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Abstract
Many pathogens are sensitive to climatic variables and this is reflected in their seasonality of
occurrence and transmission. The identification of environmental conditions that influence disease
occurrence can be subtle, particularly considering their complex interdependencies in addition to
those relationships between climate and disease. Statistical treatment of environmental variables is
often dependent on their correlations and thus descriptions of climate are often restricted to means
rather than accounting for the more precise aspects (including mean, maximum, minimum,
variability). Here we utilize a novel multivariate statistical modelling approach, additive Bayesian
network (ABN) analyses, to identify the inter-linkages of different weather variables to better
capture short-term environmental conditions that are important drivers of disease.

We present a case study that explores weather as a driver of disease in livestock systems. We
utilize quality assurance health scheme data on ten major diseases of pigs from 875 finishing pig
herds distributed across the United Kingdom over 7 years (2005–2011). We examine the
relationship between the occurrence of these pathologies and contemporary weather conditions
measured by local meteorological stations.

All ten pathologies were associated with at least 2 other pathologies (maximum 6). Three
pathologies were associated directly with temperature variables: papular dermatitis, enzootic
pneumonia and milk spots. Latitude was strongly associated with multiple pathologies, though
associations with longitude were eliminated when clustering for repeated observations of farms
was assessed. The identification of relationships between climatic factors and different (potentially
related) diseases offers a more comprehensive insight into the complex role of seasonal drivers
and herd health status than traditional analytical methods.
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1. Introduction
Pathogens play an important role in the productivity of farms: diseased animals have poorer
performance. The transmission of many pathogens is sensitive to climatic factors that drive
observed patterns of seasonality. For example, the survival of bacterial pathogens,
helminthes and arthropod vectors are influenced by temperature and humidity that together
influence their abundance and viability (Mas-Coma et al., 2008; Rogers and Randolph,
2006; Tang, 2009; Webster, 1981). Consequently, of particular current interest is how a
changing climate will influence the dynamics of disease – in terms of economic productivity
(Fofana et al., 2009; Gale et al., 2009; Kenyon et al., 2009; McInerney et al., 1992), food
safety (Miraglia et al., 2009), food security (Gregory et al., 2005; McMichael, 2011) and
zoonotic disease (Daszak et al., 2000).

In intensive livestock production systems – such as pig farms – considerable efforts are
made to control or mitigate changes in the environment (Baxter, 1984; Feddes et al., 1983);
examples include the management of airflows, reduction of dust, types of flooring and
control of humidity to eliminate respiratory pathogens (Banhazi et al., 2008; Dawson, 1990;
Heber et al., 1988; Stärk, 1999). Several reports indicate the presence of seasonal changes in
disease occurrence in farmed pigs, suggesting that climatic factors play a substantial role
driving pathogen (Sanchez-Vazquez et al., 2012b; Wagner and Polley, 1999) or disease
patterns (Sanchez-Vazquez et al., 2012c; Stärk, 2000).

The environment is a complex multi-factorial combination of variables. In analyses whose
main focus is identifying environmental risk factors or disease determinants, choices are
often made about summarizing a few key variables, for example, through stepwise selection
(Acevedo et al., 2010; McCluskey et al., 2003), data reduction with principle component
analysis (Duchateau et al., 1997; Estrada-peña and Venzal, 2007) and partial Fourier series
(Purse et al., 2007). These variables are then incorporated into modelling frameworks that
might include regressions of bio-geographic variables on the presence of disease (Gilbert et
al., 2005), pattern matching disease observations with climatic descriptors (Olwoch et al.,
2003; Purse et al., 2007, 2004), utilizing expert opinion of major risk factors (Sumption et
al., 2008) or comparison of time series (Sanchez-Vazquez et al., 2012c).

Here we present a case study which utilizes an additive Bayesian network (ABN) approach
(Lewis and McCormick, 2012; Lewis et al., 2011) to examine the inter-linkages between a
series of putative environmental risk factors and disease pathologies. Given that weather
variables are highly interdependent, the ABN approach allows the separation of those
weather factors that are directly connected from those that have co-dependence mediated
through a series of intermediate factors (Lewis and McCormick, 2012) without excluding
variables from an analysis on a statistical (rather than biological) basis. For example,
although temperature (in the sense of average annual patterns) maybe predictive of broad
ecological patterns such as the national burden of a particular pathology (Gilbert et al., 2005;
Purse et al., 2007), what happens on an individual farm is a function of where that farm is
located, local circumstances and the corresponding farm response.

