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Abstract

The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess
genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome
sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl
SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing
platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome
studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing
platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions.
Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample
variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete
Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives
the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by
far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in
covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete
Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that
integrating sequencing data from different platforms offers the potential to combine the strengths of different
technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms.
It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify
the proper sequencing platform for whole genome studies with different application scopes.
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Introduction

Massively parallel sequencing (next-generation sequencing) has

revolutionized research in cancer genetics and genomics [1] and

enhanced our understanding of natural human genetic variation

[2,3]. Lam et al. [4] have performed a detailed comparison of two

next-generation sequencing technologies, Illumina’s HiSeq2000

and Complete Genomics, with respect to their sensitivity to call

single nucleotide variants (SNV) and indels. Other studies

provided insight into technology-specific error profiles [5,6] and

concordance between different platforms [7]. These studies,

however, were based on comparing Life Technologies’ SOLiD

and Illumina’s GAII with pyrosequencing or Sanger sequencing

[8,9,10], the costs of which are prohibitive for whole-genome

sequencing studies in mammals. These comparative studies have

been performed either on a global scale [4,7] or for CpG islands

that are less well assessed by next-generation sequencing methods

[11], a well-known phenomenon called GC bias [12,13,14].

Here, we sequenced two tumor/normal pairs obtained from

two pediatric medulloblastoma patients (MB14/BL14 and MB24/

BL24) with at least 30x coverage on all commonly used, state-of-

the-art next-generation sequencing platforms for whole genome

sequencing, namely Life Technologies’ SOLiD 4 and its

completely redesigned 5500xl SOLiD, Illumina’s HiSeq2000,

and Complete Genomics’ technology (Table 1). We then

compared their ability to call SNVs in whole-genome sequencing

data with high confidence. As gold standard for SNV calling, we
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used genotypes determined by Affymetrix SNP 6.0 Array

Technology (total of 907,551 SNPs after quality filtering). In

addition, we performed a detailed analysis of how evenly each of

these technologies covers the entire genome, and how the reads

are distributed across 25 specific genomic regions. Finally, we

studied how a combination of data from different technologies

might help to overcome the limitation or bias in SNV calling by

any of the four technologies alone.

Materials and Methods

Whole-genome sequencing
We sequenced two tumor/normal pairs obtained from the

primary untreated tumor and whole blood of two pediatric

medulloblastoma patients (MB14/BL14, female and MB24/BL24,

male).

High molecular weight genomic DNA was fragmented in a

Covaris instrument (Woburn, MA, USA) to an average size of 400

nucleotides for HiSeq2000 sequencing and of 230 nucleotides for

SOLiD sequencing, respectively (Table S1).

HiSeq2000 Library preparation was performed using standard

Illumina protocols and Illumina paired-end adapters. For

HiSeq2000 sequencing, a PhiX kit v2 library (Illumina) was

spiked into the libraries at a proportion of about 1% each. The

total loading concentration was 7pM. Amplification was per-

formed in the cBOT (Illumina) using an Illumina TruSeq paired-

end v2-cluster generation chemistry. For sequencing, 200 cycle

TruSeq-v2-SBS chemistry was used and 26101 cycles of

sequencing were performed. Base calling was performed with

Illumina RTA v1.10.36 software.

For Life Technologies’ SOLiD 4 and 5500xl SOLiD sequenc-

ing, genomic libraries were prepared following the manufacturer’s

standard instructions. Emulsion PCRs were performed using

SOLiDTM EZ BeadTM Systems.

SOLiD 4 sequencing was performed using Life Technologies

standard protocols with 50/35 PE chemistry and model caller

version MCC 4.04. 5500xl SOLiD sequencing was carried out

using 75/35 PE chemistry following the manufacturers standard

protocols and MCC 5500 1.0 software.

Read mapping and SNV calling
Sequences were aligned to the human reference genome (NCBI

build 37/HG19). Due to the heterogeneous nature of the

sequencing data, for each platform we used different alignment

algorithms. Alignment filters were kept as similar as possible. For

HiSeq2000 sequences, we mapped the reads using the Burrows

Wheeler Aligner [15] v0.5.9-r16. For SOLiD 4 and 5500xl

SOLiD, reads were aligned using Life Technologies’ proprietary

Lifescope 2.1 software. Duplicate reads were removed using the

Picard software tools v1.61 (http://picard.sourceforge.net/). Base

recalibration was performed using the Genome Analysis ToolKit

(GATK) [16] v1.3. SNVs were called using samtools [17] v0.1.18

and for Life Technologies’ data in addition we used Lifescope 2.1.

However, samtools yielded better results, translating into a larger

area under curve (AUC) in the receiver operating characteristic

(ROC) curves comparing with the Affymetrix SNP6 array.

Complete Genomics performed sequencing and data analysis

using their proprietary pipeline (Software v2.0.1.5). Unless

otherwise mentioned, all results correspond to 30x mean coverage,

or for Complete Genomics to full coverage generated (for details

see Table 1).

