
CREB-binding protein (CBP) regulates b-adrenoceptor
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Catecholamines regulate the b-adrenoceptor/cyclic AMP-regulated protein kinase A (cAMP/PKA) pathway. Deregulation of this
pathway can cause apoptotic cell death and is implicated in a range of human diseases, such as neuronal loss during aging,
cardiomyopathy and septic shock. The molecular mechanism of this process is, however, only poorly understood. Here we
demonstrate that the b-adrenoceptor/cAMP/PKA pathway triggers apoptosis through the transcriptional induction of the
pro-apoptotic BH3-only Bcl-2 family member Bim in tissues such as the thymus and the heart. In these cell types, the
catecholamine-mediated apoptosis is abrogated by loss of Bim. Induction of Bim is driven by the transcriptional co-activator
CBP (CREB-binding protein) together with the proto-oncogene c-Myc. Association of CBP with c-Myc leads to altered histone
acetylation and methylation pattern at the Bim promoter site. Our findings have implications for understanding pathophysiology
associated with a deregulated neuroendocrine system and for developing novel therapeutic strategies for these diseases.
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Cyclic adenosine monophosphate (cAMP) is a second
messenger that is highly conserved throughout evolution. In
metazoans, its primary role is to act as an intracellular carrier
of metabolic information, regulating hormonal responses,1 in
triggering apoptotic cell death and in regulating ontogeny.2,3

Studies with transgenic mouse models have revealed that
deregulation of the cyclic AMP-regulated protein kinase A
(cAMP/PKA) pathway can cause apoptosis.4 Specifically, b-
adrenergic receptor (bAR) activation by catecholamines or
autoantibodies, as seen in Grave’s disease,5 can cause PKA-
mediated cardiomyocyte apoptosis, resulting in heart failure
(HF).6 Furthermore, administration of catecholamines, such
as epinephrine, is often the last resort for treatment of patients
suffering from septic shock,7 and this is associated with
profound alterations in immune function, similar to those
observed in haemorrhagic shock where all lymphocyte
subsets are decreased owing to excessive apoptosis.8

Similarly, loss of dopamine receptor containing neurons
during aging has been attributed to the apoptosis-inducing
effects of the catecholamine, dopamine9 and chronic stress-
induced immune modulation has been attributed to increased
levels of circulating epinephrine.10

The molecular mechanisms of cAMP/PKA pathway-
mediated apoptosis are only poorly defined. The BH3-only
Bcl-2 family protein Bim is considered to be an essential

initiator of apoptosis in a wide variety of physiological settings,
including deregulated calcium flux, growth factor withdra-
wal,11 endoplasmic reticulum stress12 and T cell receptor13 as
well as B cell receptor activation14 in autoreactive lympho-
cytes. Downregulation of Bim appears to be a common
denominator in many cell survival signalling pathways in
cancers, and many anticancer therapeutics kill cancer cells by
inducing Bim expression.15,16 We have previously reported
that the cAMP/PKA pathway can regulate Bim protein levels
by phosphorylation and stabilization.17 However, the present
work demonstrates that in many cell types and tissues,
transcriptional induction of Bim by the cAMP/PKA pathway
has a major role in cell death regulation.

Here we elucidate the molecular mechanism of the cAMP/
PKA-triggered apoptotic pathway downstream of bAR acti-
vation. We demonstrate that PKA activation results in the
transcriptional induction of the pro-apoptotic BH3-only
Bcl-2 family gene Bim and subsequent Bim-dependent
apoptosis in diverse cell types, including thymocytes and
cardiomyocytes. We also provide proof for the engagement of
the Bim promoter by the proto-oncogene c-Myc, together
with the transcriptional co-activator CREB (cAMP response
element-binding protein)-binding protein (CBP). Our results
shed light on the role of increased sympathetic nerve activity
and apoptosis in the myocardium that can lead to HF18, in the

1Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia; 2Department of Immunology and Oncology,
National Center for Biotechnology, CNB-CSIC, C/Darwin 3, Madrid, Spain; 3Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical
Research, 1G Royal Parade, Parkville, VIC, Australia and 4Experimental Cardiology Lab, Baker IDI Heart and Diabetes Institute, 75, Commercial Road, Melbourne, VIC,
Australia
*Corresponding author: H Puthalakath, Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC 3086,
Australia. Tel: þ 61 3947 95226; Fax: þ 61 3947 91266; E-mail: h.puthalakath@latrobe.edu.au
5These authors contributed equally to this work.

