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Abstract
In the receiver operating characteristic (ROC) paradigm the observer assigns a single rating to
each image, and the location of the perceived abnormality, if any, is ignored. In the free-response
receiver operating characteristic (FROC) paradigm the observer is free to mark and rate as many
suspicious regions as are considered clinically reportable. Credit for a correct localization is given
only if a mark is sufficiently close to an actual lesion; otherwise the observer's mark is scored as a
location-level false positive. Until fairly recently there existed no accepted method for analyzing
the resulting relatively unstructured data containing random numbers of mark-rating pairs per
image. This paper reviews the history of work in this field which has now spanned more than 5
decades. It introduces terminology used to describe the paradigm, proposed measures of
performance (figures of merit), ways of visualizing the data (operating characteristics) and
software for analyzing FROC studies.

Keywords
ROC; free-response; FROC; localization tasks; observer performance; JAFROC; software

INTRODUCTION
The term "free-response" was coined by Egan in 1961 in connection with studies involving
the detection of brief audio tone(s) against a white-noise background [1]. The tone(s) could
occur at any instant within an active listening interval (e.g., while an indicator light was on)
and the listener's task was to respond by pressing a button at any instant(s) when a tone(s)
was perceived. The listener was uncertain how many true tones, if any, could occur in the
active interval and when they might occur. Therefore the number of responses per active
interval could be ≥ 0 and was a-priori unpredictable. With two-dimensional space replacing
time the acoustic study is analogous to a common task in medical imaging, namely, prior to
interpreting an image for possible breast cancer the mammographer does not know a-priori
how many lesions (i.e., cancers) are present, if any, and where they are located.
Consequently the image must be searched for regions that appear suspicious for cancer. If
the level of suspicion of a particular suspicious region exceeds the minimum clinical
reporting threshold the mammographer reports it (at our institution they digitally outline and
annotate the suspicious region). Conceptually a screening report consists of the locations of
regions that exceed the threshold and the corresponding levels of suspicion (reported as a
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BIRADS rating [2]). This type of information defines the free-response paradigm as it
applies to medical imaging. At its essence free-response is a search paradigm.

The free-response receiver operating characteristic (FROC) curve was introduced, also in
the auditory domain, by Miller as a way of visualizing performance in the free-response task
[3]. The importance of the free-response paradigm for radiology applications was first
recognized by Bunch et al in [4]. Their paper describes several ambiguities that arise when
the receiver operating characteristic (ROC) method is applied to a localization task (the
interested reader is referred to Table I in their paper). A well-known one is the ambiguity
when a location-level false positive and a location-level false negative occur on the same
image. The two mistakes effectively "cancel" each other in ROC analysis and the image is
scored as a "perfect" image-level true positive. In other words the radiologist was right – a
cancer containing image was diagnosed abnormal – but for the wrong reason –an incorrect
lesion location was reported.

Bunch et al [4] conducted the first imaging FROC experiment. Under certain assumptions,
appropriate to their data, they showed that it was possible to derive ROC operating points
from FROC operating points and they also anticipated the alternative FROC (AFROC)
curve. The author and colleagues at the University of Alabama at Birmingham were the first
to apply the free-response paradigm to the clinical problem of comparing a prototype digital
chest imaging device to a conventional analog device in a lesion localization task [5]. The
method was soon applied in a second study [6] to evaluate a prototype dual-energy chest
imaging system by the same manufacturer.

In an FROC study the number of marks on an image can be 0 or more, and must be regarded
as a modality, reader and image dependent random variable. The randomness in the number
of marks, in addition to the usual sources of randomness of the ratings due to image
sampling and reader sampling, is the main reason why analysis of FROC data has been a
challenge. Work in this area has now spanned over five decades. This paper traces the
history of developments in free-response analysis.

FROC DATA: MARK-RATING PAIRS
The mark is the location of the suspicious region and the rating is the confidence level that
the region contains a lesion. The data analyst decides whether a mark is close enough to a
real lesion to qualify as lesion localization (LL) – a location-level "true positive" - and
otherwise the mark is classified as non-lesion localization (NL) – a location-level "false
positive". The quotes are intended to emphasize the confusion that can arise if one uses
terminology developed for image-level ROC studies to location-level paradigms. What
constitutes "close enough" (i.e., the proximity criterion or "acceptance radius") is a clinical
decision which should be made based on the application [7–9]. Two physicians do not need
to agree on the exact center of a lesion in order to appropriately assess and treat it. The
proximity criterion should be similar for all modalities under comparison as otherwise there
would be a bias favoring the modality with the more lenient criterion [8].

