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Interaction of physical trainings and coffee intakes in fuel utilization during exercise 
in rats
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Abstract
This study investigates the impact of exercises, coffee intakes, and physical trainings on fuel utilization in rats. Ninety-six rats were fed a control

diet with either water (C) or coffee (CF; 0.12 g freeze-dried instant coffee/100 g body weight/d). Additionally, the animals go through physical 
training (TC and TCF) or no training (NTC and NTCF) for 4 weeks. For physical training, animals have to exercise on treadmills for 30 minutes 
(5 d per week, 15° incline, 0.5-0.8 km/h). At the end of week 4, the animals in each group were subdivided into three exercise groups: before
exercise (BE), during exercise (DE), and after exercise (AE). The DE rats exercised on treadmills for 1 hour immediately before being sacrificed. 
Hemoglobin, hematocrit, glucose, glycogen, protein, triglyceride (TG), and free fatty acid (FFA) levels in the plasma, liver, and skeletal muscle 
of the rats were compared accordingly. Organ weights were also measured. Coffee-training interaction had a significant impact on heart weight, 
visceral fat, hemoglobin, hematocrit, liver glycogen in DE and AE, and liver triglyceride in DE and AE. Exercise (meaning exercised on a treadmill
for 1 hour immediately before being sacrificed) training interaction was significant in liver glycogen, muscle glycogen in control diet and control
diet with coffee, FFA and muscle TG levels at control diet with coffee group. Exercise-coffee interactions significantly influenced the FFA with 
no training groups. Exercise-coffee-training interaction significantly effects on FFA, Liver TG and Muscle TG. Coffee intakes can increase lipolysis
during exercising but coffee consumptions delay the recovery of liver glycogen levels in trained rats after exercising. Coffee intakes can increase 
lipolysis during exercising but coffee consumptions delay the recovery of liver glycogen levels in trained rats after exercising. Coffee can be an
effective ergogenic aid during exercise for physically trained rats.
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Introduction5)

Many factors which affect the fuel utilization in the body have 
been reported and most of the study has been done on each factor 
separately. However, there are limits when applying the results 
of these studies to real life since most of the athletes are adjusted 
to many factors which may affect the fuel utilization simul-
taneously in order to improve their performance. Athletes have 
searched for dietary supplements which can enhance their 
exercise performances. Some nutrients or dietary supplements 
improve the exercise capability by delaying the onset of fatigue 
[1]. For example, enhancing lipid oxidation and slowing the rates 
of muscle glycogen use [2] are very important because depletion 
of muscle and liver glycogen stores can become a limiting factor 
during prolonged exercising, and a large amount of energy can 
be obtained from fat utilization through certain metabolic 
processes [3]. Physical training facilitates the mobilization and 
oxidation of fat, as mitochondria increases, it enhances more fatty 
acid oxidation during exercising, and thus helps to conserve 
limited carbohydrate storage [4]. Utilization of fuel sources 

during exercise not only depends on the fuel availability but also 
on the physical training. When the body undergoes physical 
training, certain metabolic processes occur to assure that adequate 
energy is provided to the active muscles [5,6].

The potential effects of several foods or beverages on muscle 
lipid utilization during exercise are also being investigated [7,8]. 
Coffee is a rich source of bioactive phytochemicals which 
includes methyl-xanthines, amino acids, phenolic acids, and 
polyphenols. Caffeine, the primary methylxantine in coffee, is 
widely known for its stimulatory and metabolic effects [9,10] 
which enhances lipolysis and fat oxidation, and reduces glycogen 
breakdown [11,12]. Phenolic and polyphenolic compounds in 
coffee increase fatty acid oxidation and insulin sensitivity 
[13,14], and modulate glucose absorption and utilization [15-17]. 
Thus, the purpose of this study is to investigate the interaction 
of the major factors which is being reported to affect the fuel 
utilization and to be able to apply the results of study to real 
life.
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Materials and Methods

