7 and b ¼ 3. (c) The transmission rate b(k,V ), given by the product cf(k,V ) g(V ). Curves are colour-coded as in (a).
Contact rate c ¼ 0.5 per day. (d ) The derivative of the transmission rate with respect to binding avidity, db(k,V )/dV. Curves are colour-coded as in (a).
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The per capita infected growth rate is then:

ðdItot=dtÞ
Itot

¼
X1
k¼0

bðk;VÞSk

N

� �
� ðgþ mÞ; ð2:4Þ

where the subscript index has been changed to simplify nota-

tion. Taking the derivative with respect to V and substituting

into equation (2.2) yields

dV
dt
¼ kV

X1
k¼0

dbðk;VÞ
dV

Sk

N

� �
: ð2:5Þ

To describe the evolutionary dynamics of mean binding avid-

ity V, we therefore need an expression for how the transmission

rate b changes with V for any given number of previous

infections k that a challenged susceptible host has experienced.

To derive this expression, we return to the passage studies

performed by Hensley and co-authors, which indicate that

increased binding avidity has benefits as well as costs. The

benefit to increased binding avidity arises from an increased

probability that circulating polyclonal antibodies in a host

will fail to neutralize the virus. We therefore assume that, for

a given individual having been exposed k previous times, the

higher the binding avidity V of the virus, the higher the prob-

ability that the virus evades immune recognition. We also
assume that, for a given binding avidity V, viruses will be

less capable of evading immune recognition in individuals

with a higher number of previous exposures k. This

assumption reflects the observation that secondary immune

responses result in more rapid and higher levels of antibody

responses. Consistent with these patterns, figure 1a shows the

probability that a virus evades neutralization by antibodies as

a function of its own binding avidity and the number of

previous infections the challenged host has experienced, f(k,V ).

The cost to increased binding avidity arises from a reduction

in the ability of a virus to effectively replicate in a host (perhaps

due to its slower release from infected host cells) and does not

depend on the number of times a challenged susceptible host

has previously been infected. We let the probability that a

virus effectively replicates in a host be given by g(V ) (figure 1b).

Together, the product f(k,V )g(V ) yields the probability that

a susceptible individual, having been infected k previous times,

will become infected, given contact with a virus having binding

avidity V. The overall transmission rate from an infected

individual to a susceptible host with k previous infections is

therefore b(k,V )¼ c[ f(k,V )g(V )] (figure 1c), where c is a

positive constant parametrizing the contact rate per unit time.

Given this formulation, the basic reproduction number,

defined as the expected number of secondary infections a
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single infected individual will generate in a population of entirely

susceptible, naı̈ve hosts, is given by R0¼ b(0,V )/(g þ m).

Assuming that an infecting virus’s mean binding avidity can

quickly adapt to its optimal value in the susceptible host

population, R0 ¼ b(0,V¼ 0)/(g þ m). This is because, as

formulated, V¼ 0 is the optimal binding avidity for a virus

infecting a naı̈ve host.

The assumptions present in how the transmission rate

and its components change with receptor binding avidity

can be considered in light of the experiments described by

Hensley and co-authors. In particular, viral mutants with

higher receptor binding avidities have a greater ability to

escape from polyclonal antibodies, as assessed by haemag-

glutination inhibition titre levels. This is consistent with our

formulation of f (k,V ), shown in figure 1a: for a given level

of circulating polyclonal antibodies (i.e. for a given number

of previous exposures k), higher receptor binding avidity

corresponds to a higher probability of immune escape.

Additional experiments by Hensley and co-authors showed

that viruses adapted to naı̈ve hosts would, when passaged

through immune mice, increase in their binding avidity. By

contrast, viruses adapted to immune hosts would, when pas-

saged through naı̈ve mice, decrease in their binding avidity.

Consistent with these patterns, figure 1c shows that viruses

adapted to naı̈ve (low k) hosts would increase their fitness

in immune hosts by increasing their binding avidities,

thereby allowing for more effective escape from polyclonal

antibodies. This figure also shows that viruses adapted to

immune (high k) hosts would increase their fitness in naı̈ve

hosts by evolving lower binding avidities (to increase their

replication probabilities; figure 1b), thereby lowering their

ability to escape from polyclonal antibodies (figure 1a).

We can now calculate the derivative of the transmission

rate with respect to binding avidity V using our expression

for b(k,V ) shown in figure 1c. We substitute this derivative,

db(k,V )/dV, shown in figure 1d, into equation (2.5).