DATA ANALYSIS
Operating characteristics and figures-of-merit

Data analysis starts with the selection of a figure-of-merit (FOM) and a procedure for
estimating it from the observed collection of NLs and LLs, each with an associated rating
(the rating does not have to be a discrete integer). A valid figure of merit rewards the
observer for correct decisions and penalizes for incorrect decisions. Finding a suitable figure
of merit usually starts with a way of visualizing the data. For example, the ROC curve
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suggests the area under the curve as a suitable figure of merit for ROC data. Bunch et al [4]
suggested two ways of visualizing FROC data.

The FROC curve and associated figures of merit—The FROC curve was defined
[4] as the plot of lesion localization fraction (LLF) vs. non-lesion localization fraction
(NLF), where LLF is defined as the total number of lesion localizations at a given threshold
divided by the total number of lesions, and NLF is defined as the total number of non-lesion
localizations at that threshold divided by the total number of images (as discussed later, the
mixing of normal and abnormal images in the definition of NLF has an undesirable effect).
Pairs of (NLF, LLF) values can be plotted corresponding to the different cumulated ratings.
For example, in a 5-rating FROC study, with increasing numbers representing increasing
confidence in presence of lesion, one gets 5 FROC operating points as follows: the point
corresponding to the 5's, the 5's and 4's, the 5's, 4's and 3's, the 5's, 4's, 3's and 2's and
finally, the 5's, 4's, 3's, 2's and 1's. If continuous ratings are used then the procedure is to
start with a high threshold such that none of the ratings exceed it, and slowly lower the
threshold and count the total numbers of LLs and NLs exceeding the threshold and divide by
the appropriate denominators – this yields the so-called "raw" FROC curve. For example,
when a LL rating just exceeds the threshold, the operating point jumps upwards by 1/(total
number of lesions) and when a NL rating exceeds the threshold, the operating point jumps to
the right by 1/(total number of images).

The FROC curve is not contained within the unit square. While the y-axis is the probability
P(l) that a lesion localization occurs, estimated by LLF, the x-axis is the mean number of
non-lesion localizations per image, estimated by NLF (for notational symmetry the author
terms this a "fraction" when in fact it is an improper fraction). The x-axis can potentially
tend to large values, especially if the total lesion area is much smaller than the total image
area, as was the case in the Bunch et al experiment. Partial area measures, such as the area
under the FROC curve to the left of a predefined abscissa value or the value of the ordinate
at the predefined abscissa have been used as figures of merit. The latter figure of merit was
used by the author in the first clinical application of the FROC method [5].

The AFROC curve and associated figure of merit—Bunch et al [4] also introduced
the plot of LLF vs. false positive fraction (FPF) which was subsequently termed the
alternative FROC (AFROC) by the author [10]. Since the AFROC curve is completely
contained within the unit square, since both axes are probabilities, the author suggested that,
analogous to the area under the ROC curve, the area under the AFROC be used as a figure-
of-merit for FROC performance [10,11].

In the author's experience the question of the end-point of the AFROC curve (reached when
the decision threshold is infinitely low) often creates confusion. If every region in the image
generates a finite decision variable sample, no matter how small, then when the observer's
threshold is lowered to negative infinity all regions, including all lesions, will be marked and
the end-point (1,1) will be reached trivially. The continuous approach to (1,1) is implicit in
early models [10–12]. In newer models [13,14] not all regions generate decision variable
samples and the observer generally cannot reach (1,1). Nevertheless, the area under the total
AFROC curve, including that under the straight line extension from the uppermost reached
point to (1,1), has to be included to properly credit perfect decisions such as normal images
with no marks and to penalize unmarked lesions [15].

Estimating FPF from FROC data—The y-axis of the AFROC is identical to that of the
FROC curve. So the problem is how to estimate FPF, which is an image-level (i.e., ROC)
quantity from FROC data. In the ROC context FPF is an estimate of the probability P(FP) of
observing a FP. It is estimated by counting the number of normal images declared abnormal
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and dividing by the total number of normal images. When one has FROC data it is
customary to take the rating of the highest rated NL on an image, and assume that is the
ROC rating of the image (often termed the highest rating assumption).

In the Bunch et al study only simulated abnormal images were used (each image contained
from 10 to 20 simulated lesions) so they needed a way of inferring the probability P(FP) of
an image-level FP, from the non-lesion localization marks made on abnormal images only.
They assumed that the probability P(n) of observing an image with n non-lesion
localizations is given by the Poisson distribution: i.e., P(n) = e−λ λn / n!, where λ is the
mean of the distribution, estimated by NLF, defined previously in connection with the
FROC curve. The probability of observing an image with a false positive P(FP) is the
complement of the probability of observing an image with zero non-lesion localizations and
therefore P(FP) = P(0) =1−e−λ. Since λ is estimated by NLF, this yields FPF = 1−e−NLF.
This method can obviously be applied to a mixture of abnormal and normal cases, as is
typical with most datasets [10].