Received 11.12.12; revised 27.2.13; accepted 12.3.13; Edited by M Piacentini; published online 12.4.13

Keywords: apoptosis; b-adrenoceptor; Bim; cyclic AMP; protein kinase A
Abbreviations: cAMP/PKA, cyclic AMP-regulated protein kinase A; bAR, b-adrenergic receptor; CREB, cAMP response element-binding protein; CBP, CREB-binding
protein; 4-OHT, 4-hydroxytamoxifen; FTOC, foetal thymic organ culture; MHC, myosin heavy chain; Prkar1a, PKA regulatory subunit 1a; ChIP, chromatin
immunoprecipitation; EMSA, electrophoretic mobility shift assay

Cell Death and Differentiation (2013) 20, 941–952
& 2013 Macmillan Publishers Limited All rights reserved 1350-9047/13

www.nature.com/cdd

http://dx.doi.org/10.1038/cdd.2013.29
mailto:h.puthalakath@latrobe.edu.au
http://www.nature.com/cdd


development of the thymus during embryogenesis19 and in
stress-induced thymic atrophy and immune modulation.20

Results

cAMP/PKA activation induces BIM in a variety of
tissues. A critical role for the pro-apoptotic BH3-only Bcl-2
family member Bim (Bcl2L11) in cAMP/PKA-triggered
apoptosis has been reported in the S-49 T-cell lymphoma
line.21 To test the generality of this phenomenon, we used a
variety of systems to induce PKA activity. PKA exists as a
tetrameric holoenzyme composed of two catalytic (C) and
two regulatory (R) subunits. Binding of cAMP causes the
dissociation of the holoenzyme into its constituent subunits,
that is, PKA regulatory subunit 1a (Prkar1a) and PKACa

However, cAMP regulation of PKA can be bypassed by
ectopic overexpression of PKACa.22 4-hydroxytamoxifen
(4-OHT)-induced expression of PKACa HA-tagged) in mouse
embryonic fibroblasts (MEFs) resulted in the induction of
Bim, both at the protein and mRNA levels (Figure 1a).
Similarly, bAR stimulation by agonists, such as isoproterenol,
leads to cAMP flux and PKA activation.21 Consistent with
this, treatment of MEFs with isoproterenol led to a robust
induction of Bim both at the protein and mRNA levels
(Figure 1b and Supplementary Figure S1d).

The primary and secondary lymphoid organs, such as the
developing thymi as well as the spleen and lymph nodes, are
innervated by the autonomic, mainly sympathetic, nervous
system, allowing neuroimmune modulation.23 Postnatal infec-
tion and stress can cause profound involution of the thymus

Figure 1 cAMP/PKA activation induces Bim in a variety of tissues. (a) MEFs expressing PKACa under 4-OHT regulation. First two lanes are samples from a clone, which
expresses very little PKACa used as control. pCREB is the surrogate marker for PKA activation. (b) MEFs treated with isoproterenol for various time points and analyzed by
western blot or by qPCR. Nur77 transcripts are used as a marker for PKA activation in the qPCR analysis. (c and d) Thymocytes in FTOC or cardiomyocytes in culture were
treated with isoproterenol and rolipram (10 mM each) and analyzed for various transcripts by qPCR. (e) b2AR transgenic mouse (b2AR expressed under MHC promoter or
MHCa) and littermate control on C57BL/6 background (at 6 months) were analyzed by echocardiogram, TUNEL staining for apoptosis or by Masson’s trichrome staining for
collagen accumulation. (f) LV sections were stained with Bim-specific antibodies or the antibodies pre-incubated with the peptide epitope against which the antibodies were
raised to show the specificity of the staining. (g) RT-qPCR analysis of the heart tissues for Bim transcripts and (h) western blot analysis of the transgenic heart tissues with
myocardial infarct (MI) as a positive control. Error bars: ±S.E.M., n¼ 3, one-tailed T-tests. #P¼ 0.004; *P¼ 0.023 versus untreated control (b); #P¼ 0.002–0.0012 versus
untreated control (c); #P¼ 0.0014 versus untreated control (d); #P¼ 0.013 versus wild-type (WT) control
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gland, and this is attributed to increased secretion of
catecholamines by the sympathetic nervous system.24 As
Bim is critical for the killing of thymocytes by diverse apoptotic
stimuli,11 we tested whether thymocytes could upregulate Bim
in response to catecholamines. Treatment of thymocytes in
foetal thymic organ culture (FTOC) with isoproterenol resulted
in a robust induction of Nur77, a marker for PKA activation25

and Bim, whereas the expression of other BH3-only genes,
such as Puma (Bbc3) and Noxa remained unchanged
(Figure 1c).
b-adrenergic stimulation leads to PKA-mediated apoptosis

in adult cardiomyocytes.26 Accordingly, isoproterenol treat-
ment induced Nur77 and Bim expression in cardiomyocytes
isolated from adult mice by Langendorff perfusion (Figure 1d).
Similar results were obtained in in vivo mouse models. Similar
to what was seen in b1AR transgenic animals,27 cardio-
myocyte-specific transgenic overexpression of b2AR led to
cardiomyocyte apoptosis, hypertrophy and ultimately HF.28