Experimental diets

Ninety-six 4-week old male, Sprague-Dawley rats (Daehan-
biolink Co., South Korea) weighing 95-105 g were fed a control 
diet with either water (C) or coffee (CF). The control diet was 
a vitamin-free, casein-based, semi-synthetic diet which met the 
AIN-93 recommendations (the American Institute of Nutrition 
with the objective of standardizing studies in experimental 
nutrition). In this study, coffee was processed as a solution made 
from freeze-dried instant coffee (Dongseo Co., South Korea). The 
average amount of coffee intakes per rat was 0.12 g freeze-dried 
instant coffee/100 g body weight (BW)/d. This concentration is 
based on the following rationale. To achieve the visible effects 
of coffee intake, we maximized the amount of coffee processed 
based on the approximate maximized quantity reportedly 
consumed by physically active individuals (about 895 mg of 
caffeine/60 kg/d) [18]. Additionally, previous studies reported the 
caffeine contents of different food sources including 106 mg × 
[1 serving] in espresso, 58 mg × [100 mL] in coffee, 25 mg × 
[1,000 mL] in black tea, and 15 mg × [100 mL] in green tea 
[19,20]. Thus, based on the estimation that 150 mL of coffee 
contains 87 mg of caffeine, 10 cups of coffee (7.2 g of freeze- 
dried instant coffee per cup) contains 870 mg of caffeine, this 
would not exceed the upper limit of daily caffeine consumptions 
for a 60-kg human. If an analogous amount of caffeine were 
administered to rats accordingly to weight, the animals would 
be given 0.12 g of coffee/100 g BW/d, which is equivalent to 
1.45 mg of caffeine/100 g/d. The study protocol was approved 
by the Committee on Animal Welfare Regulations of Duksung 
Women’s University, Seoul 132-714, South Korea.

Exercise regime and sample collection

The rats were fed the control diet with either water (C; 48 
rats) or coffee (CF; 48 rats). Half of the animals from both groups 
(24 rats per group) underwent physical training (TC and TCF) 
or remained stationary (NTC and NTCF) for 4 week. For physical 
training, the rats exercised on a treadmill (30 min/d, 15° incline, 
0.5-0.8 km/h) 5 days per week, and received electric shocks if 
they did not keep up with running on the treadmills. At the end 
of week 4, the animals in each dietary groups were subdivided 
into three groups (eight rats per group) based on exercises: before 
exercise (BE), during exercise (DE), and after exercise (AE). The 
BE groups were sacrificed without having performed any 
exercising at the end of week 4. The DE groups exercised on 
a treadmill (15° incline, 0.5-0.8 km/h) for 1 hour, and animals 
in the AE groups were allowed to rest for 1 hour after exercising 
and then both of groups were sacrificed. At the indicate time 
intervals, the animals were sacrificed by decapitation while the 
others were put out of conscience. Immediately after decapitation, 
blood samples were collected in heparinized tubes (BD 

Vacutainer®). All blood samples were immediately centrifuged 
(1300 RCF for 20 min at 4℃) to isolate plasma and erythrocytes. 
Heart, kidney, liver, and skeletal muscle from the medial red 
gastrocnemius were rapidly removed and stored at -70℃ until 
further analysis. 

Biochemical analysis

Glycogen was measured by using a colorimetric procedure as 
previously described [21]. After tissue samples were homo-
genized (Omni THQ Digital Tissue Homogenizer) in cold sodium 
phosphate buffers (2 mL, 0.02 M, pH 7.0), aliquots of the 
homogenates were analyzed for protein and triglyceride contents. 
Total protein concentrations were determined using a commercial 
kit (Asan Pharmaceutucal Co., South Korea) based on the Biuret 
reaction [22]. Triglycerides were analyzed with a commercial kit 
(Asan Pharmaceutical Co.) utilizing the glycerol phosphate 
oxidase-quinoneimine colormetric method [23]. Plasma glucose 
levels were determined with a commercial kit (Youndong 
Pharmaceutical Co., South Korea) based on an enzymatic method 
[24]. Free fatty acid (FFA) levels were measured with a 
commercial kit (NEFAZYME-S, Eiken Chemical Co., Japan) 
utilizing acyl CoA synthetase-Acyl CoA oxidase [25].

Statistical analysis

Data were analyzed according to a two-way analysis of 
variance (ANOVA) with coffee intakes and trainings as variables, 
and a three-way ANOVA with exercises, trainings, and coffee 
intakes as variables. When significant interactions were identified, 
Scheffe’s post hoc tests were performed. When a significant 
effect of exercise, coffee, or training being the main factor was 
observed and the interaction was not significant, a one-way 
ANOVA was used to compare the means of the main factor 
(between BE, DE, AE or control diet, control diet with coffee 
or training, no training). All analysis had been demonstrated with 
SAS 9.1 for Windows (SAS Institute, Inc., Cary, NC) where 
P-values < 0.05 were considered statistically significant.