Estimating the figure-of-merit: parametric methods
A parametrically fitted curve allows estimation of the figure-of-merit. Much previous work
focused on parametric fitting of FROC [4,11,12] or AFROC curves [10]. All of these made
untenable independence assumptions which drew valid criticisms [12,16]. For example, the
models assume that the probability of occurrence of non-lesion localizations on an image is
independent of the number of true lesions present in the image. In reality the probability of
non-lesion localizations is typically larger on normal images than on abnormal images. As
another example, they assumed that the lesion localization mark-rating pairs on an image are
independent, when in fact satisfaction of search effects have been reported in which the
observer, having marked one lesion, is less likely to mark other lesions present in the image
[17].

Estimating the figure-of-merit: non-parametric methods
In recent years the focus has shifted towards non-parametric estimates of the figure of merit.
In non-parametric ROC analysis one uses the trapezoidal area under the ROC curve as the
figure of merit. The calculation is simple and no curve fitting is necessary: one compares all
possible pairs of normal and abnormal images; if the abnormal image rating exceeds the
normal image rating one cumulates unity in a zero-initialized counter variable. If the two
ratings are identical one cumulates 0.5. This is done for all possible pairings of normal and
abnormal images and the final result is divided by the total number of comparisons. This
yields the empirical probability that an abnormal image rating exceeds that of a normal
image and can be shown to be identical to the area under the trapezoidal ROC curve. Non-
parametric FROC analysis is possible [18,19] along similar lines. One approach is to use the
area under the raw FROC curve to the left of a specified value of the abscissa as the figure
of merit. Image-level bootstrapping is used to estimate the 95% confidence interval for the
FOM, or if two modalities are being compared, to estimate a 95% confidence interval for the
difference in FOMs. [While it is true that the non-parametric FOM underestimates that
derived by curve-fitting, since interest is generally in the difference between two FOMs the
underestimates tend to cancel out, and this is generally not an issue.]

Other FROC figures of merit
The Λ figure of merit—A FROC curve-based figure of merit has been introduced [20] as
the "area under the empirical FROC curve penalized for the number of erroneous marks,
rewarded for the fraction of detected abnormalities, and adjusted for the effect of the
acceptance radius". This index is defined by Λ = A0 − NLF0 + LLF0 / φ. Here A0 is the non-
parametric area under the complete FROC curve, the zero subscript denotes the end-point of
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the FROC curve (reached when all marks are cumulated), and the parameter φ, is defined as
the ratio of the total area per image occupied by the acceptance regions surrounding each
target to the rest of the image. The method has been applied in one clinical study [21]. The
cited publications do not describe how φ is estimated in clinically realistic situations. The
breast is not a homogeneous structure and not all regions within the skin-line are equally
likely to have lesions so exactly what is meant by "rest of the image" in the definition of φ is
not clear. This could lead to arbitrariness in the usage of this figure of merit.

The EFROC figure of merit—Popescu et al [22] proposed an exponential transformation,
1−e−NLF, of the abscissa of the FROC curve, and the resulting plot termed EFROC is fully
contained within the unit square. This transformation is identical to that suggested by Bunch
et al, but the latter needed to invoke the Poisson and highest rating assumptions to derive it,
as opposed to simply postulating the transformation as Popescu et al did.

Since the uppermost operating point (reached by cumulating all the points) generally lies
below (1,1), Popescu et al added a linear extension from the uppermost point to the (1,1) to
obtain the total area under the EFROC (as opposed to a partial area measure). In the author's
opinion the EFROC is a reasonable figure of merit provided one uses only normal images to
estimate the abscissa. It has the advantage of using the multiple NLs on a normal image,
unlike the AFROC approach which uses only the highest rated one (this will give the
EFROC a statistical power advantage). The current limitation of the Popescu et al approach
to statistically independent marks (they needed this assumption to derive non parametric
estimates of standard error of the area under the EFROC) can be circumvented by
resampling significance testing techniques, as described below.

Should one count NLs on both normal and abnormal images?
The FROC curve abscissa is traditionally defined over all images: NLs on abnormals and on
normal images both contribute to NLF. If the observer's tendency to generate NLs is
independent of the presence or absence of true lesions, this would be perfectly legitimate,
but, as noted earlier, this is often not the case. At the same confidence level normal cases
usually generate more NLs than abnormal cases. It follows that the (asymptotic) FROC
curve will depend on the case mix, i.e., the ratio of abnormal to the total number of cases.
Two investigators using different case mixes would get different (asymptotic) FROC curves
even if all other conditions were identical. This is undesirable and the only way to remedy it
is to define NLF over normal images only. Similar comments apply to the AFROC: FPF
should be calculated over normal cases only. [By "asymptotic" we mean the infinite sample
size limit, so as to eliminate sampling variability.] Good figures of merit should measure the
observer's ability to correctly discriminate LLs from NLs as happens when LLs are rated
higher than NLs. However, discriminating LLs from NLs on an abnormal image (these can
be from the same image) is less clinically meaningful than discriminating LLs from NLs on
a normal image (these have to be different images). Defining the curves over all images has
the undesirable consequence of mixing the two types of discrimination abilities1.