The dynamics of the model including the evolutionary

dynamics of mean binding avidity are therefore specified

by equation (2.1) for the epidemiological dynamics, together

with equation (2.5) for the mean binding avidity dynamics.
(b) Modelling the dynamics of antigenic drift
Until this point, we have considered only the evolutionary

dynamics of influenza’s cellular receptor binding avidity.

Here, we further incorporate the evolutionary dynamics of

viral antigenicity into our mathematical model. To do so,

we turn to Hensley et al.’s [18] verbal model and the sche-

matic of antigenic drift provided in their supplemental

figure S7. According to these, the rate of antigenic drift

(given by the rate at which escape from polyclonal antibodies

occurs) should increase with an increase in the transmission

frequency between naı̈ve and immune individuals and

should be higher the larger the change in binding avidity

within an infected individual. Transmission frequency plays

a role because the more transmissions occur per unit time,

the more frequently the virus finds itself in a new host

environment in which its binding avidity is suboptimal and

in which it therefore evolves towards higher fitness by

changing its cellular receptor binding avidity.

Because the epidemiological model we consider here does

not only consider naı̈ve (k ¼ 0) and immune (high k) individ-

uals, but a spectrum between them, we provide in the
electronic supplementary material, figure S2 a modified ver-

sion of Hensley and co-authors’ supplemental schematic.

Our modification includes transmission of the virus between

individuals with various previous exposure histories while

retaining the salient features of the original schematic.

Figure S2a in the electronic supplementary material shows

how the receptor binding avidity of a virus transmitted

from infected hosts to susceptible hosts may change over con-

secutive transmissions. A subset of the mutations

contributing to changes in binding avidity also leads to

changes in viral antigenicity (see the electronic supplemen-

tary material, figure S2b). To incorporate these changes in

viral antigenicity into our epidemiological model (equation

(2.1)), we interpret the rate of antigenic drift in terms of the

parameter v, the rate at which recovered (and immune)

hosts become resusceptible: higher rates of antigenic drift cor-

respond to higher rates of immunity loss. Consistent with

Hensley and co-authors’ schematic, the rate of immunity

loss is no longer an independent parameter, but depends

on the virus’s epidemiological and evolutionary dynamics.

In particular, it depends on the frequency of transmission

events and the amount of antigenic change that occurs

within infected hosts (as a side effect of evolutionary

changes in binding avidity; electronic supplementary

material, figure S2).

More formally, the rate of immunity loss can be written as

v ¼ FÂ; where F ¼
P1

k¼0 bðk;VÞSk=N is the frequency of

transmission events (equivalent to (g þ m) at endemic equili-

brium) and Â is the average amount of antigenic change that

occurs within an infected individual.Â can be further written

as Â ¼
P1

l¼0 alÂl; where al is the proportion of transmission

events that result in the infection of an individual who has

previously been infected l times and Âl is the average

amount of antigenic change that occurs within an infected

individual who has previously been infected l times. al is

given by b(l,V )(Sl/N)/F. Substituting into v ¼ FÂ yields

v ¼
X1
l¼0

bðl;VÞ Sl

N

� �
Âl

� �
: ð2:6Þ

With a fraction of receptor binding avidity mutations lying in

HA epitopes, we let the average amount of antigenic change

that accrues within an individual having previously been

infected l times be proportional to the change in binding

avidity within the individual:

Âl ¼ ksjDvlj; ð2:7Þ

where Dvl is the average change in receptor binding avidity

that occurs in this class of infected individuals and ks is a pro-

portionality constant we use to map how changes in cellular

receptor binding avidity alter viral antigenicity. Dvl can in

turn be written as Dvl ¼ vl(T ) 2 vl(0), where vl(t) is the recep-

tor binding avidity at time t of the infection and T ¼ 1/F is

the average amount of time an individual remains infected

before transmitting the infection. On average, vl(0) ¼ V for

all l. vl(T ) can be written as vlðTÞ ¼ vlð0Þ þ
Ð T

t¼0 ðdvl=dtÞdt:
As before, we take a quantitative genetics approach, letting

dvl/dt be proportional to the receptor binding avidity fitness

gradient within the host. In this case, a reasonable form for

the fitness gradient is d[ f (l,vl)g(vl)]/dvl, where [ f (l,vl)g(vl)]

is the probability that a virus with binding avidity vl, residing

in an infected individual who has been infected l previous

times, yields a productive infection. Substituting, the
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change in binding avidity Dvl becomes

Dvl ¼ kc

ðT

t¼0

d½ f ðl; vlÞgðvlÞ�
dvl

dt; ð2:8Þ

where the constant kc quantifies the amount of genetic var-

iance in receptor binding avidity within a single host. With

vl(0) ¼ V, we numerically solve Dvl for all classes of infected

individuals l. We then use these values to first calculate the

average amount of antigenic change in a given class of

infected individuals Âl (equation (2.7)) and then the rate of

antigenic drift v (equation (2.6)).