Results

Organ weights and visceral fat

Table 1 shows organ weights for the twelve groups. Training 
had a significant effect on the heart (P = 0.0436) and visceral 
fat (P < 0.0001) weight. Since the interactions between coffee 
intakes and physical trainings were absent, the independent 
effects of training can be analyzed according to heart weight. 
The heart weights were significantly higher in the two training 
groups (TC, TCF) than the two control groups (NTC, NTCF). 
The combined visceral fat masses were significantly lower in 
the two training groups (TC, TCF) than the two non-training 
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Condition
Heart Spleen Liver Visceral fat

F-value P-value F-value P-value F-value P-value F-value P-value
Exercise (a) 1.70 0.1898 1.78 0.1731 0.18 0.6767 0.37 0.6926
Training (b) 4.19 0.0436* 0.94 0.3355 0.13 0.7126 25.07 < 0.0001**
Coffee (c) 0.02 0.9022 2.52 0.1156 0.14 0.7206 1.35 0.2491
a*b 0.13 0.7205 0.15 0.6962 0.07 0.7906 3.32 0.0716
a*c 0.02 0.9781 1.69 0.1903 1.70 0.1881 0.23 0.7983
b*c 0.68 0.5096 2.34 0.1029 0.38 0.6870 0.18 0.8358
a*b*c 1.46 0.2388 0.26 0.7750 1.44 0.2426 0.81 0.4464

F- and P-values were determined by a three-way ANOVA. * P < 0.05, ** P < 0.01. 

Table 1. The effects of physical training and coffee intake on the weight of various organs and visceral fat

Condition
Hemoglobin Hematocrit

F-value P-value F-value P-value
Exercise (a) 0.68 0.5103 0.25 0.7719
Training (b) 48.34 < 0.0001** 28.44 < 0.0001**
Coffee (c) 23.07 < 0.0001** 4.19 0.0436*
a*b 7.67 0.0068** 12.06 0.0008**
a*c 0.72 0.4880 1.56 0.2157
b*c 0.36 0.7007 0.14 0.8700
a*b*c 1.06 0.3502 2.40 0.0970

F- and P-values were determined by a three-way ANOVA. * P < 0.05, ** P < 0.01.

Table 2. The effects of physical training and coffee intake on hemoglobin and 
hematocrit levels

Condition 
Glucose Liver glycogen Muscle glycogen

F-value P-value F-value P-value F-value P-value
Exercise (a) 4.38 0.0618 2.36 0.1050 4.43 0.0153*
Training (b) 4.25 0.0734 44.96 < 0.0001** 1.63 0.2063
Coffee (c) 1.13 0.2925 4.22 0.0455 0.15 0.7001
a*b 0.08 0.9214 4.41 0.0175* 5.30 0.0071**
a*c 0.54 0.5838 1.51 0.2315 1.65 0.1988
b*c 0.37 0.5429 6.56 0.0136* 1.38 0.2432
a*b*c 0.34 0.7136 2.63 0.0827 0.42 0.6618

F- and P-values were determined by a three-way ANOVA. * P < 0.05, ** P < 0.01. 

Table 3. Effects of exercise, physical training, and coffee intake on the concentrations of glucose, liver glycogen, and muscle glycogen 

groups (NTC, NTCF). No significant effects on spleen and liver 
weights were being observed. 

Hemoglobin and hematocrit variables

Table 2 shows the hemoglobin and hematocrit variables of the 
four groups. Training, coffee, and a combination of coffee and 
training had a significant impact on hemoglobin (P < 0.0001, 
0.0001, and 0.0068, respectively) and hematocrit (P < 0.0001, 
0.0436, and 0.0008, respectively) variables. The TCF group had 
lower hemoglobin levels than other three groups while the NTCF 
group showed lower hematocrit levels than the other three groups. 

