
J Pathol Inform  Editor-in-Chief:
   Anil V. Parwani ,	 Liron Pantanowitz, 
   Pittsburgh, PA, USA	 Pittsburgh, PA, USA 

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS 
HTML format

Symposium - Original Research

Quantifying local heterogeneity via morphologic scale: 
Distinguishing tumoral from stromal regions

Andrew Janowczyk1,2, Sharat Chandran1, Anant Madabhushi2

1Department of Computer Science, IIT Bombay, India, 2Department of Biomedical Engineering, Case Western Reserve University, USA

E‑mail: *Anant Madabhushi ‑ anant.madabhushi@case.edu 
*Corresponding author

Received: 23 January 13	 Accepted: 23 January 13	 Published: 30 March 13

Abstract

Introduction: The notion of local scale was introduced to characterize varying levels 
of image detail so that localized image processing tasks could be performed while 
simultaneously yielding a globally optimal result. In this paper, we have presented the 
methodological framework for a novel locally adaptive scale definition, morphologic 
scale  (MS), which is different from extant local scale definitions in that it attempts 
to characterize local heterogeneity as opposed to local homogeneity. Methods: At 
every point of interest, the MS is determined as a series of radial paths extending 
outward in the direction of least resistance, navigating around obstructions. Each pixel 
can then be directly compared to other points of interest via a rotationally invariant 
quantitative feature descriptor, determined by the application of Fourier descriptors to 
the collection of these paths. Results: Our goal is to distinguish tumor and stromal 
tissue classes in the context of four different digitized pathology datasets: prostate 
tissue microarrays (TMAs) stained with hematoxylin and eosin (HE) (44 images) and 
TMAs stained with only hematoxylin (H) (44 images), slide mounts of ovarian H (60 
images), and HE breast cancer (51 images) histology images. Classification performance 
over 50 cross‑validation runs using a Bayesian classifier produced mean areas under the 
curve of 0.88 ± 0.01 (prostate HE), 0.87 ± 0.02 (prostate H), 0.88 ± 0.01 (ovarian H), and 
0.80 ± 0.01 (breast HE). Conclusion: For each dataset listed in Table 3, we randomly 
selected 100 points per image, and using the procedure described in Experiment 1, we 
attempted to separate them as belonging to stroma or epithelium.
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INTRODUCTION

The notion of local scale was introduced to characterize 
varying levels of image detail so that localized image 
processing tasks could be performed, yielding an optimal 
result globally.[1] Pizer, et  al., suggested that having a 
locally adaptive definition of scale was necessary even 
for moderately complex detailed images. By quantifying 
these images details, an adaptive local scale image 

could encode implicit information present in the image 
intensity values. The underlying concept of localized 
scale definitions is that homogeneous regions can 
have computations perform data lower resolution in 
a similar manner, while more heterogeneous regions 
can either be examined at higher resolutions using 
more computationally expensive approaches or broken 
down into even smaller homogeneous regions.[2] Locally 
adaptive scale has seen application in a variety of image 
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processing tasks that warrant the identification of locally 
connected homogeneous regions such as magnetic 
resonance imaging  (MRI) bias field correction,[3] image 
segmentation,[4] image registration,[5] and image coding.[6]

Previous local scale definitions  (e.g.,  ball, tensor, 
generalized scale) have either employed prior shape 
constraints or pre‑specified homogeneity criterion 
to determine locally connected regions. Saha and 
Udupa introduced the notion of ball‑scale  (b‑scale),[7] 
which at every spatial location was defined as the 
value corresponding to the radius of the largest ball 
encompassing all locations neighboring the location 
under consideration and satisfying some pre‑defined 
homogeneity criterion. In a previous study,[2] Saha 
extended the ball‑scale idea to a tensor‑scale  (t‑scale), 
where the t‑scale was defined as the largest ellipse at a 
very spatial location where the pixels within the ellipse 
satisfied some pre‑defined homogeneity criterion. 
The shape constraints of both  (b‑scale) and  (t‑scale) 
were overcome by Madabhushi and Udupa with the 
introduction of generalized scale  (g‑scale).[4] g‑scale was 
defined as the largest connected set associated with every 
spatial location, such that all spatial locations in this set 
satisfied a pre‑defined homogeneity criterion.