These transgenic mice had enlarged hearts, dilated left
ventricles (LV) and increased fibrosis, as revealed by
echocardiogram, TUNEL and collagen staining (Figure 1e
and Supplementary Figure S1a). Immunohistochemical
staining of heart sections demonstrated that hearts in these
transgenic mice expressed higher levels of Bim compared
with hearts from wild-type (WT) mice (Figure 1f). Quantitative
PCR (qPCR) and western blot analyses of these heart tissues
indicated that Bim was induced in these mice both at the
mRNA and protein levels (Figures 1g and h). The heart is
richly innervated by sympathetic nerves, which regulate
cardiac function by the release of catecholamines that act
on bARs. Excessive catecholamine levels are correlated
with failing myocardium.29 Consistent with this notion,
induction of myocardial infarction by left coronary artery
ligation resulted in increased levels of both adrenaline
and nor-adrenaline in the serum of C57BL/6 mice, and
this was accompanied by increased Bim protein expression
(Supplementary Figures S1b and c). Similar to what we
observed in thymocytes, this induction was specific to Bim, as
we did not detect any induction of other BH3-only proteins,
such as Puma (Supplementary Figure S1c).

Loss of Bim inhibits cAMP/PKA-induced apoptosis.
Consistent with the reports from T hybridoma cells,21 our
results show that Bim is a downstream target of the cAMP/
PKA pathway in diverse tissues. We therefore examined
whether Bim was required for PKA-induced apoptosis. Apart
from the sympathetic nervous system, immune cells them-
selves can synthesize and metabolize catecholamines and
stimulate bARs. Immune cells are therefore considered to be
‘a new, diffusely distributed adrenergic organ’.4 Catechola-
mines regulate lymphocyte proliferation, differentiation and
apoptosis via an autocrine loop.30 Therefore, we tested
whether loss of Bim could protect thymocytes from
bAR-mediated apoptosis in FTOC. Treatment of FTOC
with isoproterenol resulted in Bim protein induction
(Supplementary Figure S2a) accompanied by apoptosis of
the WT thymocytes. Loss of Bim, not loss of Puma rendered
thymocytes completely resistant to this treatment (Figures 2a
and b). This was not because of attenuated PKA activation in
Bim � /� cells, as treatment with isoproterenol activated PKA

to similar extent in both Bim � /� and WT cells, as indicated
by the increase in phospho-CREB (pCREB) and cAMP levels
(Supplementary Figure S2a, lanes 2 and 4 and Figure 2c).
(Constitutive levels of both pCREB and cAMP levels were higher
in Bim � /� cells; this might be because of the survival of
thymocytes with high cAMP/PKA activity in the absence of Bim.)

In an acute mouse model of HF, injection of isoproterenol
(15 mg/kg per day for 7 days) causes ventricular remodelling,
leading to cardiac hypertrophy.31 Although isoproterenol
injection resulted in impaired contractile function of the LV
(significantly lower fractional shortening and lower fractional
area change) in the WT mice, the Bim� /� mice did not develop
this pathology (Figures 2d–f). Accordingly, many more
TUNELþ (apoptotic) cells were seen in WT mice compared
with the Bim� /� animals (Supplementary Figure S2b).
Similarly, whereas cardiomyocytes isolated from adult
WT mice by Langendorff perfusion underwent substantial
apoptosis after treatment with isoproterenol, those from
Bim� /� mice were resistant (Supplementary Figure S2c).

Apart from rescuing the catecholamine-induced pathology,
Bim ablation also resulted in constitutive physiological
hypertrophy of the heart. This is characterized by increased
weight of LV and whole heart, and this could be attributed to
increased size of cardiomyocytes (Figures 3a and b and
Supplementary Figure S2d). Furthermore, gene expression
analysis of WT and Bim� /� heart tissues indicated that the
cardiac hypertrophy is not associated with any pathology, as
we did not observe any of the pathological hypertrophy-
associated gene induction in the Bim� /� hearts (Figure 3c).