1Since this issue is dedicated to the memory of Prof. Charles Metz, a historical note is appropriate. Around May 2005 the author gave
a talk on FROC analysis at the University of Chicago. When he stated that in JAFROC analysis one ignores the non-lesion
localizations on abnormal images, Dr. Metz in the audience stated "That is a good idea". At that time it was believed that including the
non-lesion localizations on abnormal images led to incorrect null hypothesis behavior, which was subsequently proven to be incorrect.
So the right decision (at least in Dr. Metz's view) was made for the wrong reason.
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JAFROC SOFTWARE
Figures of merit

The AFROC plot (LLF vs. FPF) is amenable to defining a non-parametric FOM. One
compares all pairing of LLs and highest rated NLs on normal images. If the LL rating is
greater, one cumulates unity; if they are equal one cumulates 0.5, and at the end of the
process one divides by the total number of comparisons. Except for some nuances, described
in a document available on the website www.devchakraborty.com, this is the figure of merit
used in jackknife alternative FROC (JAFROC) analysis [23], currently the most widely used
method for analyzing FROC data acquired using the multiple reader multiple case (MRMC)
protocol where each reader interprets each case in all modalities. The software includes tools
for sample size estimation and empirical and parametric plots of operating characteristics.
Since its introduction in 2004, 46 publications have appeared that have used JAFROC
software. The software supports various non-parametric figures of merit: the JAFROC
figure of merit, a weighted JAFROC figure of merit, which corrects for the tendency of the
JAFROC figure of merit to be dominated by abnormal images with relatively large numbers
of lesions, the highest rating inferred ROC trapezoidal area under the curve, an average
rating-based figure of merit [24] and a stochastic dominance based figure-of-merit [24].

Significance testing
The software performs case-level jackknifing and analyzes the resulting pseudovalue matrix
using the Dorfman Berbaum and Metz (DBM) analysis of variance (ANOVA) algorithm
developed for MRMC ROC data [25,26]. Because the DBM pseudovalue model is
applicable to any scalar figure-of-merit [27,28], not just the area under the ROC curve, it is
permissible to apply this method to a pseduovalue matrix derived from non-ROC paradigm
data. In spite of the zero or more mark-rating pairs that could occur on a case, in the
pseudovalue matrix each case is represented by a single pseudovalue. If case is treated as a
random factor the analysis generalizes to the population of cases with lesion prevalence
similar to that in the analyzed dataset. Since lesions do not exist without reference to images,
it is incorrect to regard the analysis as "generalizing to the population of lesions". It is more
accurate to state that the analysis generalizes to the population of images with lesion
distribution similar to that in the sampled images.

Validation studies
JAFROC has been validated using simulations to generate FROC data in two statistically
identical null hypothesis (NH) modalities. The nominal α (probability of a Type I error) of
the test is set at 5%, and the expected NH behavior (the test should reject the NH in 5% of
the simulations) has been confirmed [15,23,29,30].

DISCUSSION
This paper has summarized the history of research in free-response data analysis. The
history of research in this field is essentially that of finding a good figure of merit and a
method for testing the significance of the difference between two figures of merit. The
significance testing methodology has benefited immensely from work by DBM [25] and
subsequent refinements by Hillis et al [26,31–35].

Not discussed in this paper are the modeling advances that have taken place in connection
with FROC research [13–15,36–39]. Besides allowing one to simulate realistic FROC data
in order to validate proposed methods of analysis, they have yielded insight into the effect of
search on performance.
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There are other approaches besides free-response to accounting for localization information.
In the localization ROC (LROC) approach the observer gives a single rating to the image
and marks the most suspicious region in the image [12,40–42]. In the region of interest
(ROI) approach [43,44] the investigator divides the image into a number of ROIs and the
observer's task is to rate each region for presence of disease. All of these approaches, and
indeed the ROC approach, have roles in imaging system assessment. Based on a good
understanding of the clinical task one should select the paradigm that most closely resembles
it. For example, in diagnostic mammography one is interested in determining whether or not
a lesion already identified at screening is in fact a cancer or benign. The ROC paradigm
should be used in this binary discrimination task.
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