In addition to the inclusion of weather factors, multiple disease conditions are included in
the analyses presented to demonstrate that, by considering the holistic joint probabilities of
inter-connected risks, the balance between climatic and non-climatic drivers can be
incorporated into a single model and their relative influence assessed. The presence of any
one disease may predispose animals to another; analytically, the first pathogen may not be
related to weather, but through the association with a secondary pathogen that is climatically
determined, there can be indirect association between environmental factors and the first
pathogen. In contrast, more traditional generalized linear modelling (GLM) models that do
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not consider all joint probabilities of important components of a disease system are unable to
distinguish between those risks that are directly or indirectly connected to health outcomes
(Lewis and McCormick, 2012).

In this case study we use information on pig herd health, obtained from abattoir surveillance
data, to contrast a number of pathologies that respond differently to climatic factors
(Sanchez-Vazquez et al., 2012b,c, 2010). The collection of ten pathologies that are of
importance to the economic productivity of farms describe a number of different aetiological
routes; for example, papular dermatitis is related to sarcoptic mange (Cargill et al., 1997),
enzootic-pneumonia is most closely associated with Mycoplasma hyopneumoniae (Maes et
al., 1996) and milk spots are the result of Ascaris suum infection (Bindseil, 1973). These
pathologies describe a complex web of interacting animal health challenges in which
successive health insults can accumulate to weaken immune responses to otherwise unusual
pathologies (Sanchez-Vazquez et al., 2012a). The presence of particular infections is known
to influence the presence of other pathogens and some particular pathologies have been
shown to follow seasonal patterns (Davies etal., 1991; Jacobs and Dunn, 1969; Sanchez-
Vazquez etal., 2012c).

We describe here an application of ABN modelling which identifies potential relationships
between climate and disease through analyses of readily available abattoir data. Through
these results we show the utility of the ABN approach for elucidating complex
environmental drivers of disease, in which the method presented is generic and applicable to
many different diseases and food animal production systems.

2. Materials and methods
2.1. Pathology data

The BPEX Pig Health Scheme (BPHS) (Sanchez-Vazquez et al., 2011; Stärk and Nevel,
2009) provided abattoir surveillance data for 904 farms with batches of pigs sent for
slaughter between July 2005 and June 2011, inclusive. The main objective of the BPHS is to
improve awareness of the occurrence of economically important pig diseases, urging the
implementation of strategies to improve productivity of the British pig industry.
Approximately 33% of all British pig producers registered with assurance schemes are
members of the BPHS, which is run as a voluntary scheme to provide farm-level
information on diseases that manifest as gross lesions present at the abattoir (Stärk and
Nevel, 2009). The BPHS farms are representative of approximately 75% of the English and
Welsh commercial finishing pig population (Sanchez-Vazquez et al., 2011).

The number of farms included in the analysis was reduced to 875 when those missing
covariate data were removed. This resulted in a total of 12,380 observed movements (a
mean of 13.7 movements per farm). Pigs are moved to slaughter in batches (median 120 pigs
per batch) that come from the same herd and a specialist swine veterinarian assesses a
sample of each batch (median 50 animals from each batch) as they move down the slaughter
line. Further details of the BPHS methodology can be found in Sanchez-Vazquez et al.
(2011).

Ten batch-level conditions were included in the analysis as binary variables (the presence or
absence of each pathology in at least one pig from a batch): enzootic-pneumonia, pleurisy,
milk spots, hepatic scarring, pericarditis, peritonitis, lung abscess, pyaemia, tail damage, and
papular dermatitis.