Carbohydrate storage variables

Glucose, liver glycogen, and muscle glycogen variables in the 
four groups (NTC, NTCF, TC, TCF) under exercise (BE, DE, 

AE) are shown in Table 3. Exercises, trainings, coffee intakes, 
or any other interactions were found to be insignificant to 
affecting glucose levels. Training alone or combinations of 
exercise and training or coffee- and training had significant 
effects on liver glycogen (P < 0.0001, 0.0175, and 0.0136, 
respectively). The TCF-BE group had the highest liver glycogen 
levels while the NTCF-DE group had the lowest out of the 
TCF-DE, TCF-AE, NTCF-BE, NTCF-AE groups. Coffee intake 
decreased liver glycogen levels in the T group, but no significant 
differences were observed in the NT group at DE or AE. Exercise 
and a combination of exercises and trainings significantly affected 
muscle glycogen levels (P = 0.0153 and 0.0071, respectively). 
TC-BE showed significantly higher muscle glycogen levels than 
NTC-DE at control groups. TCF-BE showed significantly higher 
muscle glycogen levels than NTCF-DE and NTCF-AE at coffee 
intake groups. 

Lipid storage variables

Table 4 shows FFA, liver TG, muscle TG, and visceral fat 
variables in the four groups (NTC, NTCF, TC,TCF) under 
exercising (BE, DE, AE). Exercises, trainings, and coffees as 
well as exercise-training, exercise-coffee, and exercise-training- 
coffee combinations had significant impacts on FFA levels (P 
< 0.0001, 0.0079, < 0.0001, < 0.0001, 0.0350, and < 0.0001, 
respectively). A combination of exercise-training significantly 
affected the controlled diet with coffee solution group. The 
TCF-DE group showed the highest FFA level while the TCF-BE 
group had lower FFA levels than NTCF-BE, NTCF-DE, 
NTCF-AE, TCF-AE. The interaction of exercise and coffee was 
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Condition 
FFA Liver TG Muscle TG

F-value P-value F-value P-value F-value P-value
Exercise (a) 26.75 < 0.0001** 11.16 0.0001** 10.49 0.0002**
Training (b) 7.68 0.0079** 5.04 0.0295* 0.24 0.6249
Coffee (c) 35.44 < 0.0001** 13.11 0.0007** 1.88 0.1771
a*b 16.10 < 0.0001** 0.53 0.5935 7.13 0.0019**
a*c 3.60 0.0350* 1.47 0.2406 0.62 0.5397
b*c 3.57 0.0647 6.12 0.0170* 1.88 0.1771
a*b*c 16.58 < 0.0001** 5.70 0.0060** 3.20 0.0497*

F- and P-values were determined by a three-way ANOVA. * P < 0.05, ** P < 0.01. 

Table 4. Effects of exercise, physical training, and coffee intake on the concentrations of plasma free fatty acids (FFA), liver triglyceride (TG), and muscle TG 

Condition
Plasma proteins Liver proteins Muscle proteins

F-value P-value F-value P-value F-value P-value
Exercise (a) 1.59 0.2098 1.67 0.1984 0.13 0.8765
Training (b) 0.34 0.5600 0.01 0.9359 0.04 0.8409
Coffee (c) 0.03 0.8575 1.47 0.2312 4.92 0.0540
a*b 2.45 0.0927 0.34 0.7136 1.72 0.1882
a*c 2.98 0.0563 0.24 0.7912 0.19 0.8249
b*c 0.52 0.4734 8.01 0.0608 0.16 0.6882
a*b*c 0.17 0.8408 0.42 0.6605 0.92 0.4022

F- and P-values were determined by a three-way ANOVA. * P < 0.05, ** P < 0.01. 

Table 5. Effects of exercise, physical training, and coffee intake on the concentrations of plasma, liver, and muscle proteins

significant for the no training group. NTCF-BE, NTCF-DE, and 
NTC-DE rats had significantly higher FFA levels than the 
NTC-BE, NTC-AE, and NTCF-AE groups. The TCF-DE group 
had significantly higher levels of FFA while TC-BE, NTCF-AE, 
and TCF-BE groups had significantly lower levels of FFA than 
other experimental groups. Exercises, trainings, and coffees alone 
as well as combinations of training-coffee and exercise-training- 
coffee significantly affected liver TG concentrations (P = 0.0001, 
0.0295, 0.0007, 0.0170, and 0.0060, respectively). The training- 
coffee combination had a significant impact in the DE and AE 
groups. TC animals showed higher TG levels than the TCF group 
at DE. Otherwise, the NTC group had significantly higher TG 
levels than the NTCF group at AE. The NTC-BE and NTC-AE 
animals had significantly higher liver TG levels while the 
TCF-DE group had lower liver TG levels than other experimental 
groups. Muscle TG concentrations were affected by exercising 
alone, as well as exercise-training and exercise-training-coffee 
combination (P = 0.0002, 0.0019 and 0.0497 respectively). The 
effect of the exercise-training combination on muscle TG was 
significant in the coffee intakes group. Compared to other 
experimental groups, the TCF-BE group showed significantly 
higher muscle TG levels while these were significantly lower 
in the TCF-AE group. CNT-BE rats had significantly higher TG 
than other groups, CFT-AE groups had significantly lower levels 
of muscle TG levels than other experimental groups.