The full verbal model outlined by Hensley and co-

workers can therefore be mathematically described by

equation (2.1), where v is given by equation (2.6), along

with equation (2.5) describing the evolutionary dynamics of

receptor binding avidity.

(c) The effect of epidemiological parameters on the rate
of antigenic drift

To better understand the dynamics of the mathematical

model developed above, we here determine, through num-

erical simulation, how some of the parameters of the

epidemiological component of the model (equation (2.1))

affect the rate of antigenic drift. We specifically focus on the

effects of three parameters: host lifespan (1/m), the contact

rate (c) and the duration of infection (1/g). We chose these

parameters because they are the ones that are most likely to

vary between species or can be affected by control policies

such as quarantine measures and other non-pharmaceutical

public health interventions. For each of these three sets of

simulations, we keep constant all of the epidemiological par-

ameters except for the one whose effect we explore. Along

with showing how these parameters affect the rate of anti-

genic drift, figure 2 plots the equilibrium distribution of

susceptible classes Sk/N and the equilibrium mean binding

avidity V over the parameter ranges considered. We plot

these two quantities because they are the main contributors

to the rate of antigenic drift, interpreted as the rate of

immunity loss v (equation (2.6)).

Figure 2a–c shows the effect that host lifespan has on the

equilibrium distribution of susceptible hosts Sk/N, on the equi-

librium mean binding avidity V, and on the rate of antigenic

drift v, respectively. With longer host lifespans (and lower

birth/death rates), the proportion of susceptible individuals

in low-k classes decreases (figure 2a). This is because longer-

living individuals are able to accrue a higher number of

previous infections. With the proportion of susceptible indi-

viduals in higher-k classes increasing with increasing host

lifespans, the relative fitness of strains with higher receptor

binding avidities increases. This in turn leads to higher mean

binding avidities (equation (2.5) and figure 2b). Figure 2c
shows that the rate of antigenic drift v increases (or, equiva-

lently, that the duration of immunity decreases) with longer

host lifespans. This can be interpreted in terms of the results

shown in figure 2a,b. Specifically, with short host lifespans,

the Sk/N distribution is clustered around low-k classes, and

the mean binding avidity V is low. The average change in

viral antigenicity within an infected individual is therefore

small: most individuals becoming infected will have had

only a small number of previous infections and V has adapted

to this situation. By equation (2.6), the rate of antigenic drift v is

therefore slow. In contrast, with long host lifespans, the Sk/N
distribution is broader (figure 2a). Although V has also

adapted to the average number of previous infections being

higher, this broadening of the Sk/N distribution results in

large amounts of antigenic change occurring in very low-k
and very high-k infected individuals. This leads to higher

rates of antigenic drift (figure 2c). Although differences in the

rates of antigenic drift (figure 2c) will feed back to affect

the Sk/N distribution (equation (2.1)), this feedback has negli-

gible consequences on the equilibrium mean binding avidity

(see the electronic supplementary material, figure S3). It is

interesting to note here that this model therefore predicts that

hosts with shorter lifespans would circulate viruses with

lower rates of antigenic drift, all else being equal. Although

there are arguably many more differences between swine

hosts and human hosts than just their lifespans, this model

would predict that immunity lasts longer in swine hosts

(with lifespans of up to 5 years) than human hosts (with life-

spans of approx. 70 years) if these other differences were

ignored. This prediction is supported by recent work analysing

the antigenic and genetic evolution of swine influenza A

(H3N2) viruses: while the rates of genetic evolution in

human and swine H3N2 viruses were similar, the rate of anti-

genic evolution in swine viruses was approximately six times

slower than the rate in human viruses [22].

Figure 2d– f shows the effect that host contact rates have

on the Sk/N distribution, on the mean binding avidity and

on the rate of antigenic drift. Similar to the effect of longer

host lifespans, the distribution of Sk/N changes from being

clustered in low-k classes to being more evenly spread

through these classes at higher host contact rates. This is

because at higher host contact rates, susceptible individuals

will become infected more rapidly, leading to a smaller pro-

portion of susceptible hosts in low-k classes (figure 2d ). This

again results in higher mean binding avidities (figure 2e). For

the same reasons as above, the rate of antigenic drift is there-

fore higher at higher contact rates (figure 2f ). As before,

although differences in the rate of antigenic drift (figure 2f )

will feed back to affect the Sk/N distribution (equation (2.1)),

this feedback has negligible consequences on equilibrium

mean binding avidities (see the electronic supplementary

material, figure S3). Interestingly, the results shown in figure

2d– f have implications for the control of influenza: public

health measures that reduce contact rates (e.g. quarantine

and improved hygiene measures) would not only reduce the

number of infected individuals directly, but would have the

indirect effect of slowing the rate of antigenic drift, thereby

further reducing rates of disease incidence and extending the

effectiveness of vaccines.