McCormick et al. Page 3

Prev Vet Med. Author manuscript; available in PMC 2014 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.2. Weather data
Weather data, concurrent with the pig batches analyzed, were extracted from UK
meteorological station records (UK Meteorological Office, 2012). Daily temperature,
rainfall and wind speed data were averaged across stations within a 10 km radius of each
farm. Although 10 km is geographically inclusive and likely to contain substantial
variability across the area (Daniel, 1978), it was selected to ensure at least one
meteorological station (based on the rarest of the weather variables – wind) per farm and
still to capture the temporal variability in the weather associated with different batches of
pigs. It is worth noting that the correlation between close meteorological stations is very
high (e.g., see Hansen and Lebedeff, 1987) and using the more commonly utilized gridded
climate data such as long term monthly averages (Hijmans et al., 2004; Mitchell et al., 2004;
New et al., 2002) would homogenize the dates of pig batches to long-term monthly
averages; and also that the grid cells are statistical interpolations of the raw meteorological
station data (Hijmans et al., 2004; New et al., 2002).

Given that weather is changeable and that the relative impact of one or two days may not
have substantial influence over a disease condition that requires several days to establish (by
the time of slaughter, for example, for Ascaris eggs to develop, Seamster, 1950), the weather
variables for the preceding 14 days were averaged (or summed in the case of rainfall). In this
sense, the weather variables describe the average conditions when climatic conditions were
(or not) consistently permissive for disease transmission or establishment rather than be
biased by unusual anomalies at or near the time of slaughter (e.g., a single day that has a
temperature suitable for bacterial growth is unlikely to result in a detectable lesion, whereas
a period of consecutive days allows colonization).

For each batch of pigs the calculated weather variables were the mean minimum and
maximum temperatures; the total degree-day warming (the sum of each degree ≥10 ° C per
day); the total rainfall and the mean wind speed. Summaries of the variables available to the
model are shown in Table S1 (supplementary information).

A sensitivity analysis was conducted to assess the impact of varying both the spatial and
temporal windows. Meteorological data were summarized over a range of 1, 2.5, 5, 10, 20
and 50 km around each farm and from the preceding 5,7,10,14 and 21 days. The total
number of arcs retained was compared and the frequency that any given arc between two
variables was present in the Directed Acyclic Graph (DAG) was counted. The number of
farms retained for each model in the sensitivity analysis was based on the most exclusive
combination of time and distance (that is, meteorological stations ≤1 km away and only for
the 5 days preceding slaughter) to ensure that the input observations were consistent for
every iteration. The alternative would be to exclude only those farms that had missing data
per combination of time and distance thresholds.

2.3. Bayesian networks
There is a considerable body of technical literature on Bayesian network modelling Key
articles include: Friedman et al. (1999), Heckerman et al. (1995), Koivisto and Sood (2004).
There exists, however, a paucity of articles dealing with models that are directly analogous
to multivariate GLM and multivariate generalized linear mixed modelling (GLMM), which
is what we utilize here. Note that we are referring to multivariate in the context of multiple
dependent variables, as opposed to the usual multivariable GLM and GLMMs which
comprise only one dependent and multiple independent covariates. Using the ABN
methodology it is straightforward to construct fully multivariate GLM/GLMMs that are
simply direct extensions of the usual regression models to include multiple dependent
variables, that is a holistic statistical inference model comprising multiply inter-dependent
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variables, which we refer to as an additive Bayesian network model. This is a form of
graphical modelling and ABN models comprise of two mutually dependent parts: a Directed
Acyclic Graph (DAG); and a set of parameters. Each node in the DAG is the equivalent of
the dependent variable in a (Bayesian) GLM or GLMM regression model potentially
comprising the remaining nodes in the DAG. The ABN methodology is ideally suited to,
and indeed arguably essential for, statistical analyses of data from highly complex
epidemiological systems comprising many inter-dependent variables. We include in this
definition both biological, ecological and environmental components. The specific statistical
techniques used here are as previously described by Lewis and McCormick (2012).