Protein storage variables

Table 5 shows the plasma, liver, and muscle protein variables 
in the four groups (NTC, NTCF, TC, TCF) under exercise (BE, 

DE, AE). No significant effects on plasma, liver, or muscle 
protein were observed regardless of exercises.

Discussion 

This study demonstrated that there were significant interactions 
of coffee intakes, physical trainings and exercises on fuel 
utilization in vivo in three ways. First, results from the present 
study indicated that coffee intakes may influence physical 
training-induced modifications of fuel utilization during exercise. 
Exercise, training, and coffee intake did not influence blood 
glucose levels. However, training alone or training-coffee and 
exercise-training interactions significantly impacted liver glycogen 
levels. Additionally, training alone or an interaction of exercise 
and training significantly affected muscle glycogen. Training was 
the main factor for increased liver and muscle glycogen levels 
in this study. Training can result in greater glycogen storage that 
represents an adaptive mechanism which holds greater capacity 
of trained muscles to maintain their glycogen levels [4]. Liver 
and muscle glycogen concentrations in the trained groups were 
significantly higher than those of the animals that were not 
trained. It has been reported that training increases the sensitivity 
of muscles to insulin, predominately during the 4 to 6 hours 
after exercising, and muscle glycogen levels can be restored to 
near pre-exercise levels within 24 hours. After 24 hours, muscle 
glycogen concentrations can increase very gradually and eventually 
surpass normal levels over the next few days [26]. It has also 
been reported that muscle glycogen synthesis is greater within 
2 hours after exercising [27] with the greatest levels observed 
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45 minutes post-workout. 
Coffee could help conserve carbohydrates in the body. The 

main components of coffee are caffeine, chlorogenic acids, quini-
dines, and magnesium. Caffeine enhances lipolysis and fat oxida-
tion while reducing glycogen breakdowns [11,12]. Furthermore, 
caffeine enhances glucose storage through increased release of 
epinephrine or by antagonizing adenosine receptors [28,29]. 
Chlorogenic acids and quinidines have antioxidant properties [30] 
associated with reduced hepatic glucose outputs through the 
inhibition of glucose-6-phosphatase [15,31], decreased intestinal 
glucose absorption via the inhibition of glucose-6-phosphate 
translocase 1 and other mechanisms, and subsequent augmen-
tations of GLP-1 levels [32]. However, an interaction of coffee 
and training (TCF group) was found to decrease liver glycogen 
levels in the present study. Additionally, the training group given 
coffee (TCF) showed delayed recovery of liver glycogen and 
muscle glycogen levels. These findings suggest that training with 
coffee intakes may inhibit liver glycogen storage and may delay 
the recovery of liver and muscle glycogen storages.

Exercise alone can stimulate releasing of epinephrine and 
raising FFA levels [33]. Caffeine also promotes epinephrine 
release and the release of fatty acids from adipose tissues, but 
this does not necessarily mean that fatty acid oxidation is 
enhanced [34,35]. Exercise, training, and coffee alone along with 
the exercise-training, exercise-coffee, and exercise-training-coffee 
interactions significantly affected FFA levels. The TCF-DE group 
had significantly higher FFA levels while the TCF-BE animals 
showed significantly lower FFA levels for the coffee intake 
group. It can be suggested that training decreased plasma FFA 
levels but coffee intakes enhanced the use of FFAs when 
exercising. Exercise-coffee interaction was found on FFA for 
non-trained group. The NTCF group showed higher FFA levels 
than the NTC animals. Effect of the exercise-training-coffee 
interaction was illustrated by the observations that the TCF-DE 
group had significantly higher levels of FFA while these levels 
were lower for the TC-BE, NTCF-AE, and TCF-BE groups. 
These findings suggest that training and coffee intake stimulate 
FFA release in trained rats while exercising. 