Finally, figure 2g– i shows the effect that the duration of

infection has on the Sk/N distribution, on the mean binding

avidity and on the rate of antigenic drift. Unlike in the pre-

vious cases, a longer duration of infection 1/g leads first to

higher and then lower mean binding avidities (figure 2h).

The increase in binding avidity at short durations of infection

is because the basic reproduction number R0 increases with

an increase in 1/g (we assume the transmission rate remains

constant). This R0 increase leads to an increase in the number

of infected hosts, and therefore an increase in the force of

infection. This leads to a shift in the Sk/N distribution to

higher k classes (figure 2g), with an increase in the average

number of times susceptible hosts have previously been

infected, and therefore selection for higher mean binding

avidity (figure 2h). As the duration of infection continues to
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Figure 2. The effect of epidemiological parameters on the rate of antigenic drift. (a) The effect of host lifespan (1/m), on the equilibrium distribution of susceptible
hosts, Sk/N. (b) The effect of host lifespan on the equilibrium mean receptor binding avidity V. (c) The effect of host lifespan on the rate of antigenic drift v. (d ) The
effect of host contact rate on Sk/N. (e) The effect of host contact rate on binding avidity. ( f ) The effect of host contact rate on the rate of antigenic drift. (g) The
effect of the duration of infection (1/g) on Sk/N. See electronic supplementary material, figure S4 for the effect that the duration of infection has on Sk/Stot, where
Stot ¼

P1
j¼0 Sj: (h) The effect of the duration of infection on binding avidity. (i) The effect of the duration of infection on the rate of antigenic drift.

Epidemiological parameters are total population size N ¼ 100 thousand, host lifespan 1/m ¼ 70 years (except in subplots a – c, where it is varied), host contact
rate c ¼ 0.5 contacts per day (except in subplots d – f, where it is varied), and duration of infection 1/g ¼ 5 days (except in subplots g – i, where it is varied).
Parameters p, r, a and b, used to parametrize the transmission rate b are as in figure 1. This parametrization leads to a basic reproduction number R0 of 2.5.
Parameters used in determining the amount of antigenic change occurring within infected individuals are kc ¼ 0.09 and ks ¼ 0.0769. The value of kc was chosen
such that viral binding avidity within infected hosts changed appreciably over the duration of infection, yet such that the optimal binding avidity within a host
would not be reached. Given this value of kc, the value of ks was chosen such that the rate of antigenic drift v became 0.5 year21 when lifespan 1/m ¼ 70 years,
the duration of infection 1/g ¼ 5 days, and the contact rate c ¼ 0.5 per day. The drift rate of 0.5 year21 is a reasonable value for influenza A/H3N2. The
parameter kV ¼ 0.3, but the equilibrium results do not depend on the value of this parameter. Horizontal lines with years marked in subplots (c), ( f ) and (i)
correspond to 1/v, the average duration of immunity.
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increase, though, the proportion of susceptible hosts that

belong to low-k classes starts to increase again (see the elec-

tronic supplementary material, figure S4). This non-intuitive

effect is a result of two factors. First, it is because rates of anti-

genic drift slow down dramatically with longer infectious

periods (figure 2i), such that non-infected hosts who have

previously been infected linger in the recovered classes,

rather than in the high-k susceptible classes. Second, it is

due to infected individuals getting ‘stuck’ in the infectious

class for a longer period of time. The return of predominantly

low-k susceptible hosts results in selection for lower mean

binding avidity. The importance of these two distinct factors

can be seen by considering how mean binding avidity
changes with the duration of infection when the rate of anti-

genic drift is kept constant (see the electronic supplementary

material, figure S3e,f ); in this case, there is still a non-

monotonic relationship between the duration of infection

and mean binding avidity, although much longer durations

of infection are needed to select for decreases in mean bind-

ing avidity. This is because only the second factor is at play

in this case, resulting in a return in the predominance of

low-k susceptible hosts only at very long infectious periods

(see the electronic supplementary material, figure S5).