Prkar1a deletion induces apoptosis and this can be
inhibited by loss of Bim. The discovery that the exchange
protein activated by cAMP (Epac) is a direct target of cAMP
with an affinity comparable to the regulatory subunit of PKA32

questions the long-held notion that PKA is the only direct
downstream target of cAMP. To rule out that Epac is critical
for the induction of Bim, we used a genetic model in which
PKA can be activated without inducing cAMP flux or adenylyl
cyclase activation. Deletion of the ubiquitously expressed
regulatory subunit of PKA, R1a (Prkar1a), leads to consti-
tutive activation of PKA.33 Accordingly, MEFs from Prkar1afl/fl

mice were infected with lentiviruses expressing 4-OHT-
inducible CRE.34 This resulted in acute loss of R1a with
consequent PKA activation (as seen by increased levels of
phospho-PKA substrates) and in a robust induction of Bim
both at the mRNA and protein levels (Figure 4a). Induction of
Bim triggered by R1a deletion resulted in a substantial
reduction in the clonogenic survival of these MEFs.
Remarkably, this could be prevented by the loss of Bim
(Figure 4b). This was also seen in short-term survival assay
as well as when Prkar1a-deficient MEFs were treated with
isoproterenol (Figure 4c).

c-Myc regulates BIM transcription during bAR stimula-
tion. To identify the transcription factor(s) involved in bAR
stimulation-mediated induction of Bim, we used the MEFs
with 4-OHT-inducible PKACa expression (Figures 1a and 5a,
inset). Transient transfection of these cells with a Bim
promoter-luciferase reporter resulted in a robust induction
of luciferase upon addition of 4-OHT. Using this assay,
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we mapped the Bim promoter and identified a conserved
hexa-nucleotide region 140 bp upstream of the transcription
start site, which was essential for PKA-mediated Bim
upregulation (Figure 5a). This site potentially represents a
non-canonical E-box capable of binding the proto-oncogene
c-Myc,35 and binding of Myc to this site could indeed be
confirmed in electrophoretic mobility shift assays (EMSA)
(Supplementary Figure S3e). A critical role for c-Myc in Bim
mRNA upregulation was first reported in the Em-Myc mouse
pre-B/B lymphoma model. Bim mRNA and Bim protein
levels were elevated in the apoptosis-prone B lymphoid cells
of Em-MYC transgenic mice, and Bim-deficient Em-Myc mice
had increased numbers of sIgMþ B cells.36 However, a
direct relationship between c-Myc and Bim transcription is yet

to be established. Expression of c-Myc under 4-OHT-
regulation in MEFs resulted in a robust induction of Bim at
both the mRNA and protein levels as, for example, seen in
the luciferase assay (Figure 5b). This transcriptional induc-
tion of the Bim reporter construct could be abrogated either
by mutating the conserved E-Box or by using the PKA
inhibitor H-89 (Figure 5b). Furthermore, bAR stimulation-
triggered induction of the Bim reporter in MEFs could also be
abrogated by 10058-F4,37 a specific inhibitor of c-Myc–Max
interaction. This indicates that Myc–Max heterodimerization
is crucial for this transcriptional upregulation of Bim
(Figure 5c). Consistent with these results, acute loss of
c-Myc by CRE-mediated deletion in c-Mycfl/fl MEFs resulted
in failure to induce Bim in response to bAR activation,

Figure 2 cAMP/PKA-mediated apoptosis is Bim dependent. (a and b) Analysis of thymocytes apoptosis in FTOC in response to bAR activation. (c) cAMP measurement in
thymocytes from WT and Bim� /� mice in response to bAR activation. (d) Representative echocardiographic 2D short-axis view of the LV of mice injected with isoproterenol
(15 mg/kg per day i.p. for 8 days) compared with untreated controls (UT). (e and f) Measurement of fractional shortening and fractional area change in the isoproterenol-treated
mice compared with control. Error bars: ±S.E.M., n¼ 3–5. #P¼ 0.0053–0.0078 (b and c); n¼ 5–7, #P¼ 0.0067–0.0094 (e and f); *P¼ 0.432–0.562; one-tailed T-tests
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although both c-Mycfl/fl and c-Myc� /� MEFs were equally
capable of activating the bAR pathway, as evidenced by the
increase in p-CREB levels (Figure 5d).

Whole genome chromatin immunoprecipitation (ChIP) and
Next Generation Sequence analysis data generated as part of
the ENCODE consortium by the Iyer lab (University of Texas,
Austin) demonstrated that the Bim promoter was occupied by
c-Myc in a variety of human cell lines (Figure 4e; http://www.
genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=sub-
mit&hgS_otherUserName=Vishy&hgS_otherUserSession
Name=bim_Myc). The c-Myc-binding region identified by
ChIP spanned the sequence identified in the luciferase
reporter assays corroborating our results (Figure 5e). To
validate and expand these findings, we generated a knock-in
mouse strain in which the conserved c-Myc-binding sites
within the Bim promoter were mutated (Supplementary Figure
S3a). In MEFs derived from these mutant mice, Bim
transcription was not upregulated upon enforced c-Myc
expression or bAR activation (Figure 5f and Supplementary
Figure S3b). This demonstrates that c-Myc is essential for
bAR-mediated Bim induction.