In this work, we have presented a new definition of 
scale, morphologic scale  (MS), which is appropriate for 
images with high degrees of local complexity, where local 
scale definitions governed by satisfying homogeneity and 
pre‑defined shape criterion breakdown. Our innovative 
approach attempts to model the heterogeneity of a local 
region, allowing for the definition of local, quantitative 
signatures of heterogeneity. Since MS motivates 
the definition of local regions as regions which are 
topographically similar, pixel‑level features can be defined 
from the corresponding MS at that location, features 
which can then be used for segmentation, registration, or 
classification. The MS idea also confers several advantages 
for pixel‑  and object‑level classification compared to a 
number of other traditional approaches, such as texture 
features, where the selection of the window size is not 
only critical but challenging as it is difficult to find a 
setting which is appropriate for all image regions. In the 
case of template matching, each homogeneous region 
is so unique that templates struggle to generalize to 
higher order classes. MS acts as a novel feature extraction 
method that overcomes both limitations by being robust 
across a wide range of window sizes and the ability to 
generalize well to new, unseen data.

One of the critical challenges in personalized diagnostics 
is to identify image‑based histological markers that are 
indicative of disease and patient outcome. For instance, 
lymphocytes contained within tumors (tumor infiltrating, 
i.e.,  TILs) have been suggested as a favorable prognostic 
marker,[8] but morphologically they appear similar to 

stromal lymphocytes. However, the corresponding 
topography and, thus, local heterogeneity is actually quite 
different. In this work, we applied MS to the problem of 
distinguishing tumor from stromal regions at the pixel 
level in digitized histopathology images of prostate, 
breast, and ovarian cancer studies in order to identify 
these TILs. Although in the context of the problems 
chosen in this work, we focused on tissue slides stained 
with standard hematoxylin and eosin (HE), the approach 
is extensible to tissue samples stained with alternate 
stains as well.

In Section 2, we have discussed other works in the 
field of tumor versus stroma identification, followed by 
Section 3 with the methodology. Section 4 presents the 
experimental design and associated results. Lastly, Section 
5 contains concluding remarks and future work.

Previous Work
In the previous section, we have compared our MS 
approach to the other pertinent scale approaches. This 
section reviews previous work specific to the domain of 
histopathology and our stated application of identifying 
tumor regions. The desire to separate tumor from stroma 
regions is not new as attempts at quantifying epithelial 
volume in tumors by image processing techniques have 
been reported as far back as the late 1980s.[9,10] Work in 
automated retrieval for regions of interest from whole‑slide 
imaging has led to the ability to detect cancerous regions 
via segmentation.[11] Recently, Haralick texture features, 
local binary patterns, and Gabor filters were employed 
to build classifiers for the tumor–stroma separation 
problem.[12] However, most of these approaches have been 
limited in that the approach has either required specialized 
staining or the algorithms tend to be computationally 
prohibitive. Below, we have provided a brief summary of 
some of these previous approaches and discussed some of 
their limitations, thus motivating our new approach.

Specialized Staining
Specialized staining techniques have been applied to 
tissue in order to facilitate tumor–stroma separation. In 
some cases, it is possible to stain directly for a specific 
tumor type of interest allowing for a clear separation 
of regions. In a previous study,[13] a graph‑based 
approach was presented for separating stroma and 
tumor on fluorescence images, from which the 
49,6‑diamidino‑2‑phenylindole  (DAPI) channel was 
extracted. Using topological, morphological, and intensity 
based features extracted from cell graphs, a support 
vector machine classifier was constructed to discriminate 
tumor from stroma. The MS based approach presented 
in this paper was able to tackle the same problem while 
operating on solely industry standard hematoxylin  (H) 
or HE stained images, potentially obviating the need for 
specialized staining for discriminating the stroma and 
epithelial tissue classes.
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Computationally Expensive
An important consideration for automated and 
computer‑based image analysis and quantification 
procedures developed in the context of digital pathology 
is that they need to be computationally efficient. For 
example, N‑point correlation functions  (N‑pcfs) for 
constructing an appropriate feature space for achieving 
tissue segmentation in histology stained microscopic images 
was presented earlier.[14] While the approach showed > 90% 
segmentation accuracy, the authors acknowledged the 
need to find more optimal data structures and algorithms 
to reduce the computational overhead. Another approach, 
termed C‑path,[15] first performed an automated, 
hierarchical scene segmentation that generated thousands 
of measurements, including both standard morphometric 
descriptors of image objects and higher‑level contextual, 
relational, and global image features. Using the concept of 
superpixels, they measured the intensity, texture, size, and 
shape of the superpixel and its neighbors and classified 
them as epithelium or stroma. While the authors report 
approximately 90% segmentation accuracy for the tumor–
stroma separation problem, the approach involves first 
computing over  6,500 features, suggesting a significant 
computational overhead to their approach. By contrast, the 
MS‑based approach involves the use of a significantly lower 
dimensional feature set, resulting in a high‑throughput 
approach, specifically designed to meet clinical needs.