Finally, to understand why rates of antigenic drift

decrease at longer infectious periods (figure 2i), it is easiest

to return to the expression for the rate of antigenic drift
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given by v ¼ FÂ: This expression shows that the rate of anti-

genic drift depends on the frequency of transmission events

as well as on the average amount of antigenic change occur-

ring within infected individuals. At equilibrium, the

frequency of transmission events F is given by (m þ g).

Longer durations of infection (1/g) therefore lead to lower

transmission frequencies. Assuming that the amount of anti-

genic change within an infected host does not increase

considerably in the extra amount of time the host is infected,

we would therefore expect the rate of antigenic drift to be

slower with longer infectious periods. Our analysis of the

duration of infection on the rate of antigenic drift illustrates

the importance of formulating Hensley and co-authors’

model of antigenic drift mathematically: without these simu-

lations, it would have been difficult to predict that longer

infectious periods would result in slower rates of antigenic

drift. This prediction is also particularly interesting as it dif-

fers from the one arrived at under the commonly assumed

model of antigenic drift in which several mutations in epitope

regions of the viral HA have to occur to evade recognition by

circulating polyclonal antibodies. In particular, this tra-

ditional model of antigenic drift would predict that the

drift rate would be higher with longer infectious periods

because individuals have to be infected for a long period of

time for the virus to have the chance to generate an

immune escape mutant. This juxtaposition in the direction

of drift rate changes between the binding avidity model for

antigenic drift and the traditional model of antigenic drift

hints at an intriguing possibility: might there be some

threshold for infectious duration, below which selec-

tion occurs on binding avidity changes and above which

selection occurs directly on antigenic phenotypes? Although

this might be the case, we note that a cellular receptor bind-

ing avidity model that did not have a cost associated with

increased binding avidity, or one that allowed this cost to

be overcome with compensatory evolution (perhaps occur-

ring more frequently in individuals who were infected for a

longer period of time), might also predict higher rates of

antigenic drift with longer durations of infection.
(d) An application of the model to evaluate alternative
vaccination policies

In §2c, we have seen that epidemiological factors will affect

rates of antigenic drift. One of these factors, the host contact

rate, was a particularly interesting parameter to consider

because there is some, albeit limited, evidence showing that

non-pharmaceutical disease-control strategies for influenza are

able to affect this parameter [23,24]. We now consider instead

the effect that vaccination—a pharmaceutical intervention—

would have on rates of antigenic drift and ultimately disease

incidence. In particular, we evaluate the effectiveness of two

alternative vaccination strategies: a strategy that preferentially

vaccinates children and a strategy that vaccinates individuals

at random. We chose these two strategies in order to address

a prediction made by Hensley et al. [18], namely that paediatric

influenza virus vaccination would decrease the size of the naı̈ve

population and thereby slow rates of antigenic drift. As a

consequence, the effectiveness of vaccines would be temporally

extended [18].

To determine the dynamical consequences of these two con-

trol strategies on the rate of antigenic drift and disease incidence,
we extend our epidemiological model to incorporate vaccination:

dS0

dt
¼ mN � bð0;VÞS0

N
Itot � ðmþ p0ÞS0;

and, for i� 1,

dIi

dt
¼ bði� 1;VÞSi�1

N
Itot � ðgþ mþ piÞIi;

dRi

dt
¼ gIi � ðvþ mþ piÞRi þ pi�1ðSi�1 þ Ii�1 þ Ri�1Þ

and
dSi

dt
¼ vRi � bði;VÞ Si

N
Itot � ðmþ piÞSi;

9>>>>>=
>>>>>;

ð2:9Þ

where pk is the rate of vaccinating individuals with k previous

infections. This formulation assumes that vaccination of suscep-

tible individuals acts similarly to a natural infection: it results in

temporary immunity and contributes an additional exposure.

The formulation further assumes that vaccination of currently

immune individuals also acts to contribute an additional

exposure. Finally, it assumes that vaccination of currently

infected individuals results in immediate recovery and an

additional exposure. (This latter assumption greatly simplifies

the fair comparison of vaccination strategies, as described

below. Because there are few infected individuals at any point

in time and because the parameters in our simulations are set

such that pk� (g þ m) for all k, the results of our simulations,

presented below, are not sensitive to this last assumption.)