For validation of SNP calls with an independent technology,

Affymetrix SNP 6 arrays were hybridized and analyzed as

previously described [18]. Receiver operating characteristic

(ROC) curves were computed using coverage at the SNP position

as the independent variable. For these we used samtools mpileup

with the following settings, generating vcf files split by chromo-

some ($chrom): -AE was used for HiSeq2000 data, -AB for SOLiD

and Complete Genomics data. Several quality cutoffs were tested

($Q: 1 and 13) and the cutoff selected that provided the largest

AUC for the comparison with the SNP6 array. For HiSeq2000,

additional arguments were (samtools mpileup –R –I –A –E –q 1 –

Q $Q –r $chrom –ugf $REF $BAM | bcftools view –vcgNI - |

vcfutils.pl varFilter . result.vcf), and for the SOLiD platforms and

Complete Genomics the following command was used: (samtools

mpileup –R –I –A –B –q 1 –Q $Q –r $chrom –ugf $REF $BAM |

bcftools view –vcgNI - | vcfutils.pl varFilter . result.vcf).

Coverage and downsampling
Average base coverage was computed after duplicate removal

for all informative bases of the reference genome (excluding Ns)

using a custom script. For downsampling we randomly removed

read pairs or singletons to reach 30x or 15x mean coverage.

Because the Complete Genomics Analysis Pipeline is not

publicly available, we could not downsample the entire data for

direct SNV comparison. Complete Genomics mapping files

include reads mapped (‘initial mapping files’) and reads mapped

by assembly at candidate regions deviating from the reference

(‘evidence files’). Thus, for downsampling to 30x we only used the

initial mapping files.

Conversion of Complete Genomics data
Initial mapping files and evidence files were converted to the

BAM format using the Complete Genomics Analysis Tools

(http://www.completegenomics.com/analysis-tools/cgatools/)

v1.5.0.31, then merged and sorted with samtools. Duplicates were

removed using the Picard tool v1.61.

Combination of sequencing data from different
technologies

For the combination of data from different technologies, we

merged their aligned reads into one BAM file (after base quality

recalibration with GATK) and called the variants using samtools

mpileup applying -AB, disabling Illumina-specific probabilistic

realignment (samtools mpileup –R –I –A –B –q 1 –Q $Q –r

$chrom –ugf $REF $BAM | bcftools view –vcgNI - | vcfutils.pl

varFilter . result.vcf).

Coverage distribution and regions without coverage
We computed the per-base coverage and the regions without

coverage from BAM files using samtools mpileup. Only uniquely

mapping reads were considered. Reference genome regions

Table 1. Average coverage information for each sample and
platform assessed.

Complete
Genomics HiSeq2000 SOLiD 4 5500xl SOLiD

MB14 45.46x 29.87x 30.0x -

BL14 51.64x 34.06x 30.0x -

MB24 51.76x 34.48x 30.0x 32.51x

BL24 50.0x 33.29x 30.0x 31.0x

doi:10.1371/journal.pone.0066621.t001

Comparison of Whole-Genome Sequencing Technologies
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composed of undefined bases (Ns) as well as chr Y were not

considered in our analyses.

Unless otherwise mentioned, a base was considered not covered

if it was supported by less than three reads. The rationale behind

this cutoff is that we argue 3 reads are the absolute minimum

required to call a heterozygous variant - two reads with a non-

reference base (to exclude sequence artifacts affecting only one

read) and one with the reference base. Base coverage in 1 kb

windows was computed as the sum of the coverage per base.

Functional regions
BED files with the genomic coordinates for CpG islands, CpG

island shores, exons, segmental duplications, self chains (down-

loaded on 09/21/2011), promoters, repeats and mammal

conservation (downloaded on 12/19/2011) were downloaded

from the UCSC Genome Bioinformatics Site (http://genome.

ucsc.edu/).

CpG island shores were defined as 2 kb upstream and

downstream of CpG islands [19]. Promoters were defined as

2 kb upstream and 500 bp downstream from the transcription

start site. Intron coordinates were generated from Exon coordi-

nates using a custom Perl script and BEDTools [20] v2.14.3. BED

files for different subcategories of repeats were generated by

splitting the UCSC repeats file according to repeat type.

The coordinates for the Cancer Gene Census (downloaded on

05/31/2011) and genes from the Cosmic database (downloaded

on 11/09/2011) are from the Wellcome Trust Sanger Institute

(http://www.sanger.ac.uk/). Overlaps with regions without cov-

erage were computed with BEDTools.

Statistical tests
For the pairwise platform comparisons of GC bias, we used

Kolmogorov-Smirnov tests for GC percentages below 25% and

above 60%. Coverage input values were sampled from the loess

curves.

For the comparison between platforms of the coverage

distribution and the comparison between platforms of the fraction

without coverage for specific genomic regions, we used two-sample

Student’s t-tests. For the comparison of the ROC curves, we

focused on the sensitivity, comparing the sensitivity between

different technologies and samples with paired two-sample

Student’s t-tests.

Differences yielding p-values below or equal to 0.05 were

considered significant. We did not compute p-values for 5500xl

SOLiD because of the small sample size (two samples).

Data access
All short-read sequencing data have been deposited at the

European Genome-phenome Archive (EGA, http://www.ebi.ac.

uk/ega/), which is hosted by the EBI, under accession number

EGAS00001000274. The Affymetrix SNP6 array data has been

deposited at Array Express (http://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-1159.

Custom scripts, variant calls and the BED annotation data are

available under https://ibios.dkfz.de/documents/rieber/

scripts_and_annotation.

