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Abstract

Objective: The goal of this study was to identify mutations in 25 known causative genes in 47 unrelated Chinese families
with cone-rod dystrophy (CORD).

Methods: Forty-seven probands from unrelated families with CORD were recruited. Genomic DNA prepared from leukocytes
was analyzed by whole exome sequencing. Variants in the 25 genes were selected and then validated by Sanger
sequencing.

Results: Fourteen potential pathogenic mutations, including nine novel and five known, were identified in 10 of the 47
families (21.28%). Homozygous, compound heterozygous, and hemizygous mutations were detected in three, four, or three
families, respectively. The 14 mutations in the 10 families were distributed among CNGB3 (three families), PDE6C (two
families), ABCA4 (one family), RPGRIP1 (one family), RPGR (two families), and CACNA1F (one family).

Conclusions: This study provides a brief view on mutation spectrum of the 25 genes in a Chinese cohort with CORD.
Identification of novel mutations enriched our understanding of variations in these genes and their associated phenotypes.
To our knowledge, this is the first systemic exome-sequencing analysis of all of the 25 CORD-associated genes.
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Introduction

Cone-rod dystrophy (CORD) refers to a series of hereditary

retinal disorders with a predominantly cone involvement [1]. Rod

impairment may occur at the same time as the cone impairment or

appear later. Patients with CORD usually have reduced visual

acuity, photophobia, and color vision defects.

CORD may be transmitted as an autosomal dominant

(adCORD), autosomal recessive (arCORD), or X-linked trait

(xlCORD). To date, mutations in at least 25 genes have been

reported to be associated with different forms of CORD, including

the following: aryl hydrocarbon receptor interacting protein-like 1

(AIPL1) [1]; the cone-rod homeobox containing gene (CRX) [2];

guanylate cyclase activator 1A (GUCA1A) [3]; guanylate cyclase

2D (GUCY2D) [4]; PITPNM family member 3 (PITPNM3) [5];

prominin 1 (PROM1) [6]; peripherin 2 (PRPH2) [7]; regulating

synaptic membrane exocytosis 1 (RIMS1) [8]; sema domain,

immunoglobulin domain (Ig), transmembrane domain (TM) and

short cytoplasmic domain, (semaphorin) 4A (SEMA4A) [9]; unc-

119 homolog (UNC119) [10]; ATP-binding cassette, sub-family A

(ABC1) member 4 (ABCA4) [11]; ADAM metallopeptidase domain

9 (ADAM9) [12]; chromosome 8 open-reading frame 37

(C8ORF37) [13]; calcium channel voltage-dependent alpha 2/

delta subunit 4 (CACNA2D4) [14]; cadherin-related family member

1 (CDHR1) [15]; ceramide kinase-like (CERKL) [16]; cyclic

nucleotide gated channel beta 3 (CNGB3) [17]; cyclin M4

(CNNM4) [18]; potassium channel subfamily V member 2 (KCNV2)

[19]; phosphodiesterase 6C, cGMP-specific, cone, alpha prime

(PDE6C) [20]; retina and anterior neural fold homeobox 2 (RAX2)

[21]; retinol dehydrogenase 5 (RDH5) [22]; retinitis pigmentosa

GTPase regulator interacting protein 1 (RPGRIP1) [23]; calcium

channel voltage-dependent L type alpha 1F subunit (CACNA1F)

[24]; and retinitis pigmentosa GTPase regulator (RPGR) [25]

(RetNet: https://sph.uth.edu/Retnet/). Of the 25 genes, muta-

tions in the first 10 genes are responsible for adCORD, the next 13

for arCORD, and the last two for xlCORD. The associated

genomic information of the 25 genes is listed in Table S1.

In our previous study on CORD, mutations were only detected

in 7 of 130 (5.38%) Chinese families with CORD by using cycle

sequencing of all coding exons of five genes (CRX, GUCY2D,
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GUCA1A, PRPH2, and KCNV2) as well as of all exons harboring

reported mutations in other 17 CORD-associated genes

[26,27,28,29]. Of the seven families, all mutations were identified

in genes responsible for adCORD but none in genes for arCORD

and xlCORD. The genetic cause for most families (the remaining

123 of 130 (94.62%) Chinese families) was still unknown. In order

to identify the additional cause of most CORD and to disclose

further the mutation spectrum and frequency of the 25 genes,

whole exome sequencing was used to screen for mutations in 47

unrelated Chinese families with CORD.