A three-part procedure was used to determine an optimal ABN model for our case study
data. First, we identify the single best model – specifically the DAG with optimal goodness
of fit to the available data. The key part of this analysis is determining how to optimally
combine all the individual component regression models (each individual node) into a
single, probabilistically cohesive model describing all the joint relationships in the observed
data (or technically the joint probability distribution of the data). Determining an optimal
DAG is referred to in the technical literature as structure learning or structure discovery
(Friedman et al., 1999; Heckerman et al., 1995). We utilize an established globally optimal
search approach (Koivisto and Sood, 2004) which identifies a DAG whose goodness of fit is
equal to the best possible goodness of fit of any DAG. Because this is a Bayesian analysis,
prior distributions must be defined and a uniform structural prior was used – all DAG
structures were equally supported in the absence of any data. We also used uninformative
priors for all parameters at each node: specifically Gaussian distributions, with mean zero
and variance 1000 for the additive (expectation) parameters and a diffuse Gamma
distribution for the precision parameter in Gaussian nodes. Note that it is simply impractical
to attempt to specify informative parameter priors because these would need to be given
(and justifiable) for each and every combination of variables across the vast number of
different models (DAG structures) being compared. At the end of this first step in the
structure discovery process we will have identified a single best fitting multivariate GLM
(ABN).

In the second step, the optimal DAG structure from the first step is pruned – arcs removed –
to adjust for over-fitting. Over-fitting is an ever present and critical issue in statistical model
comparison (Babyak, 2004). A standard and very robust, but extremely computationally
intensive, parametric bootstrapping approach (Friedman et al., 1999) was used. This
involves using Markov chain Monte Carlo (MCMC) simulation (in JAGS; Plummer, 2003)
to generate realisations – simulated datasets of an identical size as the original – from the
optimal model found in step one. An identical exact search for an optimal model structure
was then performed exactly as used in the first step, but applied to the bootstrap rather than
original data. This process was repeated many times and the frequency of each arc recorded.
The general idea is to determine how much structure (arcs) can be reasonably recovered
given a data set of the same size as the original. The bigger a data set, the more statistical
power and therefore the more structure it can support. Arcs present in less than 50% of the
globally optimal DAGs estimated from the bootstrap data were considered not to be robust
and pruned from the DAG generated in the first step. A threshold of 50% structural support
is the usual cut-off in BN analyses (Lewis and McCormick, 2012; Poon et al., 2007). At the
end of this second step in the structure discovery process we will have identified a single
most robust – that is a model fully adjusted for over-fitting – multivariate GLM (ABN).

The third and final step in the structure discovery process is to address potential within-
group correlations. Batches of pigs from the same farm are potentially correlated as they are
present within the same farm environment and likely subject to the same management
processes. Not explicitly accounting for such within-group clustering can result in an
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underestimation of variance (reducing the reliability of confidence intervals and model
goodness of fit estimates). The usual solution to this in regression analyses is to move from a
GLM to a GLMM. We adopt a similar procedure where we introduce an independent
Gaussian (mean 0, variance 1000) random effect (to adjust for within-farm correlation –
each random effect comprises 875 terms, one for each farm) into each variable in our
multivariate model. That is, each node in the DAG from step two becomes a GLMM rather
than a GLM as previously – and so we now have a multivariate GLMM (ABN). This model
was fitted to the observed data using MCMC (again via JAGS) following all the usual good
practice measures (Congdon and Congdon, 2001) such as running multiple chains, visual
inspection and use of the Gelman–Rubin convergence diagnostic, along with relatively large
effective sample sizes (e.g., >1000 per parameter estimated). After including these random
effect terms some arcs, which have so far been retained in the model, may no longer be
supported due to the now potential increase in variance. Each arc denotes a marginal log
odds ratio (binary node) or marginal mean (Gaussian node) and any arcs whose 95%
credible intervals included zero were then dropped from the model. At the end of this final
step in the structure discovery process we identify a single most robust joint statistical model
of the observed data – fully adjusted for over-fitting and for within-groups correlation across
all variables. This now gives us our optimal multivariate GLMM of the data – an additive
Bayesian network model that describes all the statistically significant relationships with our
complex epidemiological system of disease and environment.