Ethics statement
All patient material for this study was collected after obtaining

written informed consent from participants and an ethical vote

approving the study (Institutional Review Board: Ethics Commit-

tee of the Medical Faculty of Heidelberg University, Germany/

Ethikkommission der Medizinischen Fakultät Heidelberg) accord-

ing to ICGC guidelines (www.icgc.org).

Results

GC bias
We first assessed the sequencing quality of each platform with

respect to distributing reads most evenly across the genome. GC

bias describes the dependence between coverage and GC content,

where both GC-rich and GC-poor regions are less well covered

than regions with balanced base composition. Ideally, with no GC

bias present, we would see a uniform distribution of coverage,

independent of GC content.

When comparing the GC bias of the different technologies

(Figure 1, Figure S1–S4), we found significant differences between

all platforms, except for SOLiD 4 vs. HiSeq2000 for a GC

percentage above 60%. P-values from Kolmogorov-Smirnov tests

for pairwise platform comparisons of GC bias for patient sample

MB24 are listed in Table 2. The most pronounced GC bias is

found for Life Technologies’ SOLiD 4 and 5500xl SOLiD,

especially in regions with more than 60% GC content. HiSeq2000

shows a slightly reduced GC bias here (significant in two out of

four samples: MB14 and BL14). Note that we used v2 chemistry

for HiSeq 2000 sequencing of all four samples. The latest release

of v3 chemistry does not reveal a dramatic reduction in GC bias

compared to the earlier v2 chemistry (Figure S5). The least GC

bias for GC rich regions is revealed by Complete Genomics, even

when the higher mean coverage of 50x (hereafter, ‘Complete

Genomics’), shown in Figure S1–S4, is computationally reduced to

30x mean coverage (hereafter, ‘Complete Genomics 30x’) for

comparison reasons. At regions with GC content lower than 25%,

5500xl SOLiD and HiSeq2000 perform similarly with a generally

lower bias than SOLiD 4 and Complete Genomics. Complete

Genomics performs worst in GC poor regions at downsampled

30x coverage. The GC bias at GC rich and poor regions,

respectively, was consistently found across all four sequenced

samples (Figure S1–S4), except for patient sample BL14 where

HiSeq2000 and Complete Genomics 30x perform similarly (p-

value 0.9307 for %GC #25% and 0.4755 for %GC $ 60%).

Distribution of coverage
We see striking differences between platforms in the distribution

of coverage across the genome (Figure 2a and b). At the same

mean coverage, SOLiD 4 and 5500xl SOLiD show about 6 times

more bases supported by less than 5 reads compared to

HiSeq2000 and Complete Genomics (Table 3, averaged across

all samples; p-value HiSeq2000 vs. SOLiD 4: 0.001; Complete

Genomics 30x vs. SOLiD 4: 0.001). Coverage distribution is

similar for SOLiD 4 and 5500xl SOLiD, with 5500xl SOLiD

showing a slightly higher number of bases with higher coverage

(20–60x). HiSeq2000 shows by far the narrowest coverage

distribution compared to all other sequencing platforms. Complete

Genomics has the broadest coverage distribution. Even for

Complete Genomics downsampled to 30x average coverage, the

coverage distribution is still wider than the one resulting from

HiSeq2000. The cumulative coverage distribution (Figure 2b)

reveals that 5500xl SOLiD covers the smallest percentage of the

genome, while HiSeq2000 and SOLiD 4 cover a similar and

slightly higher fraction. However, the genomic coverage of all

three platforms is exceeded by Complete Genomics at both 30x

and 50x (see also Figure S6).

We further observe higher variations in coverage distribution

between samples by Complete Genomics compared to the other

platforms, with the fraction of the genome covered with at least

Comparison of Whole-Genome Sequencing Technologies
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30x differing up to about 15%, and even up to about 18% for the

fraction of the genome covered with at least 50x (Figure S6). This

is probably largely due to the differences in average coverage

between Complete Genomics samples (Table 1), but the variation

can still be observed to a slightly lesser extent for low cumulative

read depth at downsampled 30x coverage.

Coverage of genomic regions
To further evaluate the coverage differences between the

different platforms, we investigated the distribution across genomic

and functional regions. Here, we considered bases covered by

fewer than three reads as ‘‘ not covered’’ or ‘‘without coverage’’

(see Material and Methods).

Each of the four technologies has its strengths and weaknesses in

covering different sections of the genome (Figure 3a). Complete

Genomics shows a uniform coverage of almost all regions with a

generally very low percentage (, 2%) of bases not covered, both at

30x coverage and at full coverage (Figure S7). It reveals a

comparably smaller covered fraction only for regions containing a

large number of short repeats, like simple repeats (24% uncovered

at 30x coverage), low complexity repeats (11.9%), CpG islands

(9.2%), and satellites (3.7%). Overall, Complete Genomics

Figure 1. GC bias for each platform. Log2 base coverage in 1 kb windows versus GC content for HiSeq2000, SOLiD 4, 5500xl SOLiD, and
Complete Genomics data. The first panel shows an overlay of all four technologies. The upper right panel shows HiSeq2000 only (blue), the lower left
SOLiD 4 and 5500xl SOLiD (red and orange, respectively), and the lower right Complete Genomics at downsampled 30x coverage (light green).
Smoothed loess curves are fitted to each dataset to represent the local coverage trend. Exemplary data from patient sample MB24 is shown.
doi:10.1371/journal.pone.0066621.g001

Comparison of Whole-Genome Sequencing Technologies
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performs better than all other technologies in this respect, except

for simple repeat regions where it is surpassed by all three other

platforms. Comparative coverage of an exemplary simple repeat

region is shown in Figure 3b. Almost no reads are mapped to this

region by Complete Genomics. Read pairs with reads mapping to

different chromosomes can be identified in HiSeq2000, SOLiD 4

and 5500xl SOLiD sequences, reflecting the difficulty of mapping

reads to repeated sequences also for the latter three technologies.