Materials and Methods

Patients
Forty seven probands from unrelated families with CORD were

recruited from the Eye Hospital of Zhongshan Ophthalmic

Center, Sun Yat-sen University. Patients with identified mutation

who were included in our previous study were excluded from this

one. Written informed consents were obtained from the partici-

pants or their guardians before the study, which was conforms to

the tenets of the Declaration of Helsinki and follows the Guidance

of Sample Collection of Human Genetic Diseases (863-plan) by

the Ministry of Public Health of China. This study was approved

by the Institute Review Board of the Zhongshan Ophthalmic

Center. Genomic DNA was prepared from the blood leukocytes as

previous described [30].

Exome Sequencing
Exome sequencing was completed by using a commercial

service from BGI Shenzhen (http://www.genomics.cn/index.

php). The exome sequencing, genotype calling, and SNP calling

were in the same way as the methods reported before [31]. In

brief, exome capture was carried out by using a NimbleGen

SeqCap EZ Exome (44 M) array. Exon-enriched DNA fragments

were sequenced by the Illumina Genome Analyzer II. The average

sequencing depth was set to 60-fold. SOAP aligner was used to set

the sequencing reads to UCSC hg19 [32,33]. The likelihood of

possible genotypes in the target regions was calculated using

SOAPsnp [34]. Variants in all the 25 genes detected by exome

sequencing were selected for validation. Exome sequencing dataset

of the patients with identified mutations in this study have been

deposited to NIH (http://www.ncbi.nlm.nih.gov/biosample: ac-

cession number SAMN01997562 to SAMN01997571).

Sanger Sequencing
Sanger sequencing was used to validate variants in the 25 genes

that resulted from exome sequencing, including heterozygous

variants in the adCORD genes, homozygous or compound

heterozygous variants in the arCORD genes, or hemizygous

variants in the xlCORD genes. Primers (Table S2) used to amplify

the regions containing the variants were designed by primer design

tool Primer3 (http://frodo.wi.mit.edu/primer3/) [35]. A touch-

down polymerase chain reaction (PCR) was used to amplify the

fragments with variants, as previously reported [36], and the

amplicons were analyzed with an ABI BigDye Terminator cycle

sequencing kit v3.1 (Applied Biosystems, Foster City, CA) on an

ABI3100 Genetic Analyzer (Applied Biosystems). Sequencing

results from patients and controls were compared using the

SeqManII program of the Lasergene package (DNAStar Inc,

Madison, WI). Detected variants were further sequenced in the

available family members. Novel variants were further evaluated

in 192 control individuals. The description of mutations was in

accordance with the nomenclature for the description of sequence

variants [37](HGVS: http://www.hgvs.org/mutnomen/). The

conservation of a variation was evaluated by Phastcons_score

(http://varianttools.sourceforge.net/Annotation/PhastCons) [38],

the effect of a missense variation was analyzed by using SIFT [39]

(http://sift.jcvi.org/) and Polyphen-2 [40] (http://genetics.bwh.

harvard.edu/pph2/) online tools, and the effect of splicing site

changes was predicted by Berkeley Drosophila Genome Project

(BDGP) [41] (http://www.fruitfly.org/).

Considering that CORD-causing mutations are rare and the

presence of the normal carriers of arCORD gene mutations, we

assumed that the affected individuals were likely homozygous or

Figure 1. Prevalence of mutations in the investigated genes in our cohort of 47 CORD patients.
doi:10.1371/journal.pone.0065546.g001
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compound heterozygous, so variants absent in the dbSNP134,

1000Genome or with allelic frequencies #0.006 were considered

to be potentially pathogenic (frequency of heterozygote carriers

calculated based on a disease incidence of 1:40,000, under the

hypothesis that a unique arCORD gene would explain the

remaining 40% of cases [42]).

Results

Whole exome sequencing identified 14 potential pathogenic

mutations in 10 of the 47 (21.28%) families with CORD (Table 1),

including seven homozygous or compound heterozygous muta-

tions in four (ABCA4, CNGB3, PDE6C, and RPGRIP1) of the 13

genes associated with arCORD, and three hemizygous mutations

in the two genes (RPGR and CACNA1F) associated with xlCORD.

Of the 14 mutations, nine were novel. The 14 mutations in the 10

families involved six of the 25 CORD-associated genes, including

CNGB3 (three families), PDE4C (two families), RPGR (two families),

ABCA4 (one family), RPGRIP1 (one family), and CACNA1F (one

family) (Figure 1), respectively. Sanger sequencing confirmed the

14 mutations in the 10 families (Figure S1). Segregation analysis

was available for five of the 10 families in where the mutations co-

segregated with the disease in the family (Figure 2). No potential

pathogenic mutation was identified in the other 19 genes of the 47

families.