We first consider the paediatric vaccination strategy. Being

younger, children are likely to have had only a few previous

infections. We therefore parametrize this vaccination strategy

by setting vaccination rates pk higher for lower k (figure 3

legend), such that overall, vaccination occurs at an annual

rate of approximately 4 per cent. As anticipated by Hensley

and co-authors, simulations of this model result in lower

rates of antigenic drift compared with simulations without

vaccination (figure 3a). Furthermore, this vaccination strategy

results in an appreciable reduction in influenza’s annual

attack rate (figure 3b). The reason for the observed decrease

in the rate of antigenic drift can be understood by considering

the equilibrium Sk/N distribution (figure 3c) along with the

equilibrium mean binding avidity V (figure 3d). As a conse-

quence of the preferential vaccination of low-k individuals,

the Sk/N distribution becomes narrower (figure 3c), whereas

the mean binding avidity does not change appreciably

(figure 3d; although it does increase, as expected, at higher

vaccination rates; electronic supplementary material, figure

S6). The significantly lower rate of antigenic drift that results

from the paediatric vaccination strategy (figure 3a) is therefore

due to the decrease in the number of low-k infections, which

are the ones that contribute large antigenic changes.

We can now compare this paediatric vaccination strategy

with one that vaccinates individuals at random. A random

vaccination strategy has a vaccination rate that is indepen-

dent of the number of times an individual has been

previously infected, such that pk is the same for all k. To

fairly compare this vaccination strategy with the one that pre-

ferentially vaccinates children, we control for the total

number of vaccines delivered (figure 3 legend). Simulations

of this random vaccination scenario do not give rise to

lower rates of antigenic drift (figure 3a). This is because

neither the equilibrium Sk/N distribution (figure 3c) nor the

equilibrium mean binding avidity (figure 3d ) changes

appreciably with this strategy. However, vaccinating at

random does still decrease disease incidence moderately

(figure 3b), although not to the same extent as the paediatric
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Figure 3. The effect of vaccination strategies on the rate of antigenic drift and disease incidence. (a) The equilibrium rate of antigenic drift under no vaccination,
paediatric vaccination and random vaccination strategies. Horizontal lines with years marked correspond to 1/v, the average duration of immunity. (b) The annual
attack rate for influenza under these three strategies. The grey bar shows the annual attack rate under the paediatric vaccination strategy when the rate of antigenic
drift v is fixed at 0.5 year21. (c) The equilibrium Sk/N distribution under these three strategies. The solid bold line shows the distribution in the absence of a
vaccination policy, the dotted line shows the distribution under the paediatric vaccination policy, and the line with circle marks shows the distribution under the
random vaccination policy. (d ) The equilibrium mean binding avidity under these three strategies. Parameter values used are as in figure 2. Vaccination rates, in
units of year21, under the paediatric vaccination strategy are given by pk ¼ m(1 2 s)ks, with m ¼ 2 and s ¼ 0.8, resulting in vaccination rates that decrease with
an increase in the number of previous exposures k. The vaccination rate, also in units of year21, under the random vaccination strategy is p ¼ 0.037. These
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number of vaccinations delivered was kept constant across the two vaccination strategies by first calculating the total number of individuals vaccinated per unit time
for the paediatric vaccination strategy. This is given by p0S0 þ

P1
i¼1 piðIi þ Ri þ SiÞ: In the random vaccination scenario, the total number of individuals

vaccinated per unit time is pN, where p is the vaccination rate that is independent of the number of previous exposures. In our simulations, we therefore chose p by
dividing the total number of individuals vaccinated per unit time in the paediatric vaccination scenario by the population size N.
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vaccination strategy. This is because vaccination still has the

direct effect of protecting individuals from infection as well

as the indirect effect of generating herd immunity.

The results of these simulations support Hensley and co-

authors’ predictions: vaccinating children would lead to

lower rates of antigenic drift (figure 3a). Lower rates of anti-

genic drift bring two benefits. First, a lower rate of antigenic

drift would temporally extend the effectiveness of vaccines

[18]. Second, a lower rate of antigenic drift would reduce

the annual attack rate, as it would take a longer amount of

time for recovered individuals to become susceptible again,

a prerequisite for becoming infectious. Indeed, we see in

figure 3b that the annual attack rate is appreciably smaller

in the case of paediatric vaccination compared with the

case of random vaccination. However, it could be argued

that the difference in annual attack rates between these vacci-

nation strategies arises from the most susceptible individuals

(children) being vaccinated in the first scenario, whereas vac-

cinations are ‘wasted’ on individuals who are less susceptible

in the second scenario. That is, vaccinating a low-k suscep-

tible individual should be more effective from a public

health perspective than vaccinating a high-k susceptible
individual, because low-k susceptible individuals are

always more susceptible than high-k ones (figure 1c). How-

ever, when we simulated the model under the paediatric

vaccination strategy but did not allow the rate of antigenic

drift to differ from the case without vaccination, the resulting

annual attack rates were indistinguishable from those of the

random vaccination strategy (figure 3b). This shows that it

is the lower rate of antigenic drift under the paediatric vacci-

nation policy, compared with the random vaccination

strategy, that is responsible for the greater reduction in

disease incidence.