Interestingly, SOLiD 4 shows the highest coverage in this

example, but also the largest number of differences from the

reference genome.

SOLiD 4 and 5500xl SOLiD sequencing are most affected by

GC content and consequently have by far the largest percentage of

bases not covered in CpG islands (58.2% and 52.5%, respectively)

and CpG island shores (7.5% and 7%, respectively). A t-test yields

a p-value of 0.00069 (HiSeq2000 vs. SOLiD 4) and 0.0008

(Complete Genomics 30x vs. SOLiD 4) for CpG islands and a p-

value of 0.019 (HiSeq2000 vs. SOLiD 4) and 0.01 (Complete

Genomics 30x vs. SOLiD 4) for CpG island shores. We note that

for all platforms except for Complete Genomics, the fraction of

CpG islands without coverage roughly doubles through our

definition of abase not covered (compare to Figure S8), showing

that a large proportion of these regions is covered by less than 3

reads. Coverage of an exemplary CpG island is shown in Figure

3b. Complete Genomics shows an impressive coverage of this

region followed by HiSeq2000. The lowest coverage is present in

SOLiD 4 and 5500xl SOLiD data. Concordant with the

differences in coverage of CpG regions, the exome coverage also

shows dramatic differences between platforms with a mean

difference in the fraction of bases not covered of factor 6.6

between Complete Genomics at 30x and SOLiD 4 (p-value 0.006).

Overall, HiSeq2000 performs better than SOLiD 4 and 5500xl

SOLiD in nearly all categories except for satellite regions (p-value

0.005 HiSeq2000 vs. SOLiD 4), and even outperforms Complete

Genomics (both at full and at 30x coverage) in simple repeat

regions (p-value 0.0386). SOLiD 4 performs slightly better than

5500xl SOLiD in repeat regions, while 5500xl SOLiD shows

better coverage than SOLiD 4 in most other regions. Interestingly,

at the same mean 30x coverage, a combination of HiSeq2000 with

5500xl SOLiD data considerably decreases the fraction not

covered of certain repeat regions for both technologies, especially

in satellites and simple repeats (Figure 4a and 4b). Similarly, a

combination of Complete Genomics data at full coverage with as

little as 15x HiSeq2000 data (typically obtained with only one

sequencing lane) shows a major increase of covered bases in simple

repeats (Figure 4b).

Regions without coverage
While the number of regions not covered is similar for all

platforms for larger sized regions of 150 bp and above (Figure S9),

Life Technologies’ platforms SOLiD 4 and 5500xl SOLiD show

very high numbers of small regions without coverage compared to

HiSeq2000 and Complete Genomics. The smaller the regions, the

more pronounced are the differences between platforms, with

HiSeq2000 performing better than Complete Genomics. 5500xl

SOLiD shows slight improvement over SOLiD 4, except for

extremely small regions of 1–2 bp, where this slight difference

increases to a drastic difference of a factor of 1.5 in the number of

regions not covered (on average 384,304 for SOLiD 4 and

260,252 for 5500xl SOLiD). The fraction of the genome left

without coverage (based on the reference genome excluding N’s) at

30x coverage for HiSeq2000 and downsampled Complete

Genomics is very similar (1.45% versus 1.61% on average across

samples), both performing approximately 2.5 better in this respect

than SOLiD 4 and 5500xl SOLiD. At 15x coverage, the difference

between HiSeq2000 and the Life Technologies platforms is even

more marked with a factor of approximately 3.5, suggesting that

the latter can catch up at higher coverage. Notably, Complete

Genomics at full coverage leaves only an average of 0.79% of the

genome not covered.

SNP calling
Beyond a mere technological comparison we aimed at

estimating the utility of all four sequencing technologies in cancer

genome studies, where the major focus is the identification of

single nucleotide variants (SNV) with high sensitivity and

specificity. There is an ongoing debate on the sensitivity of latest

next generation sequencing technologies. As the gold standard for

all four samples we used SNPs found by Affymetrix SNP6 arrays as

an independent and well-established SNP calling technology (see

Figure S10 and Figure S11 for an overview on the distribution of

array SNPs in different regions of the genome). It should be noted

that the sensitivity for calling SNPs represents an upper bound for

calling somatic mutations, since the latter often display mutant

allele fractions less than 50%. The SNP calling performance of the

different sequencing technologies was compared based on state-of-

Table 2. P-values from Kolmogorov-Smirnov tests for
pairwise platform comparisons of GC bias for patient sample
MB24.

% GC in 1 kb bin
#25%

% GC in 1 kb bin
$60%

HiSeq2000 – CG 30x 0.00217 0.03561

HiSeq2000 – SOLiD 4 0.00217 0.0779

CG 30x – SOLiD 4 0.00217 3.964e-05

CG 30x stands for Complete Genomics downsampled to 30x mean coverage. P-
values below 0.05 are highlighted in bold and italic.
doi:10.1371/journal.pone.0066621.t002

Table 3. Number of bases covered on average across all samples from Table 1, and average number of bases covered with less
than 5 reads, for each platform assessed.