Clinical data of the 10 probands with potential pathogenic

mutations are listed in Table 2. All probands with identified

mutations had an early onset severe form of retinal dystrophy with

predominantly cone involvement. Fundus changes were mainly in

Figure 2. Pedigrees of the 10 families with mutations. The family numbers and their corresponding mutations were shown just above the
pedigrees.
doi:10.1371/journal.pone.0065546.g002
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the macular regions, showing mild pigmentary changes and a loss

of foveal reflex, as well as attenuated retinal arteries in rare cases.

Discussion

Based on an initial screening of exome sequencing and the

subsequent confirmation of Sanger sequencing, potential patho-

genic mutations were identified in 10 of the 47 (21.28%) families

with CORD, involving 14 mutations in six of the 25 CORD-

associated genes. For the 47 families in this study, the contribu-

tions of causative mutations in individual genes are as follows:

CNGB3 (6.38%), PDE6C (4.26%), RPGR (4.26%), ABCA4 (2.13%),

RPGRIP1 (2.13%), and CACNA1F (2.13%).

The frequency of mutations detected in this study is significantly

higher than in our previous study, in which mutations were only

detected in seven of 130 (5.38%) Chinese families with CORD

through the process of sequencing the coding exons of five genes

and all exons with reported mutations in 17 other genes

[26,27,28,29]. In addition, in this study, mutations in seven of

the 10 families were found in arCORD-associated genes but no

mutations were detected in the adCORD-associated genes; in

contrast, mutations in all seven families from our previous study

were found in adCORD-associated genes. This difference may

Table 1. Potential pathogenic mutations detected in 10 of the 47 families.

Family ID Gene Variations Status Bioinformation analysis Allele frequency in Reference

DNA Protein SIFT Polyphen-2 Splice
Phastcons
_score patients controls

Family 1 ABCA4 c.4604dup p.T1537Nfs*18 hetero – – – 0.997 1/94 0/384 novel

Family 1 ABCA4 c.1957C.T p.R653C hetero D PD – 1.000 1/94 NA [38]

Family 2 CNGB3 c.1774dup p.E592Gfs*44 homo – – – 1.000 2/94 0/384 novel

Family 3 CNGB3 c.129+1G.A – homo – – DSA 1.000 2/94 0/384 novel

Family 4 CNGB3 c.2415A.C p.E805D hetero D PD – 1.000 1/94 NA rs186448979#

Family 4 CNGB3 c.1957G.A p.A653T hetero tolerated benign – 0.000 1/94 0/384 novel

Family 5 PDE6C c.1935+1del – hetero – – DSA 1.000 1/94 0/384 novel

Family 5 PDE6C c.2518+5G.C NA hetero – – DSA 0.112 1/94 0/384 novel

Family 6 PDE6C c.1004+1G.A – homo – – DSA 1.000 2/94 0/384 novel

Family 7 RPGRIP1 c.2592T.G p.Y864* hetero – – – 0.994 1/94 0/384 novel

Family 7 RPGRIP1 c.799C.T p.R267* hetero – – – 1.000 1/94 NA [36]

Family 8 CACNA1F c.2542G.A p.G848S hemi tolerated benign – 1.000 1/94 0/384 novel

Family 9 RPGR c.785C.G p.A262G hemi tolerated benign – 0.002 1/94 NA [39]

Family10 RPGR c.2447_2461del p.G816_E820del hemi – – – NA 1/94 NA [40]

Note: D =damaging; PD=probably damaging; DSA= donor site abolished.
#The variation was found in 1000 Genomes database with the Global minor allele frequency (MAF) of G = 0.001/3 so that the pathogeneity of the variants in this family
need to be clarified further.
doi:10.1371/journal.pone.0065546.t001

Table 2. Clinical data of the probands with CORD and identified potential pathogenic mutations.

Family ID Gene Nucleotide changes Sex

Age
(year) at First

Best
visual
acuity Fundus changes ERG responses from

exam onset symptom right left right left rod cone

Family 1 ABCA4 c.[1957C.T];[4604dup] M 7.0 6.0 PV, PP 0.20 0.15 MA, TPOD, ARA MA, TPOD, ARA Normal Reduced

Family 2 CNGB3 c.[1774dup];[1774dup] M 6.5 EC PV,NYS 0.20 0.20 MA, TPOD MA, TPOD Mildly reduced Extinguished

Family 3 CNGB3 c.[129+1G.A];[129+1G.A] F 5.0 0.3 PV,NYS, PP 0.20 0.20 MA, TPOD, ARA MA, TPOD, ARA Normal Extinguished