CONCEPTUAL AND METHODOLOGICAL 
DESCRIPTION OF MS

Brief Overview
Figure 1 presents an overview of the MS creation process 
as it applies to the problem of tumor versus stromal 
differentiation. The individual steps involved in the 
computation of the MS are briefly outlined below and 
described in greater detail in Sections 3.2-3.3.

Step 1: Identify both lymphocytes and other cell nuclei 
centers of interest using a hybrid mean shift and 
normalized cuts algorithm.[16,17] This is done via direct 
targeting of the unique color‑staining properties. The 
resulting binarized images are seen in column B. Binarized 
images indicate which pixels will be incorporated in the 
calculation of the morphological signature of the point of 
interest (POI).

Step 2: Calculating MS involves projecting connected 
paths, radially outward from the POI  (nuclear center 
identified in Step 1). Column C in Figure  1 shows the 
MS signature  (in red) for an illustrative TIL  (top) and a 
non‑TIL (bottom). In each image, a green box is used to 
illustrate the path of a single ray more clearly.

Step 3: The quantification of the average local topology 
of all these paths  (via Fourier descriptors  (FD)[18]) 
yields a characterization of local heterogeneity. These 

morphological features characterize the local structural 
topology of the binarized image  (Step 1) via the 
individual rays/paths (Step 2).

Step 4: Use of the MS feature vector created by the FD 
to train a supervised classifier to identify the POIs, as 
being located either in tumor or stromal regions.

Radial Path Projection
The paths traversed by an ordered set of rays projected 
from the POI are used to model the local structural 
heterogeneity around the POI. Before describing the 
process of the radial path projection at each POI and 
subsequent MS computation, we have first introduced 
some basic definitions and concepts. We started with 
an image scene defined as C =  (C, f), where C is a 2D 
Cartesian grid of N pixels, c ∈ C, where c =  (x, y). We 
assumed two pixels c, d as adjacent, that is ϕ(c, d) =1, if 
c and d differ in exactly one of their components by 1; 
otherwise ϕ(c, d) =0. From the image, we can identify a 
path as an ordered set of m connected pixels, which starts 
at r and ends at s, or more formally, the following:

pr,s = {<c(1)= r,c(2),....,c(m−1),c(m)=s>:ϕ(c(i), c(i+1)) = 1, 
i ∈{1,..., m}}.� (1)

We next refined the set of possible paths by limiting 
which pixels can be included in the path by applying an 
additional affinity constraint. We considered pr,s to be a 
µ‑path, p r,s, if each pair of adjacent pixels conforms to an 
affinity constraint µ(c(i), c(i+1)) = g(c(i)) + g(c(i+1)) =0, where 
g(c)∈{0, 1} returns 1 if the pixel is to be considered in 
the morphological signature. Our affinity constraint 
simply implies that sequential pixels are both off. The 
particular p r,s that we were interested in is identified by 

p� �
�r s p r s

r s

p, | | ,min ,
,

=  intuitively making it the shortest path 

Figure 1: Overview of the MS signature creation process. We can 
see that the tumor MS signature contains a noticeably increased 
number of deviations from the straight line trajectory on account 
of the rays attempting to take the path of least resistance and, 
hence, overcome obstacles along the way. On the other hand, the 
MS signature for the non-tumor (stroma) region is much smoother 
as a result of comprising fewer and smaller objects. Note that a 
pre-defined stopping criterion is employed such that rays stop when 
they hit blank spaces
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from r to s such that the affinity criteria is met. We can 
see an example of this in Figure  2a, where the MS path 
circumvents the obstruction while remaining as close to a 
straight line as possible given the constraints. This is a 
single MS ray  (Rθ(q)) in direction θ. We could of course 
perform the same operation in multiple different 
directions, as shown in Figure 2b.

We can see from the examples in Figure 3, the end result 
of our algorithm is a set of connected pixels  (shown in 
red), which travel from the POI q to δ. The algorithm 
proceeds by the following:
Step 1: Translating the image such that q is placed at the 
origin

Step 2: For each of Rθ , θ ∈ {0, ε, 2ε, ..., 2π}  (where, ε is 
used to control resolution of the signature), we determined 
the location of the end point δ by casting it on a unit circle 
and multiplying by the window size to get the appropriate 
magnitude. It is possible that the desired end point δ is 
not always a background pixel  (g(δ) = 1) and thus, we 
assigned δ to the closest possible pixel in the Euclidian 
sense, which has the required property (g(δ) = 0).

Step 3: Identify the shortest µ‑path, pq
$

, ,δ  which is 
intuitively the path with minimal divergence to 
circumvent obstacles from q to δ. This is to say when the 
path hits an object, the resulting affinity function 
threshold criterion is exceeded and, hence, the path 
continues along a new direction of lower resistance 
(satisfying the affinity criterion).