2.4. GLM regression
The ABN approach was contrasted with more traditional GLM models. The purpose of such
a comparison is to provide an example of the type of observation made in the well known
Yule–Simpson paradox (Hand et al., 1997) – that taking a narrow univariate (single
dependent variables/multivariable regression) – approach to risk factor analyses will, in
general, not give the same results as a joint and truly multivariate approach (for more details
also see Lewis and McCormick, 2012). This analysis is included for illustration only
because in general it is not statistically valid to combine separately derived GLM models
(each of which can be represented as a DAG with a single terminal node) into a single joint
probability model. This would typically produce a graph with one or more cycles. Moreover,
it is then highly subjective as to how these conflicting results can be resolved. This problem
does not arise in ABN modelling because these are – by construction – joint probability
models and therefore always acyclic. The GLM results presented are directly comparable
with the ABN from the first step in the ABN model search process, as the best possible
GLM is found for each node considering every possible combination of covariates. Also,
identical parameter and structural priors are used as in the ABN analysis, and so the only
difference here is that in the GLM search each response variable is considered separately,
whereas in the ABN all variables are considered jointly. Note that while we use a GLMM
approach to derive our final model (in step three above) that has no impact on this current
comparison since the purpose here is to demonstrate the difference between a multivariable
and multivariate regression. The inclusion or exclusion of random effects is irrelevant to this
comparison.

All analyses were conducted using the authors' abn package for R (R Development Core
Team, 2008) which is available from CRAN (cran.r-project.org) with additional
documentation and case studies at www.r-bayesian-networks.org. The resultant networks
(DAGs) were visualized with GraphViz (Ellson et al., 2003).
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3. Results
3.1. Globally optimal DAG - multivariate GLM (ABN)

The best fitting global DAG is shown in Fig. 1 and comprises a total of 71 arcs. The
presence of each and every arc resulted in an improved goodness of fit (as determined by the
standard metric in Bayesian model comparison – the log marginal likelihood). This DAG
was found by increasing the maximum number of parents allowed per node (number of
covariates in each regression model at each node) until the goodness of fit no longer
improved and therefore the same – and globally optimal – DAG was identified. The parent
limit was increased from 1 to 10 and the goodness of fit no longer increased beyond nine
parents per node. Increasing the parent limit gradually rather than simply setting it to be 18
(total number of nodes minus one) saves a vast amount of computing time as the structural
search takes much longer each time the parent limit is increased. It took approximately 12 h
(on a 3.2 Ghz, cpu) to identify the best possible DAG with eight parents and in excess of 20
h for the nine parents.

3.2. Sensitivity analysis of meteorological data selection
Changing the length of the temporal window preceding the movements of pigs to slaughter
and the geographic radius within which to summarize the meteorological stations was used
to assess the sensitivity of the optimal DAG to assumptions about the weather data. The total
number of arcs found in the optimal DAG when the temporal and geographic thresholds for
including weather data were changed ranged from 65 to 70. The number of arcs was
insensitive to changing the geographic distance over which meteorological stations were
averaged, but varied by number of days preceding the slaughter of pigs for which the
weather was averaged (Fig. 2a). The specific identity of the arcs changed between iterations
of the sensitivity analysis, although 28 were present in every combination of temporal and
geographic windows and another 28 were present in 24 combinations (Fig. 2b). Those arcs
that had less consistent support tended to include a weather node.

3.3. Adjustment for over-fitting using parametric bootstrapping
A total of 256 bootstrapping analyses were performed, each comprising the generation of a
data set and then performing an exact structural search using a parent limit of nine parents
per node, as above. This took approximately 34 h across 128 × 2.8 Ghz processors on a grid
computer. Tabulating the frequency that each arc (present in the globally optimal DAG
identified using the original data) was recovered showed that 25 arcs did not meet the
necessary 50% level of structural support to be considered sufficiently robust for inclusion
in a reliable model of the data as the number of arcs was reduced from 71 to 46 (Fig. 1).
Identical results were achieved by taking random subsets of size 128 from the 256 bootstrap
analyses and computing how many arcs were recovered in at least 64 of these. This is
convincing evidence that sufficient bootstrap analyses were run to achieve robust results.

3.4. Adjustment for correlated data - multivariate GLMM
Sixteen independent Monte Carlo Markov chains were run, each taking approximately 24 h
to complete 50,000 iterations. Convergence diagnostics and visual inspection of the results
confirmed that most – but crucially not all – parameters in the ABN were reliable. Fig. S2
(supplementary material) shows an example of a well-mixed chain for the parameter
(posterior marginal log odds ratio) for the arc between hepatic scaring and peritonitis.
Contrast this with the mixing in Fig. S3 (supplementary material) for the posterior marginal
log odds ratio for the arc between latitude and peritonitis. By inspecting each of the
parameters in the DAG there was a clear pattern that any arc involving either latitude or
longitude had unreliable mixing, whereas all other parameters were well estimated. This
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behaviour was also apparent when the chains were run for 100,000 iterations and so this
behaviour is unrelated to issues of convergence and burn-in; rather, this appears to be more
an issue of model formulation and we return to this important issue in the context of
environmental and climate variables in the discussion.