Complete Genomics Complete Genomics 30x HiSeq2000 SOLiD 4 5500xl SOLiD

Total number of
bases covered

2,826,524,353 2,817,003,995 2,801,114,390 2,795,379,490 2,772,621,192

Number of bases
covered with less
than 5 reads

15,938,617 38,555,229 17,727,532 100,145,774 99,297,132

doi:10.1371/journal.pone.0066621.t003

Comparison of Whole-Genome Sequencing Technologies
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the art SNV callers using the array data as reference. Using a

threshold of increasing coverage to consider a variant ‘called’, we

generated receiver operating characteristic (ROC) curves revealing

the sensitivity and false positive rate for each technology platform

(Figure 5). First, we noticed that a tiny fraction of 0.025% of all

SNPs (229/907,551 SNPs) were not correctly identified by any of

the four technologies suggesting that those SNPs may not be

correctly identified on the arrays.

When comparing all technologies, the overall best sensitivity

was achieved by HiSeq2000 (99.15% for sample MB24) followed

by Complete Genomics (98.38% sensitivity) (paired t-test on

percentage sensitivity comparing Complete Genomics 50x and

HiSeq2000 30x, p = 0.008651). Surprisingly, even at down-

sampled 15x coverage, HiSeq2000 (98.12%) performs close to

Complete Genomics at 50x coverage (paired t-test on percentage

sensitivity comparing Complete Genomics 50x and HiSeq2000

15x, p = 0.008476). For Complete Genomics, the coverage at

genomic positions corresponding to SNPs on the SNP6 array is on

average 40x and therefore lower than the overall average coverage

of 51.7x. In contrast, HiSeq2000 shows a slightly higher (32.1x)

than average coverage (30.0x) in those positions. Still, this

difference in coverage does not account for the finding that

HiSeq2000 at downsampled 15x coverage shows a sensitivity

similar to Complete Genomics at estimated 40x coverage in those

positions. With respect to sensitivity, both Life Technologies’

platforms show a performance clearly inferior to HiSeq2000 and

Complete Genomics, with 5500xl SOLiD (96.80%) outperforming

SOLiD 4 (92.57%) (paired t-test on percentage sensitivity

comparing with HiSeq2000, p = 0.008324, and Complete Geno-

mics, p = 0.008189). In contrast, the two Life Technologies’

platforms are superior to Complete Genomics and HiSeq2000

with respect to specificity, exhibiting a lower false positive rate of

approximately 0.105–0.124% for 5500xl SOLiD and SOLiD 4.

Combination of sequencing technologies
Finally, we investigated whether a combination of sequencing

data from different sequencing technologies would help to

combine the strengths and to compensate for the weaknesses of

the four different platforms. As expected, a combination of 30x

coverage HiSeq2000 with 30x coverage 5500xl SOLiD data

achieves both a slightly increased sensitivity and specificity

compared to any of the other technologies alone (Figure 5b).

When restricting the total coverage of the combined data sets to

30x, it is very difficult to outperform HiSeq2000 sequencing alone.

The best results are obtained by combining HiSeq2000 with

5500xl SOLiD data both at 15x coverage each. The sensitivity of

this combined data set almost reaches the sensitivity of HiSeq2000

at full coverage, while the specificity of this combined data set

slightly increases over the specificity of 5500xl. Note, however, that

this increase in specificity is minimal (0.0025%) compared to the

decrease in sensitivity (0.17%). Interestingly, the performance of

Complete Genomics sequencing can be enhanced by adding

HiSeq2000 data at 15x coverage, which can currently be obtained

by only one lane of HiSeq2000 sequencing (paired t-test on

percentage sensitivity comparing Complete Genomics and Com-

plete Genomics + HiSeq2000 15x, p = 0.008692). Here, the

sensitivity of Complete Genomics increases by 0.73% at a slightly

increased specificity.

Discussion

In this study, we have examined the differences between the

four commonly used whole genome next-generation sequencing

platforms, Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and

5500xl SOLiD, and Complete Genomics’ technology. We showed

the strengths and weaknesses of each technology with respect to

coverage of the genome, distribution of reads across different

genomic regions, and SNV calling sensitivity and specificity. We

significantly extended earlier comparative studies by including all

presently available whole genome sequencing platforms and by

using four different samples to shed light on the sample-to-sample

variation in sequencing performance.

In our comparison, we did not consider practical parameters

such as the required amount of DNA input, sequencing costs, or

time required to complete a whole genome sequencing run (Table

Figure 2. Base coverage distribution for the four platforms. (a) Percentage of genome covered by a given read depth. For each platform, the
curve corresponds to the mean of the samples listed in Table 1. (b) Magnified view of the curves shown in a.
doi:10.1371/journal.pone.0066621.g002
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S1). Those parameters might be much more important for a

particular choice of technology when sample material, e.g., from

cancer patients, is limited or when sequencing time is critical, e.g.,

in a cancer diagnostic setting. Here, Complete Genomics with its

extremely high demand for sample material and the much slower

Life Technologies’ platforms may render themselves inappropriate

for certain applications. However, those parameters tend to

change rapidly with new technology updates. Further, we

explicitly did not include a comparison of different methods for

alignment and for SNP calling in this study. Instead, due to the

heterogeneity of the sequencing data from different platforms, we

used the methods best adapted to each platform, e.g., for mapping,

and used comparable stringency parameters whenever possible.