A significant effect of the coffee-training interaction on liver 
TG levels at DE and AE was observed. The TC group showed 
significantly higher liver TG levels than the TCF group at DE. 
This finding can be explained by the observation that coffee 
intakes decreased liver TG levels at DE in the trained rats. NTC 
animals had significantly higher liver TG levels than the NTCF 
group at AE. Liver is the primary site of FFA synthesis during 
exercise while glucagon and cortisol stimulate the ß-oxidation 
of FFAs [36]. It can therefore be hypothesized that coffee intake 
and exercise increases liver TG catabolism in trained rats, and 
at the same time, delays the recovery of hepatic TG levels.

Exercise alone and the exercise-training interaction significantly 
affected muscle TG concentrations. Effects of the exercise- 
training interaction on muscle TG was significant for controlled 
diet with coffee solution group (Fig. 4; P = 0.0256). The NTCF- 

DE group had significantly higher muscle TG levels compared 
to other experimental groups while TCF-BE animals showed 
significantly lower muscle TG levels. TG in the muscle is 
metabolized into FFAs that are used to generate ATP via β
-oxidation in mitochondria. Our study demonstrated that training 
decreases muscle TG concentrations. Fatty acid utilization is 
particularly important during exercise when skeletal muscles 
must switch from using glucose to FFAs as their primary fuel 
source [37]. The present study indicates that training increases 
FFA levels and decreases liver TG concentrations at DE. Coffee 
intakes and exercises increase liver TG catabolism and FFA 
release in trained rats. Consistently, some antioxidants have been 
shown to increase the lipolysis of body fat [38,39]. In a past 
study, we investigated the effects of coffee intake and exercise 
on the anti-oxidative activity and plasma cholesterol profile of 
physically trained rats while they were exercising. And we also 
found out that coffee intake can increase the anti-oxidative 
defense system and decreasing HDL-cholesterol [40]. 

Protein catabolism has been reported to increase significantly 
when muscle glycogen storage are depleted by only 33-35% 
[41,42]. Since no differences in plasma, liver, or muscle protein 
levels were observed between the four groups under exercises 
in our study, protein appears to be a relatively minor source of 
energy that is not affected by moderate physical training. 

To improve exercise capacity, it is important to reduce fatigue. 
This may be accomplished by providing energy substrates, 
enhancing energy-generating metabolic pathways, increasing 
cardiovascular and respiratory functions, increasing the size or 
number of energy-generating cells, eliminating fatigue-related 
metabolic byproducts, and preventing catabolism in energy- 
generating cells thereby demonstrating how certain nutrients or 
dietary supplements are believed to reduce fatigue [43-45]. The 
present study indicates that coffee intakes may influence training- 
induced modifications of fuel utilization and antioxidant defense 
system. The interaction of coffee and training significantly affects 
hemoglobin, hematocrit, and liver glycogen levels at DE and AE, 
and liver TG concentrations at DE and AE. Physical training 
made the animals adapt by increasing glycogen storage, but 
coffee consumption delayed the recovery of liver glycogen levels 
in trained rats after exercise. Training also increase FFA 
concentrations and decreases liver TG levels at DE. Exercising 
and coffee intakes stimulate FFA release and increase liver TG 
catabolism in trained rats. 

Second, training was the main factor which increased heart 
weight and decreased visceral fat in this study. Increased heart 
weight is symbolizes physiological adaptation in response to both 
elevated blood pressure and increased ventricular filling due to 
training [46]. Reduced visceral fat is often associated with 
enhanced lipolysis, usually regular exercise reduces adipose 
tissue mass along with citrate synthetase activation in skeletal 
muscle [47]. 

Third, the current study demonstrated that coffee intakes and 
trainings decrease hemoglobin and hematocrit levels. Coffee may 
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decrease the absorption of iron [48]. A further drop in hemog-
lobin levels after exercising could be explained by hemolysis 
due to the physical force generated during the exercise [49]. 
Therefore, coffee may have decreased iron absorption and the 
impact of running could have resulted in hemolysis. 

By all accounts, results of this study indicate that coffee intakes 
can increase lipolysis during exercise while, also promoting the 
development of anemia and delaying carbohydrate replenishment. 
Physical training may delay the onset of fatigue and improve 
exercising performances by facilitating the mobilization and 
oxidation fat while conserving limited carbohydrate stores. 
Therefore, coffee appears to be an effective ergogenic aid, 
especially in terms of lipolysis, when administered at the 
appropriate time and dose. 
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