Based on the rather unusual – potentially unreliable – mixing in the above MCMC analyses,
these were repeated but excluding latitude and longitude variables – temporarily – from the
DAG. This resulted in well-behaved estimates for all parameters.

The purpose of the MCMC sampling was to assess whether some arcs are no longer robust
after the inclusion of additional variance due to within-farm correlation. These new results
suggest that almost all arcs were robust – they have posterior marginal log odds ratios (or
mean effects) whose 95% confidence (credible) interval does not cross zero. There was one
exception, the arc between the mean wind speed and Papular Dermatitis, whose 95%
credibility interval overlapped zero and was therefore removed from the model (Fig. 1). All
posterior densities are provided in the Supplementary material (Fig. 1). The median
parameter estimates per node in the DAG, with the 95% credibility interval, are shown in
Table 1. The final DAG (solid black arcs, Fig. 1) shows the most robust joint statistical
model of our epidemiological system of interest: diseases and weather factors in pig
production.

3.5. Traditional multivariable (single dependent variable) GLMs
Comparison between the globally optimal DAG (all arcs shown in Fig. 1) and univariate
GLMs (Fig. S6, supplementary information) highlighted four relationships in the GLMs that
were in addition to those in the optimal DAG, and two that were not present (Table S3,
supplementary information). Of the additional arcs in the GLM models, two were between
temperature variables and latitude or longitude. These arcs that included latitude or
longitude may be accounted for in the globally optimal model through other, better
parameterized indirect relationships (e.g., minimum temperature might be more strongly
correlated to both rainfall and maximum temperature than the latter are to each other). The
GLM results failed to capture two relationships involving pleurisy – one in which pleurisy is
statistically dependent with longitude and one where it is dependent with hepatic scaring.

4. Discussion
4.1. Biological interpretation

The optimal DAG contained two distinct clusters of the weather variables and almost
entirely separately, the diseases. These two clusters had few (4) direct connections between
one another, and those all included temperature variables.

Of the 41 arc there were just four direct arcs between weather and pathologies preserved
after bootstrapping: minimum temperature and papular dermatitis; minimum temperature
and milk spots; maximum temperature and milk spots; and maximum temperature and
enzootic pneumonia. It is biologically plausible that papular dermatitis is related to
temperatures since it is related to skin lesions from mites that are highly sensitive to
temperatures, for example, surviving longer off-host at cooler temperatures (Arlian et al.,
1989, 1984). Milk spots are associated with A. suum migration, the development of which
have been shown to be sensitive to temperature with both upper and lower limits (Wagner
and Polley, 1999). Enzootic pneumonia is a Mycoplasma caused respiratory disease
associated with air circulation and pollutants (such as dust) and the structure of housing
designed to mitigate external environmental conditions (Dawson, 1990; Stärk, 2000).
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Total rainfall, wind speed and temperature were all interconnected. The identity of arcs
between the weather variables tended to be intuitive, with for example, both the minimum
and maximum temperatures associated with the degree-day warming. Similarly, the mean
wind speed and total rainfall were negatively associated with maximum temperature.

Considering that the environment of pig production is strictly controlled (Baxter, 1984), it is
not surprising that there are few direct relationships between weather variables and disease
signs. What is interesting, however, is that there are many indirect connections that are
mediated through geographic variables. Both latitude and longitude have extensive
associations with pathologies and additional arcs to weather variables, though it is worth
noting that the bootstrapping dramatically reduced the connectivity of longitude to other
variables (with just 2 out of 11 arcs supported). This situation could be due to real regional
differences in the health status (presence or absence of specific pathogens) that account for
factors other than weather. One example might be the presence of a small number of large
production enterprises and veterinary practices and their respective health programmes that
are common to multiple farms within a geographic region (Sanchez-Vazquez et al., 2010).
We have assumed that the farms subscribing to the BPHS and included in this analysis are a
random sample, and therefore do not introduce systematic biases (e.g., due to different pig
breeds). However, given that subscription to the BPHS is voluntary there is potential for
particular enterprises to be over-represented. Additionally, the geography of the UK has a
strong influence on the climate – particularly along a diagonal south-west to north-east axis.
In this way many management factors based around fixed infrastructure (such as type of
flooring and positioning of fans) are influenced by longer term climatic patterns and are
likely to be captured more by the geographic coordinates than the specific weather
conditions at the time of the movement of pigs to slaughter.

