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Cutaneous T-cell lymphoma (CTCL) displays immunosuppres-
sive properties and phenotypic plasticity. The malignant T cells
in CTCL can possess features of immunomodulating regula-
tory T cells (Treg) and IL-17-producing helper T cells (Th17)
depending on the stimuli they receive from antigen pre-
senting cells and other sources. IL-2-type cytokines activate
STAT5 to promote expression of Treg-related FoxP3, while
various cytokines can activate STAT3 to induce synthesis of
IL-10 and IL-17. When the Treg phenotype is activated in the
early stages of CTCL, “immune evasion” can occur, allowing
the clonal T cells to expand. Late stages of CTCL lose the FoxP3
expression but continue to express an immunosuppressive
cell-surface ligand PD-L1 suggesting that this and possibly
other immunosuppressive proteins rather than FoxP3 are
critical for the immunosuppressive state in the advanced
stages of CTCL. Novel therapeutic agents may potentially
exploit the phenotypic plasticity of CTCL such that the
malignant T cells become vulnerable to antitumor immunity.

Introduction

T-cell lymphomas represent a heterogeneous group of lympho-
proliferative disorders with most derived from the CD4 helper/
inducer T cell subset.1,2 Of primary T-cell lymphoproliferative
disorders of the skin, cutaneous T-cell lymphomas (CTCL) are
the most common subtype. Early lesions of CTCL typically pre-
sent as limited skin patches or plaques, called mycosis fungoides
(MF), which can progress to tumor stage. At the tumor stage, the
process may involve also extracutaneous sites, foremost lymph
nodes and, less frequently, bone marrow and internal organs.
Finally, MF lesions can undergo large cell transformation, which
typically results in a highly aggressive clinical course. Sezary
syndrome (SS) represents a leukemic form of CTCL in which the
malignant T cells are present in the peripheral blood and has
characteristic clinical manifestations, most distinctly the general-
ized erythroderma.

Regulatory T Cells

Regulatory T cells (Tregs) comprise a subset of CD4-positive T
lymphocytes capable of inhibiting immune responses against a
large spectrum of antigens including the ones expressed by
malignant cells.3,4 The concept of lymphocytes with immuno-
suppressive qualities has existed for several decades, however their
phenotypic attributes have only been elucidated fairly recently.
Sakaguchi and colleagues identified T cells that control immune
responses to non-self antigens by suppressing conventional T-cell
activity later termed regulatory T cells (Treg cells or Tregs).5

Among the phenotypic hallmarks of these specialized helper
T cells is the presence of the a-chain of the IL-2 (IL-2Ra),
designated CD25, and the transcription factor FoxP3.6-11 It has
been shown that the depletion of CD25+ T cells leads to a variety
of autoimmune inflammatory diseases, whereas reconstitution
with CD4+CD25+ T cells can inhibit the development of
autoimmune conditions.12 Also, it has been shown that FoxP3 is
not only a marker for Tregs, but plays an important role in the
function of these cells, as loss or decreased expression of FoxP3 in
Tregs cells has been shown to cause severe autoimmune diseases
in both mice and humans.13-16 Experimental evidence indicates
there are two subtypes of Tregs: those designated “natural” Treg
cells that develop in the thymus and those labeled “induced”
Tregs which acquire the Treg phenotype as mature post-thymic
cells in response to an antigenic stimulation.3,4 Whereas all Treg
cells typically express CD25, expression of the transcription factor
FoxP3 is believed to be stable in “natural” Treg cells and more
transient in “induced” Treg lymphocytes,17,18 reflecting to a large
degree the differential DNA methylation status of key regulatory
domains of the FoxP3 gene.19-21 It is quite possible that this
perceived dichotomy will disappear over time, once the exact
mechanisms of the Treg induction and differentiation are better
understood.

TREG Phenotypes in the T cells of CTCL

In principle, both malignant and reactive T cells can display
phenotypic attributes of Tregs. However, only a subset of these
T cells may display the phenotype at any given time. This
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phenomenon demonstrates the true functional heterogeneity of
the lymphocytes implicated in mycosis fungoides and Sezary
Syndrome, and is most likely reflective of their plasticity, as
discussed later. The number of Tregs decreases with advancement
of clinical stage in MF, perhaps indicating the importance of
suppressing antitumor activity in its early stages. Furthermore,
only a subset of malignant and, hence, clonal T cells as well as
infiltrating non-malignant T cells are FoxP3+ Tregs. A study
looking at 69 cases of MF and 17 unspecified lesions of CTCL
showed stage-dependent FoxP3 expression in approximately
7%.22 Another study using immunohistochemistry found a much
higher FoxP3 positivity, roughly 40%, in 16 cases of early stage
MF while showing that FoxP3 expression decreased to 5% in
tumor stage MF.23 A flow cytometric analysis showed that a
majority of malignant T cells in early MF lesions express FoxP3,
although at a relatively low expression when compared with non-
malignant FoxP3+ lymphocytes.24 In SS, a similar heterogeneity is
observed, as studies have shown variable amounts of phenotypic
Tregs doubling as malignant Sezary cells. Several studies have
shown that FoxP3 is expressed in the malignant T cells of SS, in
approximately 40% of SS patients at levels comparable to normal
Tregs.23,25 Surprisingly, a study by Heid et al. found FoxP3+ Treg
expression to be dissociated from CD25 expression in the Sezary
cells,26 possibly reflecting a low expression of CD25 in these cells.
The observed variability of Treg phenotypes in both MF and SS
raise questions about how subset populations acquire properties of
regulatory T cells.