Family 4 CNGB3 c.[1957G.A];[2415A.C] F 4.5 0.5 PP,NYS 0.10 0.20 ARA ARA Mildly reduced Severely reduced

Family 5 PDE6C c.[1935+1del];[2518+5G.C] M 7.0 EC NYS 0.05 0.05 High myopic High myopic Normal Severely reduced

Family 6 PDE6C

c.[1004+1G.A];[1004+1G.A]F2.0ECPV,PP,NYSPOPONANAMildly reducedExtinguishedFamily 7RPGRIP1c.[799C.T];[2592T.G]M3.6FMBPV, PP,
NYSNANAARA,CRDARA,CRDExtinguishedExtinguishedFamily 8CACNA1Fc.[2542G.A]; [0]M2.3NAPP, NYSNANAMAMASeverely reduced*ExtinguishedFamily
9RPGRc.[785C.G]; [0]M28.0ECPV, PP0.100.10MA, TPOD, ARAMA, TPOD, ARAModerately reducedExtinguishedFamily 10RPGRc.[2447_2461del]; [0]M9.0ECPV,
PP0.200.20MAMANormalExtinguished

Note: F = female; M=male; EC = early childhood; FMB= first few months after birth; PV = poor vision; PP =photophobia; NYS =nystagmus; PO=pursuing object;
NA= not available; MA=macular atrophy; TPOD= temporal pallor of optic disc; ARA = attenuated retinal arteries; CRD= carpet-like retinal degeneration.
*This patient did not have the ‘‘electronegative’’ ERG in the standard combined response.
doi:10.1371/journal.pone.0065546.t002
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partly have resulted from 1) several genes associated with

adCORD having been systemically analyzed before and all

patients with mutations in these genes being excluded from this

study; and 2) selective analysis of exons with reported mutations

perhaps failing to identify both mutations in arCORD associated

genes if one mutation in the exons is not analyzed. The real

proportion of mutations in the 25 genes should be higher than

21.28% in Chinese patients with CORD if mutations identified in

previous study are taken into account [26,27,28,29]. Further

analysis of the results from exome sequencing for those patients

without identified mutations in the 25 genes may provide useful

clues in the identification of new genes responsible for CORD.

Previously studies on an individual gene or a set of genes have

revealed a different frequency of mutation in CORD-associated

genes in different populations. Sanger sequencing of 10 adCORD-

associated genes identified mutations in 25 of 52 (48%) German

families with adCORD, and mutations were found in GUCY2D

(24%), PRPH2 (12%), GUCA1A (8%), CRX (4%), and PROM1 (2%)

[43]. In other studies for individual genes, mutations in CRX are

responsible for a 4.76% proportion of CORD [26], GUCY2D for

11.11% of CORD in a Japanese population [44] and 9.09% in a

Spanish one [45], GUCA1A for 16.67% of CORD in a German

one [46], PRPH2 for 11% of CORD in another German

population [43], AIPL1 for 1.82% of CORD in an American

sample [1], PROM1 for 0.93% of CORD in a Dutch population

[16], SEMA4A for 8.00% of CORD in a Pakistani group [9], and

UNC119 for 5.00% of CORD in another American population

[10].

For genes known to be associated with arCORD, their

mutations might be responsible for nearly 40% of arCORD

[42], whereas mutations in ABCA4 are most frequent in European

and American populations, ranging from 16.13% to 65.00%

[47,48,49,50]. However, ABCA4 mutations are very rare in

Chinese families with CORD. The mutation frequency of CNGB3

[49], PDE6C [20,49], and PRGRIP1 [23] in other populations are

relatively rare, as seen in Chinese sample. For other CORD-

associated genes without identified mutations in this study,

mutations in other populations are also rare, as with RAX2 in

0.62% of CORD [21], CERKL in 1.85% of Canadian CORD

[16], or ADAM9 [12], RDH5 [22], CDHR1 [15], and C8ORF37

[13] in a few reports based on an analysis of a limited number of

families.

Supporting Information

Figure S1 Sequence chromatography. Forteen sequence

changes detected in the probands with CORD are shown (left

column) compared with corresponding normal sequences (right

column). Some known mutations were not verified in the normal

controls, so the normal sequences are absent.

(TIF)

Table S1 Genomic information of the 25 genes referred
in this study. This table listed the accession numbers of the

genomic DNA, mRNA, and protein for each of the 25 genes. The

information is based on human genome reference GRCh37.p10.

(XLS)

Table S2 Sequences of primers used in this study. This
table listed 52 primers used to amplify the genomic fragments with

variants detected by exome sequencing.

(XLS)
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