CBP is a required cofactor for c-Myc in Bim transcrip-
tional induction. The data so far suggest that the transcrip-
tion factor c-Myc is the critical driver of Bim transcriptional
induction in response to cAMP/PKA stimulation. However,
the link between PKA and c-Myc remains to be established.
The only published report linking c-Myc directly with PKA is
the transcriptional induction of the PKA catalytic subunit
beta.38 We first examined whether c-Myc was a direct
phosphorylation substrate of PKA, as c-Myc protein has
canonical PKA phosphorylation sites (158RKDS161 and
276KRSES280 as predicted by the IMP Bioinformatics Group
algorithm, Austria). Indeed, both WT and S279A mutant
c-Myc could be readily phosphorylated by PKA in vitro,
whereas S159A mutant c-Myc could not be phosphorylated
(Supplementary Figure S3c). This mutation did, however, not
have any discernable effect on the DNA-binding activity of
c-Myc, as shown by EMSA and transcriptional activation of
the Bim reporter construct or on the induction of Bim in MEFs
when stably expressed, using 4-OHT-inducible lentiviral
system (Supplementary Figures S3d–f). The transcriptional
activity of c-Myc can be augmented by the recruitment of the
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cofactor CBP.39 We therefore tested whether such a process
is critical for PKA-induced c-Myc transcriptional activity by
RNAi-mediated knockdown of Cbp in MEFs. Interestingly,
this resulted in the blockage of Bim induction, although both
the WT and Cbp-knockdown cells were equally responsive to
the bAR agonist, as reflected by CREB phosphorylation
(Figure 6a). Furthermore, induction of the Bim luciferase
reporter was markedly impaired in Cbp-knockdown cells
(Figure 6b). Consequently, these cells were resistant to bAR
agonist-induced apoptosis (Supplementary Figure S4a). To
prove that CBP regulates Bim expression through c-Myc, we
used the Bim-luciferase reporter assay. Transfection of
MEFs with CBP and the WT Bim promoter-luciferase
construct resulted in a robust induction of this reporter in
response to treatment with isoproterenol, whereas such
induction was not seen with the reporter in which the c-Myc-
binding site had been mutated (Figure 6c).

Inactivating mutations in CBP are frequently found in acute
lymphoblastic leukemia and in diffuse large cell B cell
lymphomas. A large proportion of these mutations reside in
the histone acetyltransferase (HAT) domain of CBP.40 More-
over, epigenetic silencing of Bim is a feature in some types

of B cell lymphoma.41 We therefore examined whether
HAT-deficient mutants of CBP were impaired in their ability
to transcriptionally induce Bim. WT CBP could readily
acetylate c-Myc in 293T cells but the HAT-deficient mutants
H1451C or Y1234C40 had lost this ability (Figure 6d).
Consistent with this, WT CBP could induce the Bim reporter,
whereas the mutants failed to do so (Figure 6d). These results
were further corroborated in the human lung cancer-derived
cell line LK-2, which does not have a functional CBP protein
owing to a deletion of exon 3 of the Cbp gene.42 bAR activation
could readily induce Bim expression in the osteosarcoma cell
line (143B) or B cell lymphoma cell line (Ramos), both of which
have functional CBP, but not in CBP-deficient LK-2 cells
(Supplementary Figure S4b). However, introduction of WT
Cbp could restore bAR stimulation-triggered Bim induction in
these cells (Figure 6e and Supplementary Figures S4c and d).
These results demonstrate an essential role for CBP in c-Myc-
mediated Bim induction during bAR activation.

Epigenetic regulation of Bim during bAR signalling. The
Bim gene is subject to epigenetic changes both by histone
modification and by DNA methylation. In many cancers, such
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as multiple myeloma, treatment with histone deacetylase
inhibitors increases Bim expression and triggers apoptosis in
a manner that is dependent (at least in part) on Bim.43 In
chronic myeloid leukemia, changes in Bim promoter methy-
lation status are associated with differences in Bim gene
expression.44 As CBP is a cofactor in c-Myc-regulated Bim
expression, and CBP mutations in the HAT domain are
associated with tumor development,40 we investigated
whether epigenetic changes in the Bim promoter occur
during bAR signalling. Bisulphite sequence analysis of the
Bim promoter from bAR responsive Ramos cells and
the non-responsive LK-2 (CBP negative) cells showed a
significant increase in CpG island methylation in the non-
responsive cells. This could be partially reversed by the
ectopic expression of CBP from a lentiviral vector
(Figure 7a). Finally, ChIP analysis using MEFs expressing
the catalytic subunit of PKA under 4-OHT regulation showed

that both c-Myc and CBP bind constitutively to the Bim
promoter, irrespective of the PKA activation status
(Figure 7b). This is consistent with the whole genome ChIP
analysis (Figure 5e), which showed that c-Myc could
constitutively bind to the Bim promoter in different cell lines.
However, histone 4 acetylation at the Bim promoter occurred
specifically during PKA activation, corroborating the role of
CBP in histone modification (Figure 7b last lane). These
results establish a role for CBP in the cAMP/PKA pathway in
inducing epigenetic changes in the Bim gene.