Step 4: We applied these same steps for all desired 
orientations, as defined by the angle interval parameter ε, 
and produced R(q), the set of individual rays.

We can see that Rθ(q) models local morphology at 
point q in direction θ via deviations from a straight line. 
As m constrains the MS path to background pixels, we 
can expect Rθ(q) to become more tortuous as it collides 
into objects, thereby gaining entropy, resulting in a direct 
correlation between the pixels selected for Rθ(q) and 
its associated heterogeneity. For example, if the region 

contains no obstructions, Rθ(q) is a straight line indicating 
the most trivial case of homogeneity. On the other hand, if 
Rθ(q) is computed in an image with a repeating pattern, we 
would expect to see waves of similar amplitude at equally 
spaced intervals, encoding the homogeneity of the implicit 
variables. Lastly, if Rθ(q) is computed in an arbitrarily 
constructed image, we would expect to see waves of 
dissimilar amplitudes as the ray must circumvent objects 
of various sizes. These waves of differing amplitudes would 
be unevenly spaced as the objects are not uniformly placed, 
allowing for the modeling of the heterogeneity of these 
two variables. It is worthwhile to note that since we are 
not explicitly defining the domain‑specific attributes, the 
ray is subject to varying size, concavities, and morphology.

MS Algorithmic Implementation
The algorithm for computing the MS signature is 
accompanied with certain computational considerations. 
When computing p

q
$

,δ  optimally, such that we are 
guaranteed the shortest past, the application of the 
approach becomes computationally expensive. This 
expense is as a result of need to use algorithms such as 
Dijkstra[19] or a Fast Marching[20] approach to compute 
the global minimum length path. On the other hand, we 
can sacrifice some precision and obtain a “short path,” 
but not the “shortest” path and benefit from orders of 
magnitude improvement in efficiency. To do so, we have 
suggested an iterative greedy approach towards solving 
p
q
$%

, ,δ a sampled approximation of pq
$

,δ .

The approach is outlined by the following three steps:

Step 1: Define the first pixel in the path  (c(0)) as the 
query pixel (q)

Step 2: Iteratively select the next pixel in the path by 
determining, using Euclidian distance, which of the 
possible pixels in the κ‑neighborhood is closest to its goal 
(κ = 8).

Step 3: If there are two pixels with the same value, 
sample from them with equal probability.

Step 4: Return to Step 1 while the target pixel has not 
been encountered via the ray tracing or the user defined 
maximum number of iterations has not been exceeded.

A key consideration for the algorithm described above is 
the valid pixel indication function fθ(c), which is specific 
to the θ being considered. The value of fθ(c) is defined 
intuitively as returning a true value for pixels, which are 
in the background  (g(c) = 0) and on the edge of the 
objects or if the pixel is on the straight line path, causing 
the path to be constrained to objected borders or the line 
from q to δ.

We also noted that ε controls the sampling density of the 
rays being traced and serves as a trade‑off between total 
computational time and precision of the MS signature. In 

Figure 2: An example of an MS ray in (a), where the POI is indicated 
with X and the target point is indicated with A. We can see that 
applying an affinity constraint limits the selection of pixels to those 
which belong to the background, resulting in the shortest path, one 
which circumvents obstructions
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addition, not only is the approach computationally straight 
forward  (i.e.,  requiring only the most basic of arithmetic or 
logic operations), it can be seen that each ray is computed 
in a deterministic manner and independent of the adjoining 
rays. These two properties allow for efficient, parallel 
computation of the individual rays via GPUs.

Fourier Descriptors of MS
FD[18] are a technique for quantifying the morphological 
structure of a closed curve. FD have the desirable 
property of being scale, translationally, and rotationally 
invariant. These properties are important in domains 
such as biomedical image analysis, where information 
may often be represented in an orientation‑free plane. 
We used a slightly modified version of the FD, as scale 
invariance is not criticalto our problem, as all samples are 
drawn from the same magnification. Unfortunately, at 
first glance, R(q) is not a closed curve and, thus, these 
techniques cannot be directly applied. In the following 
section, we have described a procedure for conversion of 
the open set of R(q) to a closed curve L(q).