The sensitivity analysis suggests that the geographic area over which the weather was
summarized did not play a substantial role in influencing the relationship between weather
and the presence of pathologies. This was not true of the temporal window preceding the
movement of pigs to slaughter. Given that different pathologies are likely to have different
time courses for manifestation of clinical signs it is unsurprising that changing the temporal
window influenced the total number of arcs identified – the longer the temporal window,
overall the more relationships were identified.

4.2. Some statistical considerations
Accounting for correlation between farms proved rather more complex than originally
envisaged, though retrospectively this was readily understood given the nature of the
variables included in the modelling. A random effect was introduced into each variable
(node) to allow for over-dispersion at individual farm level, that is, to allow farms with the
same covariate pattern to be more different from each other than would normally be allowed
under assumed Gaussian sampling. However, there is a potential difficulty with this
approach when one or more of the covariates also takes a unique value for each farm – in
this case, latitude and longitude – as this also allows something akin to a unique farm level
adjustment. As the effect of latitude and longitude is included as the average effect over all
farms in the data, it is then theoretically conceivable that they could be estimated in addition
to the usual farm specific random effect term. However, as we observe with our data, this is
likely data set specific. In our case, the effect of latitude and longitude is relatively poorly
estimated. The results do strongly suggest that the data have updated the uninformative prior
to some extent (e.g., in Fig. S3 the density does definitely not cross zero). The trace plots are
so different that to be sure these results were reliable the chains would need to be run for a
vastly longer duration – computationally challenging, given it took 24 h for each chain
shown. This may be something to consider in a future study where perhaps it is necessary to
develop a custom MCMC sampler rather than use either JAGS or WinBUGS (which are
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flexible but much slower than bespoke code). The other option (as was done here) is simply
to remove these variables from the final adjustment under the assumption that they are not
sufficiently well estimated to be reliable when included along with farm level (i.e.,
geographically unique) correlation adjustment.

4.3. Contrast with standard multivariable modelling approaches
A fair comparison between GLMs and using an ABN (without attempts to account for
random effects – only comparing the globally optimal DAG, produced in step 1 and GLMs)
resulted in differing results between the two approaches. This then raises the question of
which is to be preferred. The Yule–Simpson paradox strongly suggests the ABN approach
based on conceptual grounds. Moreover, because an ABN is simply a direct generalization
of a GLM/GLMM to multiple dimensions, then it arguably makes little sense to choose a
special case of this methodology over the more general approach. Finally, as already
mentioned and as demonstrated in our results, there is an inherent statistical difficulty in
treating multivariate data as individually dependent variables and then combing the
analyses. While this approach is rather intuitive and very simple to implement in practice, it
can provide both contradictory results and an acyclic model (which is not permitted in usual
probability calculus). This then introduces into the analyses an unavoidably ad hoc
judgement about which arcs are to be included or not, and in which direction to avoid cycles
and therefore produce a valid statistical model. It is better to start with a fully joint
regression model, that is, an ABN.

It is also important to note that the ABN does not attempt to attribute causality or direction
of association. In contrast to the language of ‘predictors’ that is common to more traditional
GLM type models, the ABN estimates the co-dependency of all available variables. To a
priori selectively ban particular relationships yields a complicated mix of causal and
statistical relationships that are conceptually difficult to disentangle (Heckerman et al.,
1995). For example, the aim of the ABN is to identify the presence of statistical dependency
(the presence of an arc) whereas the direction of an arc is essentially a secondary issue that
requires more detailed experimental analysis to establish causality.