Discussion

Increased sympathetic nervous activity in the myocardium is a
classical feature of patients with HF.18 Similarly, catechola-
mines, the primary transmitter of the sympathetic nervous
system, regulate lymphocyte homeostasis by both autocrine
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and paracrine signalling.4 In cardiac bAR signalling, it is well
established that chronically increased stimulation and sub-
sequent PKA activation could result in a robust apoptotic
response.6 Moreover, it was shown that the pro-apoptotic
BH3-only protein Bim has a crucial role in cAMP-induced
apoptosis in the T cell hybridoma line S49.21 Therefore, our
initial task was to explore the generality of this phenomenon in
different tissues. We could demonstrate PKA activation
and subsequent Bim induction both at the protein and
mRNA levels by a variety of stimuli and in a variety of
tissues (Figures 1 and 4). We could also demonstrate that in

thymic and heart tissues, Bim has a critical role in bAR-
mediated apoptosis (Figure 2). Our results also demonstrate
that Bim has an important role in the heart development. In
MEFs and thymocytes, there was a lag time between mRNA
induction and protein accumulation. This could be partly due
to the Bim protein stabilization by PKA, as we previously
reported.17 Lag time between transcript induction and
protein accumulation has been reported in many previous
studies,45 particularly for the bAR pathway where feedback
inhibition and receptor decoupling leads to receptor
desensitization.46
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Apart from protecting from bAR-induced cardiomyopathy,
Bim� /� mice had a significantly larger heart (Supplementary
Figure S2d). This is not associated with hyperplasia rather
because of increased size of cardiomyocytes, which does not
change with isoproterenol treatment (Figures 3a and b). As
cardiac sympathetic nervous system is a strong regulator of
cardiomyocyte size via bAR-dependent repression of proteo-
lysis,47 we believe that this size increase is a function of
elevated bAR activity in the absence of Bim, similar to the
observation in thymocytes. Furthermore, this hypertrophy is
not associated with any pathology, as we could not detect any
upregulation of pathology-associated genes such as Myh6
and 7; Serca2 or Col1a1 and Col3a1.48 However, cardiac
skeletal a-actin (Aska) was significantly increased in the KO
tissue. On the basis of gene knock-out studies, it is believed
that Aska contributes to muscular strength and contractility,49

and thus our results suggest that blocking Bim expression in
the heart will maintain the bAR-mediated inotropic function
and only prevent the apoptotic arm of the signal transduction
pathway.

The observation that deletion of Prkar1a results in Bim-
dependent apoptosis is significant in yet another context
(Figure 4). Inactivation of Prkar1a has been attributed to the

development of cancer, such as multiple endocrinal neopla-
sia, myxoma and thyroid tumors.50 Therefore, Prkar1a is
believed to be a tumor suppressor.50 However, our results
suggest that cancer associated with Prkar1a mutations can
develop only if there are cooperating oncogenic mutations that
inhibit Bim-induced apoptosis. This could involve either
genetic or epigenetic changes in the Bim gene or mutations
that counter Bim induction, such as overexpression of
antiapoptotic Bcl-2 family members. Given that Bim is a tumor
suppressor in many cancers,41,51 it is possible that in those
cancers where Prkar1a loss of heterozygosity causes
elevated PKA activity, Bim is a critical tumor suppressor.

Our data show for the first time that c-Myc regulates the
transcriptional induction of Bim during bAR activation. CREB
is one of the main downstream targets of PKA and based on
expression analysis, it was reported that Bim was a down-
stream target of CREB.52 However, our results, obtained
through a variety of methods, demonstrate that it is c-Myc that
is mediating Bim transcriptional induction (Figure 5). This
finding is also relevant to Em-myc transgenic mice, a model of
Burkitt’s lymphoma, where deregulated c-Myc expression
leads to increased Bim protein levels in B cells,36 and thereby
suppresses lymphoma development. However, c-Myc was
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considered to upregulate Bim indirectly. The results presented
here represent the first demonstration of a direct role for c-Myc
in Bim transcriptional upregulation.