Process for Conversion from R(q) to a Closed Curve
Figure  4a illustrates that the four rays produced by the 
MS algorithm are not closed curves, as each is a path 
traveling away from the POI. However, to parameterize 
the curve in terms of FD, the open curve needs to be 

converted into a closed contour. To overcome this 
constraint, for each θ of interest, we adjoined a straight 

Figure 3: The MS signature overlaid on tumor regions in an (a) ovarian, (b) prostate H, (c) breast HE, and (d) prostate HE image. Corresponding 
results for benign regions are shown in (i‑l), respectively. Three rays from each image (e‑h) and (m‑p) are extracted and illustrated beneath 
the corresponding images. We can see that in the presented non‑tumor regions (i‑l), the MS signature has fewer and smaller objects to 
obstruct its path, and thus the rays are less tortuous, unlike in the corresponding tumoral regions (a‑d)

Figure 4: Visual example of the conversation from a set of MS rays 
to a 1D parameterized representation. (a, b) The nuclei stained in 
deep blue represent obstructions causing local heterogeneity. As 
the µ‑paths are minimized, we can see avoidance of these objects. 
Later, we formed a closed contour (b) from the MS rays (red) by 
adding a straight path (green lines) from the end point of each path 
back to the query point.  (c) The 1D representation is displayed. 
We shrinked the straight lines down to zero, as they provided only 
redundant information and, thus,  (d) retained all heterogeneous 
information in a compact format
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path from δ to q. Observed in Figure 4b as we proceeded 
from X to A, we followed the MS generated path (in red). 
Upon reaching A, we proceed back to X by following the 
green path, a straight line connecting the two points. 
This now forms a single closed contour as it begins and 
ends at point X. Since all θ begin and end at X, we have 
created a single large closed contour from many smaller 
closed contours.

Computation of Fourier Descriptors
The steps followed for the creation of the feature 
vector from R(q) using FD are presented below and are 
illustrated via Figure 4.

Step 1: Rotate each Rθ by −θ, resulting in all rays 
originating at q and having an orientation of 0°

Step 2: Concatenate each Rθ with a straight line from 
δ to q. We can see the result of this in Figured 4b. We 
formed L(q), a 1D signal representation of R(q), when 
these straight lines were reduced to length zero, as shown 
in Figure 4d.

Step 3: Compute the magnitude of F(L(q)), the Fourier 
transform of L(q), as F(q). From the proof demonstrated 
earlier,[18] this leads to a rotationally invariant 
representation of L(q) in the frequency space, F(q).

Post Processing of Extracted Fourier Descriptors
Typically, the Fourier transforms attempts to quantify 
the frequency presence in a signal. In the case of using 
image data, which is discrete, there is often a high degree 
of saw‑tooth wave like properties as shown in the blue 
curve of Figure 5a. These saw‑tooth signals require a high 
number of FFT coefficients to accurately represent them 
without adding a large amount of residual noise due to the 
approximation. To compensate, we smoothened J(q) using 
a simple moving average filter  [Figure  5]. We can see in 
Figure  5b that the red curve is indeed less susceptible to 
the discrete nature of the image scene and, thus, could be 
more easily represented by fewer FFT coefficients.

EXPERIMENTAL RESULTS AND DISCUSSION

Application of MS to Classification Problems in 
Digital Pathology
We applied the MS idea to the problem of detecting 

tumor infiltrating lymphocytes, which in turn requires 
separation of epithelial and stromal regions on HE‑stained 
histological images. Ground truth was available in the 
form of spatial locations of lymphocytes as determined 
by an expert pathologist. In three experiments involving 
ovarian, prostate, and breast cancer pathology images, 
we evaluated whether for any given lymphocyte the 
MS‑based classifier was able to correctly identify it as 
being within the tumor epithelium  (hence a TIL) or 
within the stroma (and hence a non‑TIL).

Training and Testing Methodology
For all our experiments, we sampled a single pixel within 
the lymphocytic nucleus and attempted to identify 
the location as being within stroma or epithelium. 
Consequently, the training and testing sets comprised 
of individual pixel locations sampled from TILs and 
non‑TILs, respectively. For all the pixel locations so 
identified, a super‑set Q was constructed. From this set Q, 
approximately 50% of the points were used to construct 
the training set  (Qtr), while the remaining 50% were used 
as test data (Qte) such that Qte ∪ Qtr = Q and Qte ∩ Qtr = f.  
Using the training set, a naive Bayesian supervised 
classifier[21] was built, which involved fitting a multivariate 
normal density to each class. A  pooled estimate of 
covariance was employed. All pixels in the set Qte were 
classified as belonging to either the positive  (TIL or 
tumor) or negative class (non‑TIL or stroma) and a receiver 
operating characteristic  (ROC) curve was computed. The 
area under the ROC (AUC) was computed for 50 runs of 
cross‑validation, whereby, in every run, the entire set of 
samples  (Q) was randomly split into training and testing 
sets. Mean and variance of the AUC was calculated across 
the different runs.