Figure 3. Bases without coverage in different genomic regions. (a) Mean percentage of bases not covered across genomic elements. Bases
covered with less than three reads were considered not covered. Note that reducing this threshold to 1 does not dramatically change the overall
distribution of reads (Figure S8). Error bars represent one standard deviation as obtained from analyzing all samples listed in Table 1. DNA, LINE, Low
complexity, LTR, RC, RNA, Satellite, Simple repeats and SINE are subcategories of Repeats (all). For better visibility, CpG islands, low complexity and
simple repeats are plotted separately. (b) Visualization of read coverage for two exemplary genomic regions from patient sample MB24 by IGV for
HiSeq2000, SOLiD 4, 5500xl SOLiD and Complete Genomics.
doi:10.1371/journal.pone.0066621.g003
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Coverage comparison
Coverage is an essential aspect of next-generation sequencing,

as higher coverage allows for higher confidence during down-

stream analyses. In tumor samples, where we frequently encounter

variants with a very small allele frequency due to contamination

with normal tissue, copy number variation, and tumor heteroge-

neity, high coverage is essential for accurate detection of these

variants with high power. Biases in coverage distribution, like the

GC bias, are problematic, especially in analyses focusing on

fragment abundance (e.g., copy number estimation, RNA-seq), but

Figure 4. Mean fraction of bases without coverage for different combinations of technologies. (a) Mean fraction of bases not covered for
chosen repeat regions. Performance is compared to sequence data from single technology platforms. Only those regions with observable differences
are displayed. Error bars represent one standard deviation as obtained from analyzing all samples listed in Table 1. (b) Fraction of bases not covered
for simple repeat regions. Error bars represent one standard deviation as obtained from analyzing all samples listed in Table 1.
doi:10.1371/journal.pone.0066621.g004

Figure 5. Receiver operating characteristic curves comparing sensitivity and specificity of all sequencing platforms for SNV calling.
All curves are computed for exemplary patient sample MB24. When no additional coverage information is indicated, the curves are computed on full
coverage data (for coverage information see Table 1). Additional numbers indicate either computationally downsampled data or combined data at
specified additive coverage. (a) Specificity plotted from 0–0.15. All curves have reached their plateau at that point and will continue as straight lines.
(b) Magnified view of curves as indicated by dashed frame in a) to discriminate between subtle differences in specificity and sensitivity for all curves.
Curves that do not appear in this magnified view reached their plateau below the cutoff of 94% sensitivity chosen for this window.
doi:10.1371/journal.pone.0066621.g005
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are also of importance for DNA sequencing, where variants in

GC-rich and GC-poor regions might be missed due to low

coverage.

Earlier studies [11,12] have shown a GC bias in particular for

Illumina’s GAII sequencing. Suzuki et al. [7] claimed that no

striking GC bias could be found for SOLiD and 454 sequencing.

Ajay et al. [21] noticed a much better representation of the coding

exome for Illumina’s HiSeq2000 indicating a noticeable reduction

in GC bias compared to Illumina GAII. In contrast to Suzuki et al.

[7], our results clearly show the most pronounced GC bias for Life

Technologies’ SOLiD 4 and 5500xl SOLiD, especially in regions

with more than 60% GC content. Lam et al. [4] reported a lower

GC content (41%) and read depth for Illumina-specific single

nucleotide variants (SNVs) compared to the SNVs concordantly

found (46% GC content) for both Complete Genomics and

Illumina. This finding cannot be explained by a difference in GC

content only, because at 41–46% GC content both platforms

perform equally well with no significant change in GC bias across

this range.

Lam et al. [4] pointed out that a less uniform coverage indicates

that a higher overall sequencing depth is required to achieve a

certain level of coverage for most of the genome. We observed that

Complete Genomics data, downsampled to 30x, covers a smaller

fraction of the genome than HiSeq2000 up to a cumulative read

depth of approximately 40x. This confirms the claim that

Complete Genomics requires a higher average coverage compared

to HiSeq2000 in order to cover a similar fraction of the genome.

Also, we observe a considerable degree of sample-to-sample

variation in coverage distribution for Complete Genomics data,

which is not found for all the other three platforms. This must not

be neglected when comparing variant calls between samples since

the sensitivity of variant calling depends on coverage.

We found pronounced differences for the coverage of specific

genomic regions between platforms. While we see a significant

improvement in coverage of CpG islands for HiSeq2000

compared to Illumina’s earlier GAII technology [11], we find

that for all platforms except Complete Genomics, a large fraction

of CpG islands is covered with less than 3 reads, which explains

the earlier observation that SNVs are difficult to call in less well-

covered regions such as CpG islands [11]. At first glance, the

ability of Complete Genomics to cover CpG islands very well

might appear counterintuitive since Complete Genomics, with its

shorter read length, should be less able to cover such repetitive

genomic elements. As Benjamini and Speed [12] pointed out, the

GC content of the entire fragment (and not just the sequenced

parts of it) is essential for the degree of GC bias. Complete

genomics embeds the DNA fragments to be sequenced into a

larger construct containing adapters and self-assembly sequences

such that only about half of the resulting DNA stems from the

genome of interest [22]. Thus, the technology is less prone to GC

bias (Figure 1), which might account for the better coverage of

Complete Genomics in GC-rich regions such as CpG islands.