Yet another significant finding in this study is the role of CBP
in Bim induction. Our results demonstrated an absolute
requirement of this transcriptional co-factor for bAR stimula-
tion-triggered Bim induction (Figure 6). Mutations in CBP are
found in B cell lymphomas.40 It is therefore possible that Bim
downregulation in these cells may contribute to tumori-
genesis, given that Bim functions as a tumour suppressor in
B cell lymphoma.36 Our results also show that although LK-2
cells have normal expression of p300, Bim can be upregulated
only when CBP is forcibly expressed (Figure 6e and
Supplementary Figures S4c and d). This indicates that there
is no functional redundancy between Cbp and p300 in
inducing Bim transcription in spite of the extensive sequence
similarity between these two proteins, in agreement with
previous report.53 Finally, our findings of epigenetic changes
at the Bim locus (Figure 7), both in terms of histone acetylation
and DNA methylation during PKA activation/CBP expression
can be reconciled as CBP is a HAT and the interplay between
these two processes in gene regulation has long been
established.54 On the basis of these findings, the following
model (Figure 7c) is proposed where bAR-mediated PKA
activation leads to activation of CBP. The activated CBP leads
to histone acetylation (and demethylation) at the Bim
promoter locus, leading to increased gene expression.

Taken together, these results provide a clear link between
cAMP/PKA pathway activation and Bim induction and con-
sequent Bim-mediated apoptosis. Catecholamines are the
prime mediators of cardiomyocyte apoptosis.6 In the immune
system, apart from the sympathetic nervous innervation of
lymphoid organs, lymphocytes and macrophages themselves
can be a source of catecholamines.4,24 This is known to
contribute to thymocyte apoptosis and thymic involution can
exert immune-modulatory effect as a prototypic stress
response.24 The present work is the first demonstration of
the molecular pathway of bAR-mediated apoptosis. Under-
standing the molecular mechanism of this apoptotic pathway
may provide critical clues for developing new drugs for the
treatment of diseases associated with increased b-adrenergic
activation.

Materials and Methods
Cell culture and luciferase assay. Cells were grown in DMEM
supplemented with 10% foetal calf serum at 10% CO2 and at 37 1C. Transient
transfections were performed using Fugene (Roche, Indianapois, IN, USA). For
PKACa or c-Myc-expressing cells, proteins expression was induced 24 h after
transfection with 5 nm 4-OHT overnight, followed by luciferase assay using the
Dual Luciferase (Promega, Alexandria, NSW, Australia) kit. For catecholamine
induction, cells were treated 24 h after transfection, with isoproterenol (10 mM) and
rolipram (10mM) in serum-free medium overnight before the luciferase assay.

Animal experimentation. All animal experiments were conducted according
to the La Trobe University Animal Ethics committee and the Alfred Medical
Research and Education Precinct Animal Ethics Committee guidelines.

Lentiviral infection. To generate stable, transformed MEFs, primary MEFs
were infected with lentiviral particles expressing SV40 T antigen. To generate
conditional knock-out MEFs, transformed MEFs (Prkar1afl/fl and c-Mycfl/fl) were
infected with 4-hydroxytamoxifen (4-OHT)-inducible CRE-expressing lentiviral
particles and clones were selected. CRE deletion was induced by the addition of

4-OHT (5 nM). Production of lentiviral particles and infections were carried out as
described.17

Foetal thymic organ culture. Thymic organ culture was performed as
described.55 Thymus lobes obtained from E15 embryos were cultured in DMEM
medium supplemented with 50mM b-mercaptoethanol (Sigma, Castle Hill, NSW,
Australia) plus 10% FCS. After 12 days, thymocytes were treated with 10mM
isoproterenol and 0.5 mM IBMX. Cells were isolated from these thymi for FACS,
qPCR, western blot and cAMP analyses.

RT-quantitative PCR. Total RNA from thymocytes was isolated using
TRIZOL. Complementary DNA (cDNA) was synthesized from 2mg of total RNA
using the Superscript III RT-PCR system (Catalogue number 18080-051
Invitrogen, Carlsbad, CA, USA), using oligo-dT primer, according to manufac-
turer’s instructions. qPCR was carried out using Brilliant II SYBER Green QPCR
master Mix (Catalogue number 600828 Stratagene, La Jolla, CA, USA). All cDNA
samples were tested in triplicate using a Light cycler 480 Real-time PCR
instrument (Roche). Following primers were used for qPCR reactions: Bim (F):
50-GAGTTGTGACAAGTCAACACAAACC-30; Bim (R): 50-GAAGATAAAGCGTAAC
AGTTGTAAGATA-30; Nur77 (F): 50-CCTGTTGCTAGAGTCTGCCTTC-30; Nur77
(R): 50-CAATCCAATCACCAAAGCCACG-30; Puma (F): 50-ATGCCTGCCTC
ACCTTCATCT-30; Puma (R): 50-AGCACAGGATTCACAGTCTGGA-30; Noxa (F):
50-ACTGTGGTTCTGGCGCAGAT-30; Noxa (R): 50-TTGAGCACACTCGTCCT
TCAA-30; c-Myc (F): 50-CAAATCCTGTACCTCGTCCGATTC-30; c-Myc (R):
50-CTTCTTGCTCTTCTTCAGAGTCGC-30; Serca2a (F): 50-TCGACCAGTCAAT
TCTTACAG-30; Serca2a (R): 50-GGGACAGGGTCAGTATGCTT-30; Myh6 (F):
50-GTCACCAACAACCCATACGACTAC-30; Myh6 (R): 50-CAGCACATCAAAGGC
ACTATCAGT-30; Myh7 (F): 50-AGAACCTACTGCGGCTCCA-30; Myh7 (R): 50-CTA
CTCCTCATTCAGGCC-30; Col1a1 (F): 50-GGAGATGATGGGGAAGCTG-30;
Col1a1 (R): 50-AATCCACGAGCACCCTGA-30; Col3a1 (F): 50-GGAATGGAGCA
AGACAGTCTTTG-30; Col3a1 (R): 50-TGCGATATCTATGATGGGTAGTCTCA-30;
Aska (F): 50-CCTGCCATGTATGTGGCTATC-30; Aska (R): 50-CCCCAGAATCC
AACACGAT-30; 18s rRNA (F): 50-CCGCTCCCAAGATCCAACTA-30; 18s rRNA
(R): 50-TTGGAGGGCAAGTCTGGTG-30.