It is interesting to compare these influenza vaccination

strategies to those recommended by the US Centers for Disease

Control and Prevention (CDC) Advisory Committee on Immu-

nization Practices. In 2006, this committee recommended

annual vaccination of children between the ages of six

months to 5 years and persons over 50 years of age [25].

These recommendations were set to reduce the chance that

individuals in these high-risk age groups get infected and

develop serious influenza-related complications. In 2010, the

committee modified its recommendation, urging that all per-

sons older than six months be vaccinated annually [26].
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If vaccinations were limited in number, the model presented

here would argue that the vaccination policy recommended

in 2006 might, if followed, lead to better health outcomes

than the current policy because it would lower rates of anti-

genic drift and thereby result in a larger decrease in

influenza incidence. However, if vaccinations are not limiting,

the current policy would, if followed, increase the total

number of vaccinations given annually and thereby increase

herd immunity. This in turn would lower influenza incidence,

perhaps below the level attainable by the previous policy.
 g
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3. Discussion
Here, we developed a mathematical model for the antigenic

drift hypothesis recently presented by Hensley et al. [18]. Sup-

ported by passage studies in mice, this hypothesis argues that

the antigenic drift of influenza A is predominantly a side

effect of cellular receptor binding avidity changes. These

changes are thought to accrue as the virus passes between

individuals of differing immunity levels. We showed with

this mathematical model that rates of antigenic drift are

expected to be higher in populations with longer host life-

spans, in populations with higher contact rates and in

populations with shorter durations of infection. We have

further used the model to evaluate the effects of two different

influenza vaccination strategies: a strategy that focuses on

vaccinating children, and a strategy that vaccinates individ-

uals at random. In support of Hensley and co-authors’

prediction, the paediatric vaccination strategy led to a lower

rate of antigenic drift, whereas the random vaccination strat-

egy did not appreciably affect the drift rate. These results

stand in contrast to those made by previous influenza anti-

genic drift models [27], which predict that vaccination

would increase the rate of antigenic drift. Correctly under-

standing the mechanism(s) driving antigenic drift will

therefore have important consequences for accurately predicting

the indirect effects brought about by control policies.

The mathematical model we have presented here contains

several assumptions that still need to be more fully evaluated.

One assumption is that increased cellular receptor binding

avidity exacts a cost. Although passage experiments through

naı̈ve mice have shown that high avidity mutants evolve to

lower avidity [18], thereby supporting the presence of a fit-

ness cost, the mechanistic basis for such a cost is at this

time unclear. One possibility is that the progeny of viruses

with higher receptor binding avidities are not easily released

from infected host cells, thereby resulting in low virion yields

[28]. Efficient cleavage from the sialic acid receptor could,

however, occur in adsorptive (high avidity) mutants that

also had higher neuraminidase (NA) activity [29]. This

opens up the possibility of compensatory NA mutations

that could restore viral fitness of high avidity mutants. It

also opens up questions about how this new antigenic drift

hypothesis relates to the observation that a functional

match between the HA and NA proteins needs to exist for

a productive viral infection to occur [30,31]. Determining

whether there is a cost to high binding avidity and

whether/how it can be overcome is therefore important to

understand in the context of this drift hypothesis.

A second assumption in our model is that host suscepti-

bility depends on the number of times an individual has

previously been infected. This assumption stands in contrast
to the implicit assumption in SIRS models for influenza. By

having only one susceptible class, these models implicitly

assume that the number of times an individual has been

infected has no bearing on the individual’s susceptibility.

Our assumption also differs from assumptions commonly

made in multi-strain models for influenza. These often

assume that the susceptibility of a host depends on the anti-

genic similarity between the challenging virus and the

repertoire of previous strains the host has been infected

with [6–8,10]. Finally, this assumption neglects the notions

of original antigenic sin and antigenic seniority, which posit

that a host’s susceptibility depends on the antigenic differ-

ences between a challenging virus and the first virus, or

first few viruses, the individual was ever exposed to [32,33].

We chose our model formulation specifically to be able to

accurately accommodate the hypothesis put forward by

Hensley and co-authors; because their hypothesis posits

that antigenic drift is predominantly a side effect of binding

avidity changes, we wanted, in a first model, to ignore the

effects of antigenic strain variation altogether. However, as

discussed below, considering the interaction between anti-

genic variation and binding avidity heterogeneity in the

viral population might be important to understand the evol-

utionary dynamics of influenza A in humans and other hosts

that exert immune pressure on the virus. We leave this

possibility for future work.