Lam et al. [4] suggest that platform-specific differences in SNV

calls for Illumina HiSeq2000 and Complete Genomics might be

due to mapping difficulties. Interestingly, the striking difference in

coverage of simple repeats and low-complexity repeats gives a

straightforward explanation for their observation that enrichment

of platform-specific SNVs was particularly evident within those

genomic repeats. A combination of sequencing data from two

different platforms, as suggested by Nothnagel et al. [5] for the

reduction of false positives in newly identified SNVs, is only of

limited use for combining the strengths in coverage of different

genomic regions. We observe a gain in the covered fraction only

for very restricted genomic regions such as certain types of repeats.

SNP comparison
Comparisons of SNV calling by different platforms have

resulted in different conclusions. While Suzuki et al. [7] reported

a similar SNP detection performance by Illumina GA and SOLiD,

Lam et al. [4] compared the reliability of both concordant and

discordant calls between Illumina HiSeq2000 and Complete

Genomics. Our comparison on SNP calling shows that the best

sensitivity is achieved by HiSeq2000, followed by Complete

Genomics, supporting a similar conclusion by Lam et al. [4].

Overall, we suggest a preference for HiSeq2000 and Complete

Genomics in cancer genome studies where sensitivity for detection

of low frequency variants matters most, whereas the two Life

Technologies platforms might be better suited when calling SNVs

with high specificity. Interestingly, for not correctly called

homozygous SNPs by HiSeq2000 the number of no-calls on one

allele is approximately in the same range as for those not being

called on both alleles (Table S2). In contrast, for Complete

Genomics we find a significantly higher number of SNPs not being

called on either allele (p = 2.076454e-48 in a binomial test with

probability 0.5 for each group).

Further, our results indicate that a combination of sequencing

data from different platforms, as suggested by Lam et al. [4], is the

best approach for comprehensive variation detection. If budget

permits, sequencing genomes with both HiSeq2000 and Complete

Genomics allows the combination of HiSeq2000’s strength in

sensitivity of SNV calling even at low coverage with Complete

Genomics’ strength in uniformly covering the entire genome,

offering an interesting potential to boost the strengths of both

platforms with considerably low efforts.

Our comparative study reveals that certain technologies should

not be used for specific applications like epigenome studies relying

on good coverage of CpG sequences, whereas the same technology

might be the most suited one for diagnostic applications. In

contrast to earlier suggestions [5], a combination of different

technology platforms is only advised in specific applications where,

e.g., coverage of certain functional regions should be combined

with high sensitivity in SNV calling across the entire genome.

Finally, the dramatic difference in sensitivity of SNV calling for all

four platforms strongly indicates that the design of SNV calling

algorithms should be well adjusted towards the particular

characteristics and level of expected sensitivity of each sequencing

platform.

Supporting Information

Figure S1 GC bias for each platform for sample MB24,
including Complete Genomics at full coverage. Log2 base

coverage in 1 kb windows versus GC content for HiSeq2000,

SOLiD 4, 5500xl SOLiD, and Complete Genomics data. The first

panel shows an overlay of all four technologies. The upper right

panel shows HiSeq2000 only (blue), the lower left SOLiD 4 and

5500xl SOLiD (red and orange, respectively), and the lower right

Complete Genomics at full and downsampled 30x coverage (green

and light green). Smoothed loess curves are fitted to each dataset

to represent the local coverage trend.

(TIFF)

Figure S2 GC bias for each platform for sample BL24,
including Complete Genomics at full coverage. Log2 base

coverage in 1 kb windows versus GC content for HiSeq2000,

SOLiD 4, 5500xl SOLiD, and Complete Genomics data. The first

panel shows an overlay of all four technologies. The upper right

panel shows HiSeq2000 only (blue), the lower left SOLiD 4 and

5500xl SOLiD (red and orange, respectively), and the lower right

Complete Genomics at full and downsampled 30x coverage (green
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and light green). Smoothed loess curves are fitted to each dataset

to represent the local coverage trend.

(TIFF)

Figure S3 GC bias for each platform for sample MB14,
including Complete Genomics at full coverage. Log2 base

coverage in 1 kb windows versus GC content for HiSeq2000,

SOLiD 4, 5500xl SOLiD, and Complete Genomics data. The first

panel shows an overlay of all four technologies. The upper right

panel shows HiSeq2000 only (blue), the lower left SOLiD 4 (red),

and the lower right Complete Genomics at full and downsampled

30x coverage (green and light green). Smoothed loess curves are

fitted to each dataset to represent the local coverage trend.

(TIFF)

Figure S4 GC bias for each platform for sample BL14,
including Complete Genomics at full coverage. Log2 base

coverage in 1 kb windows versus GC content for HiSeq2000,

SOLiD 4, 5500xl SOLiD, and Complete Genomics data. The first

panel shows an overlay of all four technologies. The upper right

panel shows HiSeq2000 only (blue), the lower left SOLiD 4 (red),

and the lower right Complete Genomics at full and downsampled

30x coverage (green and light green). Smoothed loess curves are

fitted to each dataset to represent the local coverage trend.