Experiments in TIL Identification in Ovarian 
Cancer Slides
Dataset Description
The dataset consisted of 60 whole slide ovarian cancer 
images of size 1400  ×  1050 pixels. Each slide was 
H‑stained, which made the tumor and endothelial 
cells appear blue, and stained with a CD3‑positive 
T stain, which caused the lymphocytes to appear in 
red. The images were then scanned using an Aperio 
slide scanner at ×40 magnification. We have displayed 
some representative images in Figure  6. In total, 4320 
lymphocytes were identified by an expert pathologist, 
comprising of 1402 TILs and 2918 non‑TILs.

Experiment 1: Distinguishing TILs from Non‑TILs 
Via MS Classifier
We compared the results from the MS‑based 
classifier  (Φms) to  (a) a classifier employing texture based 
features  (Φt) and  (b) a classifier employing the ball scale 
representation  (Φb)

[7] for separating TILs from non‑TILs. 
For Φt and Φms (since these employ multi‑dimensional 
attribute vectors), we concatenate the respective pixel  (q) 

Figure 5: A segment of (a) R (q) shows that it tends to be subject to 
the discrete nature of the pixel image domain. On the other hand, 
after applying a smoothing filter, we can see that (b) the function 
possesses qualities that are better suited for Fourier transform 
representation

(a) (b)
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level feature vectors, F(q), row‑wise to form a matrix M 
and computed the t rank truncated Singular Value 
Decomposition such that M  = UtΣtVt

T , and thus 
represent each F(q) as its dimensionality reduced Ut(q) 
counterpart. This allows for the training of classifiers that 
are simultaneously accurate and computationally efficient.

Morphological Scale (Φ
ms

)
The algorithm proceeds as per the flow chat presented in 
Figure  1. The only additional pre‑processing performed 
was to use a watershed algorithm[22] to quickly separate 
large binary regions. To determine the optimal operating 
parameters, a grid search was conducted for the various 
variables in the algorithm. The domain space that was 

searched over is as shown in Table 1. The optimal values 
for this particular domain and application were found to 
be ε = 1, t  =  5, w  =  50, number of coefficients for the 

Table 1: Description of all grid‑searched variables 
used in Φms and their associated attempted 
values

Variables for Φms
Searched values

Degree sampling (ε) 1, 5, 10, 15, 30
Number of FFT coefficients 28, 29, 210, 211, 212

Smoothing neighbors 1, 5, 10
Down‑sampling 1, 2, 3, 5
Singular value dimension (t) 2, 5, 10, 25
Window size (w) 25, 50, 100, 125, 200

Table 2: Description of all grid‑searched variables 
used in Φt and their associated attempted values

Variables for Φt
Searched values

Number of gray levels 8,16,32,64
Singular value dimension (t) 2,5,10,25,50
Window size 25,50,100,125,200

Figure  8: Box plots for the true positives across 50 runs from 
all 3 algorithms. The red line identifies the mean, the blue box 
encompasses 25th percentile, with the black whiskers extending to 
the 75th percentile. Red dots are indicative of outliers

Figure  7: Box plots for the AUC across 50 runs from all 3 
algorithms (Φms, Φt, Φb). The red line identifies the mean, the blue 
box encompasses 25th percentile, with the black whiskers extending 
to the 75th percentile. Red dots are indicative of outliers. We can 
see that the MS provides a higher mean AUC compared with the 
texture features, resulting in a significantly a smaller variance. The 
homogeneity constraint imposed by ball‑scale does not appear to 
provide discrimination between TILs and non‑TILs

Figure  9: Box plots for the true negatives across 50 runs from 
all 3 algorithms. The red line identifies the mean, the blue box 
encompasses 25th percentile, with the black whiskers extending to 
the 75th percentile. Red dots are indicative of outliers while texture 
feature‑based classifier degrades with increasing scale

Figure  6: Sample images from the OCa dataset. Each image is 
1400 × 1050 pixels, and the blue endothelial and tumor cells are very 
visible and easily differentiable from the red stained lymphocytes. 
Note that the lymphocytes occur both within the stromal (non‑TIL) 
and tumor epithelial regions (TIL)
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Fourier transform  =  29, down‑sampling  =  1, number of 
points used for smoothing = 10, mask size = 10.

Texture Features (Φ
t
)

Through a grid search of the variables presented in Table 2, 
we were able to identify the optimal parameters for the 
texture features as window size set to 50 and the number 
of gray levels as 16 and the singular value space as 25.

Ball Scale (Φ
b
)

For this, we used the same implementation as in a previous 
study,[7] and did not enforce a window size. Briefly, for every 
pixel location in Q, we computed the corresponding b‑scale 
value that corresponds to the radius of the largest ball at 
that location, which satisfies a pre‑defined homogeneity 
criterion. The homogeneity criterion employed was the one 
used in a previous study,[7] involving taking a difference in 
smoothed image intensities between annular rings.