Phenotypic Plasticity in CTCL

Perhaps explaining the phenomenon of phenotypic heterogeneity
in MF and SS is the concept that the tumor microenvironment
plays a large role in establishing these phenotypes (Fig. 1). It has
been recently demonstrated that physiologic Th17 and induced
Treg cells are phenotypically impressionable, which supports the
notion of the phenotypic plasticity of their malignant T-cell
counterparts.27,28 Indeed, the balance between the degree of
STAT3 and STAT5 activation appears critical in determination of
the T-cell differentiation toward the Th17 vs. Treg cells.29 Our
findings indicate that cytokines IL-2 and IL-15 may play a critical
role in the stimulation of malignant T-cell phenotypes.23,30 Both
cytokines activate JAK1 and JAK3 kinases that phosphorylate and
then activate their respective cytokine receptors, as well as the
signaling proteins docked to the activated receptors, most notably
STAT5. Out of seven CTCL cell lines all expressed CD25 and
TGF-β, the expression of FoxP3 and IL-10 was restricted to two
CTCL cell lines that are dependent on exogeneous IL-2. Both
IL-2 and IL-15, signaling via receptors sharing the same β/c
chains, were able to induce expression of FoxP3. In contrast,
IL-21, which signals through a structurally similar receptor also
containing the common c chain, was unable to induce FoxP3.
The IL-2-mediated induction of IL-10 and FoxP3 expression
occurred by signaling through STAT3 and STAT5, respectively.30

STAT3 is, indeed, an important mediator of plasticity, as
the JAK3/STAT3 pathway promotes the secretion of IL-17 in

Figure 1. Phenotypic plasticity of malignant T cells in CTCL cells. By activating STAT5, IL-2 and IL-15 play a major role in inducing FoxP3 expression and a
development of Treg phenotype. Activation of STAT3 leads to IL-17, IL-10, PD-L1 and SOCS-3 expression fostering the TH17 phenotype and immune
evasion by diverse, FoxP3-independent mechanisms. Targeting of the key cell signaling nodes may modulate the cytokine-dependent CTCL cell
phenotype and, consequently, exert a therapeutic effect.
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CTCL cell lines31 and has also been implicated in other immuno-
suppressive mechanisms. Constitutive activation of STAT3 can
cause expression of suppression of cytokine signaling-3 (SOCS-3)
protein, which can attenuate effects of many different cytokines,
including IFN-c and IFN-a, and thus weaken the antitumor
immunity.32,33 The composition of the malignant T cells changes
during the course of the disease, as Kupper and colleagues have
shown a depletion in the complexity of the T-cell repertoire that
was most pronounced in patients with advanced CTCL.34

Another factor, the interaction of PD-1 (Programmed Death 1)
and its ligand, PD-L1, also appears to contribute to the immune
evasion. Interactions between PD-1 and its ligands control the
induction and maintenance of peripheral T-cell tolerance during
normal immune responses, since PD-1 expression tends to be
upregulated on tumor infiltrating lymphocytes35 and cancer cells
of various types aberrantly express PD-L1 and may escape
antitumor immunity.36 In the large transformed T cells of late-
stage CTCL, PD-1 expression virtually undetectable in these cells
while PD-L1 expression is strong and large cells seem to have
stronger PD-L1 expression compared with smaller tumor cells.37

While the mechanisms of PD-L1 induction in CTCL are
currently unknown, they may well involve STAT3-mediated
activation of the PD-L1 gene, as we have found in a systemic
anaplastic large cell lymphoma expressing ALK kinase.38 Indeed,
activated STAT3 is expressed by CTCL cells39 and its expression
is the most pronounced at the advanced, tumor stage of MF.40 A
recent observation that normal antigen-presenting cells become
tolerogenic due to the STAT3-driven PD-L1 expression strongly
supports this notion.41 In the aggregate, the above-cited data
suggest that the PD-L1 mediated inhibition of immune response,
rather than the FoxP3-dependent immunosuppression, is critical

in the advanced stages of CTCL. Furthermore, these results
support the notion that the malignant T-cell phenotype is not
static but constantly changing, with considerable input from the
cytokine milieu of its environment as well stage of the disease.
Importantly, this phenotypic plasticity can be possibly exploited
by novel therapeutics, such as cytokine-related therapy attempting
to mold T-cell phenotypes away from the immunosuppressive
properties, inhibition of Jak activity by small-molecule kinase
inhibitors and direct blocking of PD1-PD-L1 interaction (Fig. 1).
By modifying the phenotype, these diverse therapeutic approaches
may interfere with the key defense mechanisms of the malignant
CTCL cells and abrogate their ability to evade the immune
system. Consequently, they may indirectly affect survival and
growth of the malignant CTCL cells and either eliminate them
or attenuate the clinical course of the lymphoma.

Conclusion

The heterogeneity of the protein expression and function of the
malignant T cells in CTCL is reflected in ability of these cells to
not only evade detection by normal immune cells seeking to
destroy them, but in becoming more prevalent over time, leading
to the late-stage disease and poor patient outcomes. By better
understanding of how cytokine signaling in the tumor micro-
environment affects the fluent phenotype of these neoplastic cells,
may lead to targeted therapeutics able to modify the cytokine
milieu and either eliminate the malignant CTCL cells or induce
transition of the malignant T cells into a more innocuous type.
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