(TIFF)

Figure S5 GC bias for HiSeq2000 with v2 chemistry
versus HiSeq2000 with v3 chemistry. Log2 base coverage in

1 kb windows versus GC content. Smoothed loess curves are fitted

to each dataset to represent the local coverage trend. Exemplary

data from patient sample MB24 (v2, blue) is compared to another

medulloblastoma patient sample (v3, red).

(TIFF)

Figure S6 Cumulative base coverage distribution for
the four platforms for all samples listed in Table 1.
Percentage of genome covered by read depth. Each curve

corresponds to one sample.

(TIFF)

Figure S7 Percentage of bases without coverage across
genomic elements, including Complete Genomics at full
coverage. A base is considered not covered when it is covered by

less than three reads. The error bars represent one standard

deviation as obtained from analyzing the samples as listed in Table

1. DNA, LINE, Low complexity, LTR, RC, RNA, Satellite,

Simple repeats and SINE are subcategories of Repeats (all).

(TIF)

Figure S8 Percentage of bases without coverage across
genomic elements. In this case, a base is considered not

covered when it is covered by zero reads. The error bars represent

one standard deviation as obtained from analyzing the samples as

listed in Table 1. DNA, LINE, Low complexity, LTR, RC, RNA,

Satellite, Simple repeats and SINE are subcategories of Repeats

(all).

(TIF)

Figure S9 Size distribution of regions without coverage
for all platforms and samples listed in Table 1. Each curve

corresponds to one sample. Based on the reference genome

excluding N’s. A base is considered not covered when it is covered

by less than three reads. The size of the largest region without

coverage is approximately 110,000 bp in size for all four platforms,

except for HiSeq (766,173 bp). This is due to the pseudoautosomal

region on chrX/Y and is a consequence of mapping differences.

(TIFF)

Figure S10 Distribution of Affymetrix SNP6 array SNPs
in genomic elements analyzed. Percentage of genome

covered by different types of genomic elements, in comparison to

the distribution of SNP6 array SNPs on these genomic elements.

(TIFF)

Figure S11 Distribution of Affymetrix SNP6 array SNPs
in repeat types analyzed. The size of the different repeat

regions was analyzed in comparison to the total repeat size.

Overlapping repeat regions were reduced and not counted twice.

All SNPs mapping to the repeat regions were identified and their

distribution across the different repeat types compared to the total

number of SNPs.

(TIFF)

Figure S12 Receiver operating characteristic curves
comparing sensitivity and specificity of all sequencing
platforms for SNV calling. All curves are computed for

exemplary patient sample BL24. When no additional coverage

information is indicated, the curves are computed on full coverage

data (for coverage information see Table 1). Additional numbers

indicate either computationally downsampled data or combined

data at specified additive coverage. (a) Specificity plotted from 0–

0.17. All curves have reached their plateau at that point and will

continue as straight lines. (b) Magnified view of curves to

discriminate between subtle differences in specificity and sensitivity

for all curves. Curves that do not appear in this magnified view

reached their plateau below the cutoff of 94% sensitivity chosen

for this window.

(TIFF)

Figure S13 Receiver operating characteristic curves
comparing sensitivity and specificity of all sequencing
platforms for SNV calling. All curves are computed for

exemplary patient sample BL14. When no additional coverage

information is indicated, the curves are computed on full coverage

data (for coverage information see Table 1). Additional numbers

indicate either computationally downsampled data or combined

data at specified additive coverage. (a) Specificity plotted from 0–

0.17. All curves have reached their plateau at that point and will

continue as straight lines. (b) Magnified view of curves to

discriminate between subtle differences in specificity and sensitivity

for all curves. Curves that do not appear in this magnified view

reached their plateau below the cutoff of 94% sensitivity chosen

for this window.

(TIFF)

Figure S14 Receiver operating characteristic curves
comparing sensitivity and specificity of all sequencing
platforms for SNV calling. All curves are computed for

exemplary patient sample MB14. When no additional coverage

information is indicated, the curves are computed on full coverage

data (for coverage information see Table 1). Additional numbers

indicate either computationally downsampled data or combined

data at specified additive coverage. (a) Specificity plotted from 0–

0.17. All curves have reached their plateau at that point and will

continue as straight lines. (b) Magnified view of curves to

discriminate between subtle differences in specificity and sensitivity

for all curves. Curves that do not appear in this magnified view

reached their plateau below the cutoff of 94% sensitivity chosen

for this window.

(TIFF)

Table S1 Run information for each platform. Through-

put information was obtained from the manufacturer’s home-

pages.

(XLS)
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Table S2 Detailed comparison of sequencing-based
genotype calls with array-based results. The SNP calls

by the SNP6 array were compared based on the genotype level.

Splitting into homozygous (hom) and heterozygous (het) array-

based calls the sequencing-based results were called as identical

(calls on both alleles identical), one_identical (calls only on one

allele identical), no_identical (calls on none of the alleles identical)

and NA (missing call by array), respectively. Whenever the

sequencing data did not show any calls at a given position, we

assumed the same genotype at this position as for the reference

genome. CG stands for Complete Genomics.

(XLS)

Table S3 Parameters tested while optimizing samtools
mpileup based SNP calling. The SNP calls for each of the

data sets (except for Complete Genomics data) were optimized

using the described combinations and the calls providing the

strongest overlap with the Affymetrix SNP6 based SNP calls were

selected.

(XLS)

Table S4 Comparison of SNP calling sensitivity. Tested

by paired two-sample t-test.

(XLS)
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