A third assumption present in our model is that the

amount of antigenic change occurring within a host is pro-

portional to the amount of cellular receptor binding avidity

changes within the host. Because the globular domain of

the HA protein contains amino acid sites that affect cellular

receptor binding as well as B-cell epitopes, with some

overlap, this assumption is the simplest one to initially incor-

porate into a model. However, there is evidence that antibody

binding is affected by certain amino acid residues located in

the B-cell epitopes more than others [34]. Variation in the con-

tribution of different amino acid residues to cellular receptor

binding avidity is also likely. As of yet, the exact functional

regions for antigenic sites and binding avidity sites, and

their overlap, still need to be better identified to more fully

understand the relationship between receptor binding avidity

changes and antigenic changes. Statistical approaches that

identify positively selected residues, such as the one recently

developed by Tusche et al. [35], will be key to identifying

which sites are likely to be relevant and may thereby provide

good candidates for further study.

The mathematical formulation of Hensley and co-authors’

antigenic drift model that we developed here can be used to

make predictions that can be tested using publicly available

influenza sequence data. For example, human hosts are gen-

erally long-lived compared with other influenza host species,

and the duration of a typical influenza infection in humans is

generally shorter or comparable to that of other host species.

Given our results shown in figure 2, we would therefore

anticipate that the cellular receptor binding avidities of influ-

enza viruses circulating in humans should be higher than

those circulating in other hosts. Following a pandemic emer-

gence from either avian hosts or swine hosts, we therefore

expect viral receptor binding avidities to increase over time

in the human population. Indeed, Arinaminpathy & Grenfell

[36] recently performed a retrospective analysis of influenza

sequences, looking at how glycoprotein charge, which affects

cellular receptor binding avidity in the case of the HA
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protein, changes over time for several influenza A subtypes.

In support of the above prediction, they show that the total

charge of influenza A H3N2’s HA increases from the time

of its introduction in 1968 until 1986, when the total charge

plateaus. However, this pattern is not present in influenza

A subtypes H1N1 or H2N2. Furthermore, there are two con-

founders in interpreting this increase in H3N2 receptor

binding avidity in humans according to the model presented

here and a transition of the virus from a short-lived host to a

long-lived host. First, the increase in H3N2 binding avidity in

humans could be due to evolution of receptor specificity.

Second, increases in receptor binding avidity in H3N2 may

have evolved to compensate for the accumulation of glycosy-

lation sites on the viral HA (which decrease receptor binding

avidity) [37,38], rather than as a result of their stand-alone fit-

ness advantage.

A second prediction made by the model, and the original

hypothesis, is that currently infected hosts who have been

infected more numerous times should, on average, harbour

influenza viruses with higher binding avidities compared

with currently infected individuals with fewer previous infec-

tions. This is because the model assumes that antigenic drift,

occurring rather rapidly, is a side effect of frequent within-

host changes in binding avidity (see the electronic supplemen-

tary material, figure S2), with higher binding avidity selected

for in higher k individuals and lower binding avidity selected

for in lower k individuals. Because an individual’s age has

been used as a proxy for the number of previous infections

k, we therefore predict that the binding avidities of viruses iso-

lated from patients (at least at the end of their infectious

periods) should be an increasing function of patient age.

This prediction is testable using age information available in

the Influenza Virus Resource Database [39] and computational

methods to predict binding avidity from viral sequence data.

Here, we simply note that the prediction is one put forward
by Hensley and co-authors’ hypothesis, and that the math-

ematical formulation of their model presented here could

perhaps be used to quantitatively predict the relationship

between age and binding avidity, or, alternatively, that the

observed relationship between age and binding avidity

could be used to parametrize our mathematical model.

Finally, the model presented here is similar in structure to

influenza models of the SIRS variety discussed in §1, albeit

more complicated. In its current structure, it could therefore

not address whether the new antigenic drift hypothesis is con-

sistent with the ladder-like phylogeny of influenza’s HA [40]

and the emergence–replacement dynamics of influenza’s anti-

genic clusters [41]. To determine whether this new antigenic

drift model can reproduce these genetic and antigenic evol-

utionary dynamics, another formulation of the model would

need to be developed. This formulation would be similar in

structure to existing multi-strain influenza models [6–8,10–

13], with the key difference being that strains would differ in

their binding avidities along with their antigenic character-

istics. For now, the new antigenic drift hypothesis presents

an interesting and starkly different alternative to previous

hypotheses of antigenic drift. A demonstration of its consist-

ency with the evolutionary dynamics of influenza will surely

make our commitment to it more ‘binding’.
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