Results
We have presented the box plots for the three approaches 
in Figure  7, with the associated true positive average in 
Figure  8 and true negative average value in Figure  9. 
We can see that with a mean AUC of 0.866, MS yields 
a slightly better classifier compared to texture features 
with 0.842. These are comparable to a current state of the 
art approach,[15] which reported an accuracy of 0.88. Our 
approach, however, confers the advantage of significantly 
lower computational cost owing to a significantly 
smaller‑sized feature space in contrast to the nearly 6000 
features employed in a previous study.[15] Lastly, we can 
see that the homogeneity criterion employed in defining 
b‑scale is less than optimal for this task seeing as it 
performs rather poorly in this classification task.

Experiment 2: Impact of Window Size
To evaluate the effect of window size on the MS 
classifier, we performed the identical grid search as in 
Experiment 1. except that we reported the mean AUC 
across each tested window size  (25, 50, 100, 125, 200) 
for both MS and texture features.

Results
Figure 10 illustrates the mean AUC across 50 runs using 
the optimal parameters for each window size. From this 
experiment, we can clearly see that as the window size 
varies, the MS approach maintains a consistent AUC.

Experiment 3: Impact of Interval Size
To evaluate the sensitivity of ε on the classifier results, we 
performed the identical grid search as in Experiment 1, 
except that we reported the mean AUC across each ε 
evaluated (1, 5, 10, 15, 30) for MS.

RESULTS

Figure  11 illustrates  (a) the mean AUC across 50 runs 
using the optimal parameters for each ε interval and the 

associated time  (b). From this experiment, we can see 
the expected behavior as ε decreases so does the accuracy, 
but so does the computational time required per sample. 
However, interestingly, even as ε drops to 1/30th  of the 
original  (from 1° to 30° interval), the accuracy only falls 
about 3%, whereas the computational time required drops 
by 75%.

Experiment 4: Combined MS and Texture Feature 
Classifier
Given the results from Experiment 1, we decided to 

Figure 10: Average AUC of Φms using optimal parameters (Fig. 10. Average AUC of Φms using optimal parameters (ε = 1, t = 5) across a set of
window sizes w ∈ {25, 50, 100, 150, 200} . The MS maintains a consistent AUC (blue
line) even as the window size grows very large. This is in contrast to the texture features
graph (green line) which shows a degradation of results along with the expanding
window sise.

features provides potentially orthogonal information to the classifier allowing for
a bump in classifier accuracy, with a notable decrease in variance.

4.4 Experiments in Discriminating Tumor from Stromal Regions

Dataset Description For each dataset listed in Table 3, we randomly selected
100 points per image and using the procedure described in Experiment 1 at-
tempted to separate them as belonging to stroma or epithelium.

Experiment 5: Breast and Prostate Pathology slides The operating pa-
rameters for MS were identical to those employed in Experiment 1.
Results Although the parameters were not individually tuned for each dataset, we
can see from the results in Table 4, that the accuracy values are fairly consistent
with those obtained for ovarian cancer (Experiment 1). For datasets S1 and S2 we
can see that the mean AUC for Φms is about .88 indicating excellent separation
between tumoral and stromal regions. It is interesting to note that the H&E
images did slightly better than the H alone images, most likely due to the greater
contrast afforded by the counter-staining. Across 51 images of dataset S3, the
breast images produced a mean AUC of .81 without any parameter tuning.

 = 1, 
t = 5) across a set of window sizes w ∈{25, 50, 100, 150, 200}. The 
MS maintains a consistent AUC  (blue line) even as the window 
size grows very large. This is in contrast to the texture features 
graph (green line), which shows a degradation of results along with 
the expanding window size

Figure 12: The three box plots associated with the joint classifier Φt, ms. 
We can see the combination of two of the feature sets produces 
better results compared to Φt and Φms

Figure 11: Average AUC of Φms (a) using optimal parameters across 
a set of 5 varying  intervals contrasted with the speed per sample 
in (b). The total degradation due to smaller sampling is only 3% in 
exchange for a 75% speed up

ba
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investigate how well a classifier would perform if it used the 
optimal configurations for MS and texture features in a joint 
feature space. As such, we concatenate the feature vectors 
from the two algorithms and used them to train a single 
classifier (Φms,t) and reported the results across 50 runs.

Results
We have presented the AUC, true positive percent and 
the true negative percent across 50 runs in Figure 12. The 
true negative and average AUC values approach 0.90, thus 
conjoining the two classes of features results in a stronger 
classifier compared to the use of any single feature class. 
The combination of the sets of features provides potentially 
orthogonal information to the classifier allowing for a bump 
in classifier accuracy, with a notable decrease in variance.