Chromatin immunoprecipitations. DNA for ChIP analysis was prepared
from cells expressing PKACa under 4-OHT regulation using EZ-ChIP (Millipore,
Billerica, MA, USA) kit, following manufacturer’s instructions. The following
antibodies were used: anti-Myc (N-262, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-CBP (C-20, Santa Cruz Biotechnology), anti-acetyl-Histone H3 (17-
658, Millipore), anti-acetyl-Histone H4 (17-630, Millipore). Immunoprecipitated
DNAs were subjected to PCR using oligos specific to Bim promoter F: 50-
GTGAAGTGCTAACTAGATTGCAC-30 and R: 50-GAAAACCAGCAGTGGTGGAC-
30. Primers specific to the 30UTR were used as negative controls, that is, F: 50-
TGTCTTCCTGCTGATTCAGC-30 and R: 50-AAACGTAAAGGAAGCCAGGG-30.

Western and northern blot analyses. Western blot and northern blot
analyses were performed as described before.17 The following antibodies were
used for western blot analyses: anti-Bim (3C5), anti-HA (6E2, Cell Signaling,
Boston, MA, USA), anti-CBP, anti-p300 (N-15, Santa Cruz Biotechnology), anti
pCREB Ser133, Affinity Bioreagents, Golden, CO, USA), anti HSP70, anti-acetyl
lysine (9441, Cell Signaling), anti PRKAR1A (610609, BD Biosciences, CA, USA),
anti-PKA substrate (9621, Cell Signaling), anti-PUMA (3043, ProSci, Poway, CA, USA).

cAMP measurement. cAMP in cellular extracts was measured using cAMP
Direct Immunoassay Kit (Cat# ab65355, Abcam, Cambridge, MA, USA).

Cardiomyocyte isolation. Cardiomyocytes were isolated by Langendorff
perfusion technique, as described.56

In vitro PKA kinase assay. In vitro PKA kinase assay was performed as
described.17

Catecholamine measurements. Blood samples were collected from
anesthetized animals by cardiac puncture. Plasma were prepared by centri-
fugation and stored at � 80 1C, until assay with high-performance liquid
chromatography (HPLC).57 This method allowed simultaneous determination of
norepinephrine and epinephrine. Catecholamines were adsorbed with activated
alumina, separated by HPLC, and quantified by electrochemical detection.
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Histology. Hearts were fixed in 10% formalin in phosphate-buffered saline,
paraffin-embedded, serially sectioned (5 mM) and stained with Picrosirius red or
Masson’s trichrome.58

Echocardiography. Animals were anesthetized by isoflurane. Using an IE33
ultrasound system and a linear 15 MHz probe, two-dimentional (2D) short-axis
loop of the LV was acquired for measurement of LV cross-sectional areas at the
diastole and systole. LV fractional shortening was calculated from LV diameters at
the diastole and systole from the M-mode traces derived from 2D image, as
described before.58

Promoter methylation analysis. Promoter methylation was analysed by
bisulphite sequencing of the BIM promoter using MethylDetector kit (Active Motif,
Carlsbad, CA, USA). Sulphonated DNA samples (from Ramos, LK-2 and LK-2
cells expressing functional CBP) were amplified by PCR using primers specific for
CpG island corresponding to bases � 1513 to � 948 (relative to the transcription
start site on human BIM gene). PCR-amplified fragments were cloned into PCRII-
TOPO vector using TOPO TA Cloning kit (Life Technologies, Grand Island, NY,
USA). Ten clones from each cloning were sequenced and analysed using BISMA
software (Jacobs University Breman, Germany).
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