5. Conclusion
A novel multivariate modelling approach – additive Bayesian networks (ABN) – is
presented. It is analogous to multivariate (multiple dependent variables) generalized linear/
generalized linear mixed modelling. The ABN framework is a form of graphical modelling
and allows ready interpretation of complex epidemiological systems. Given the highly inter-
dependent relationships between climatic factors, their role in driving patterns of disease is
complex. Whether climatic factors drive the seasonality of diseases directly, or act through a
chain of intermediate variables, is helpful in understanding possible breakpoints that might
lend themselves to interventions.

A wide range of diseases, identified through abattoir monitoring of pig carcasses, were
shown to be highly inter-dependent. Two diseases, enzoonotic pneumonia and papular
dermatitis, both with biologically plausible associations with climatic factors were shown to
have direct links to climatic variables. The clustering of weather variables, with just four
direct links to the pig diseases, suggests that in this case climate is an indirect contributing
factor to the remaining diseases studied. However strong linkages between geographical
coordinates, unique to each farm and both the clusters of disease and climatic variables,
suggest that other farm-specific factors (including the physical structure and management of
farms as influenced by more general climatic patterns) are likely to be stronger predictors of
disease rather than the weather immediately preceding slaughter.
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The case study presented focuses on pig production and porcine diseases. However, the
multivariate analytical approach presented is generic and widely applicable to studies of
complex systems consisting of epidemiological, ecological and environmental aspects for
any species of food animal.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Most probable DAG (see Table 1 for variable names). Geographic variables, triangles;
weather variables, rectangles; disease pathologies, ovals. Continuous nodes are shown in
black, and binary variables in white. Dashed arcs are those lacking 50% support from
bootstrapping, though present in the single best fitting DAG.
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Fig. 2.
(a) The sensitivity of the total number of arcs identified in each combination of temporal and
geographic window. (b) The number of times arcs were identified by each of the 30
combinations of time and geographic windows. Darker colours indicate more robust arcs.
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Table 1

Parameter estimates for arcs remaining after pruning for within farm clustering and over fitting. The median
and 95% credibility interval of the parameter estimate of each arc is shown.

Arc Log odds (or mean effect)

Child Parent Median Credibility Interval

50% 2.50% 97.50%

Rainfall (sum) Date ^ 2 −129 −149 −109

Rainfall (sum) Temperature (max) −16 −17 −16

Wind speed (mean) Temperature (max) −0.64 −0.67 −0.62

Milk spots Temperature (max) −0.044 −0.087 −0.0044

Enzootic pneumonia Temperature (max) −0.031 −0.044 −0.019

Wind speed (mean) Temperature (degree days) −0.0057 −0.0063 −0.005

Papular dermatitis Temperature (min) 0.052 0.04 0.064

Milk spots Temperature (min) 0.072 0.025 0.12

Abscesses Peritonitis 0.23 0.11 0.36

Peritonitis Milk spots 0.27 0.15 0.4

Milk spots Papular dermatitis 0.32 0.2 0.45

Hepatic scarring Papular dermatitis 0.33 0.23 0.44

Pyaemia Peritonitis 0.4 0.22 0.56

Peritonitis Tail damage 0.46 0.28 0.63

Pyaemia Pleurisy 0.55 0.31 0.8

Pyaemia Hepatic scarring 0.68 0.52 0.84

Abscesses Enzootic pneumonia 0.71 0.52 0.92

Pyaemia Enzootic pneumonia 0.75 0.45 1.1

Peritonitis Pleurisy 0.77 0.58 0.96

Wind speed (mean) Temperature (min) 0.78 0.75 0.82

Hepatic scarring Milk spots 0.79 0.68 0.89

Papular dermatitis Tail damage 0.79 0.62 0.96

Abscesses Pyaemia 0.82 0.66 0.97

Pleurisy Enzootic pneumonia 0.91 0.76 1.1

Peritonitis Pericarditis 1 0.88 1.2

Peritonitis Hepatic scarring 1 0.91 1.2

Abscesses Pleurisy 1.2 1 1.4

Pyaemia Tail damage 1.6 1.5 1.8

Temperature (max) Date 2 2.6 2.3 2.9

Rainfall (sum) Wind speed (mean) 6.1 5.7 6.5

Temperature (degree days) Temperature (min) 6.8 5.8 7.9

Temperature (degree days) Temperature (max) 17 16 17

Rainfall (sum) Temperature (min) 19 18 20
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