Experiments in Discriminating Tumor from 
Stromal Regions
Dataset Description
For each dataset listed in Table 3 and illustrated in Figure 13,  
we randomly selected 100 points per image, and using 
the procedure described in Experiment 1, we attempted 
to separate them as belonging to stroma or epithelium.

Experiment 5: Breast and Prostate Pathology Slides
The operating parameters for MS were identical to those 
employed in Experiment 1.

Results
Although the parameters were not individually tuned 
for each dataset, we can see from the results in Table  4 
that the accuracy values are fairly consistent with those 
obtained for ovarian cancer  (Experiment 1). For datasets 
S1 and S2, we can see that the mean AUC for Φms is about 

0.88, indicating excellent separation between tumoral 
and stromal regions. It is interesting to note that the 
HE images did slightly better than the H alone images, 
probably due to the greater contrast afforded by the 
counter‑staining. Across 51 images of dataset S3, the 
breast images produced a mean AUC of 0.81 without any 
parameter tuning.

Qualitative Evaluation
In Figure  3, we have presented MS signatures in red/
green overlaid on both tumor and non‑tumor regions for 
representative images from all three datasets. Consistently 
across tumor‑based regions (a-d), the heterogeneity created 
by the cancer cells is evident by the fluctuations in the MS 
signature  (e-h). Figure  3a reveals that, for a very complex 
region, the MS paths become increasingly tortuous as they 
adapt to the local heterogeneity. We can see that, as the 
complexity of the local region increases, the corresponding 
MS rays become progressively more convoluted, in turn 
reflecting the rising entropy. Comparatively, in the stromal 
regions (i-l), we can see how the homogeneous regions have 
fewer obstructions as a result of the smaller endothelial cells 
having less of an impact on the MS paths, with the result 

Table 3: Description of non lymphocyte datasets

Data Type Properties Number Objective

Prostate 
TMA HE (S1)

HE stain 
Appears 
blue

44 images 
1600×1600

Classification of 
nuclear centers as 
tumor or stromal 
region

Prostate 
TMA H (S2)

H stain 
Appears 
purple

44 images 
1600×1600

Classification of 
nuclear centers as 
tumor or stromal 
region

Breast (S3) H stain 
Appears 
purple

51 images 
1000×1000

Classification of 
nuclear centers as 
tumor or stromal 
region

Table 4: Bayesian classifier AUC for Φms in 
distinguishing stromal from tumoral lymphocytes 
for S1-S3

Data type Prostate HE Prostate H Breast

AUC±range 0.88±0.01 0.87±0.02 0.80±0.01

Figure 13:  Two sample images from each of the datasets deseribed in 
Table 3. First row is prostate HE (S1), second row is prostate H (S2) and 
third row is Breast H (S3)
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that these paths tend to form straighter lines. Figure  3(l) 
illustrates the unique MS signature for the POI located in 
a stroma region, but bounded on the left and right sides by 
the tumor. In this case, the MS signature is able to extend 
unimpeded in both north and south directions, while being 
constrained in the west and east directions. Employing 
a texture‑based classifier, where the texture feature is 
computed using a square neighborhood might not be able 
to capture this local heterogeneity. Since MS is rotationally 
invariant, having a few training samples of this type allow 
easy extension to other similar complex regions.

CONCLUDING REMARKS

In this paper, we have presented a novel MS framework, 
one that provides a highly generalizable feature extraction 
model that enables quantification of local morphology 
through characterization of regional heterogeneity. 
This represents a departure from previous local scale 
definitions that have attempted to locally model image 
homogeneity, as with other local scale definitions. MS 
is particularly relevant in images with high degrees of 
local complexity, such as in the context of biological 
images. In histopathology images, the most relevant 
or interesting parts of the image usually correspond 
to those that are characterized by significant local 
heterogeneity  (e.g.,  cancer nuclei and lymphocytes). 
Larger homogeneous regions  (e.g.,  benign stroma) may 
be less interesting or uninformative from a diagnostic 
or prognostic perspective. As demonstrated across 4 
datasets using the same model parameters, the MS 
signature allows good classifier accuracy for the task of 
distinguishing nuclei as being tumoral or stromal. For 
this significantly difficult problem, our classifier achieved 
an AUC of 0.80-0.89. However, MS is not limited to 
problems in classification alone. The notion of MS could 
be easily extended to other applications such as image 
registration, segmentation, and bias‑field correction. 
Future work will involve leveraging the MS concept for 
these tasks and extending MS to other problem domains 
besides digital pathology.
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