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Abstract
A growing body of evidence indicates that carbon monoxide (CO), once perceived merely as a
poisonous gas, exerts antiapoptotic and cytoprotective effects. Using a water-soluble CO-releasing
molecule (CORM) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), we previously reported
that CO induces a delayed protection against myocardial infarction similar to that observed in the
late phase of ischemic preconditioning (PC). In the current study, we investigated the molecular
mechanisms underlying this cardioprotective effect. The impact on apoptotic signaling pathways
was first examined in the setting of ischemia/reperfusion injury. Mice were pretreated with
CORM-3 or iCORM-3 (which does not release CO) and subjected to coronary occlusion/
reperfusion 24 h later. In mice that received CORM-3, there was a significant reduction in markers
of apoptosis (cleaved lamin A, cleaved caspase-3, and cleaved PARP-1) after ischemia/reperfusion
injury. To elucidate the mechanism of CORM-3-induced cardioprotection we further examined the
activation of transcription factors and induction of cardioprotective and apoptosis modulating
proteins. Infusion of CORM-3 rapidly activated the stress-responsive transcription factors nuclear
factor kappaB (NF-κB), signal transducers and activators of transcription (STAT)1, STAT3, and
NF-E2-related factor-2 (Nrf2). This was followed 24 h later by upregulation of cardioprotective
proteins (heme oxygenase-1 [HO-1], cyclooxygenase-2 [COX-2], and extracellular superoxide
dismutase [Ec-SOD]) and antiapoptotic proteins involving both the mitochondria-mediated
(Mcl-1) and the death receptor-mediated (c-FLIPS, and c-FLIPL) apoptosis pathways. We
conclude that CO released by CORM-3 triggers a cardioprotective signaling cascade that recruits
the transcription factors NF-κB, STAT1/3, and Nrf2 with a subsequent increase in
cardioprotective and antiapoptotic molecules in the myocardium leading to the late PC-mimetic
infarct-sparing effects.
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INTRODUCTION
Although carbon monoxide (CO) has historically been viewed as toxic to biological systems
[1], recent studies suggest that this gaseous byproduct of heme oxygenase-1 (HO-1) plays an
important regulatory role in many cellular and biological processes. In this regard, CO has
been shown to ameliorate inflammation [2, 3], reduce oxidative stress [4], and inhibit
apoptosis [5, 6]. We previously reported that administration of a water soluble CO-releasing
molecule (CORM) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), induces a delayed
infarct-sparing effect similar to that seen during the late phase of ischemic preconditioning
(PC) [7]. However, the molecular mechanism underlying this robust cardioprotection
remains unknown.

The late phase of ischemic PC provides sustained cardioprotection, and therefore,
exploitation of late PC has potential clinical significance [8]. Importantly, numerous studies
have demonstrated that a delayed cardioprotective effect similar to that afforded by the late
phase of ischemic PC can be elicited by a variety of pharmacologic agents [9–13].
Unfortunately, most of these interventions are either not clinically applicable or have
significant side effects. In our previous work, we demonstrated that CORM-3 induces robust
cardioprotection without significantly increasing carboxy-hemoglobin levels [14]. This
suggests that CO administered by CORM-3 may be both clinically applicable and safe.

Mechanistically, cyclooxygenase-2 (COX-2) and HO-1 are two obligatory mediators of late
PC [15, 16]. We have previously shown that the late phase of ischemic PC induces
antiapoptotic proteins involving both the mitochondria-mediated (Mcl-1) and death receptor-
mediated (c-FLIPL and c-FLIPS) apoptosis pathways [17]. Increased expression of these
antiapoptotic proteins presumably culminates in the attenuation of mediators of apoptosis
common to both pathways (cleaved lamin A, cleaved caspase-3 and cleaved PARP-1) and
reduces apoptosis in response to myocardial ischemia/reperfusion injury [17]. Similarly, the
cytoprotective effects of CO have also been associated with inhibition of apoptosis and
upregulation of antiapoptotic proteins [5, 18, 19]. The stress-responsive transcription factors
signal transducers and activators of transcription (STAT)1, STAT3 and nuclear factor
kappaB (NF-κB) are known to orchestrate the induction of cardioprotective and
antiapoptotic proteins in the heart [20–22]. In addition, recent evidence suggests that
exogenous CO induces HO-1 expression via the transcription factor NF-E2-related factor-2
(Nrf2) utilizing the ER stress response pathway and PERK activation in endothelial cells
[23].

Since the magnitudes of cardioprotection afforded by ischemic late PC and CORM-3 are
similar [7] and both seem to influence antiapoptotic and cardioprotective signaling pathways
[5, 17, 18], we postulated that the cardioprotective benefits of CORM-3 may involve
modulation of antiapoptotic and cardioprotective molecules. Accordingly, the goals of the
present study were: (i) to determine whether CORM-3-induced cardioprotection attenuates
the I/R-induced upregulation of the common mediators of apoptosis (cleaved lamin A,
cleaved caspase-3, and cleaved PARP-1); (ii) to determine whether CORM-3-induced
cardioprotection is associated with increased expression of the antiapoptotic proteins in the
mitochondria-mediated (Mcl-1), the death receptor-mediated (c-FLIPS, and c-FLIPL)
antiapoptotic pathways; (iii) to determine whether CORM-3 induces upregulation of the
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cardioprotective proteins (COX-2, HO-1, and EC-SOD); and (iv) to determine whether
CORM-3 activates the transcription factors known to influence antipoptotic and
cytoprotective signaling (NF-κB, STAT1, STAT3, and Nrf2).

METHODS
The study was performed in accordance with the guidelines of the Animal Care and Use
Committee of the University of Louisville School of Medicine and with the Guide for the
Care and Use of Laboratory Animals (Department of Health and Human Services, National
Institutes of Health, Publication No. 85-23, revised 1996).

Animals
Wild-type male ICR mice (body wt. 35.1±1.2 g, age 9.8±0.4 wk) were used for this study.
All mice were purchased from Jackson Laboratory (Bar Harbor, ME). Mice were maintained
in microisolator cages under specific pathogen-free conditions in a room with a temperature
of 24°C, 55–65% relative humidity, and a 12-h light-dark cycle.

Experimental protocol
The overall experimental design is summarized in Figure 1. Mice were assigned to ten
groups: four groups were used to assess the impact of CORM-3/iCORM-3 pretreatment on I/
R-induced expression of the common apoptotic mediators cleaved lamin A, cleaved
caspase-3, and cleaved PARP-1 (groups I–IV); two groups were used for the measurement
of myocardial protein levels by Western immunoblotting (groups V–VI); and four groups
for transcription factor studies (groups VII–X). CORM-3 was inactivated by dissolving it in
PBS (0.35 mg/ml) and leaving it at room temperature for 24 h; under these conditions, one
mole of CO per mole of compound is released in the solution, and as a result, no additional
CO is liberated upon administration of the drug [24]. Active CORM-3 was dissolved in
distilled water (pH 7.0). The inactive form iCORM-3, which is unable to liberate CO [24]
was used as control. Mice received a 60-min i.v. infusion of inactive CORM-3 (groups I, III,
V, VII, and IX; total dose 3.54 mg/kg) or CORM-3 (groups II, IV, VI, VIII, and X; total
dose 3.54 mg/kg). This dose of CORM-3 was selected because in our previous study in this
model it afforded robust cardioprotection [14]. Twenty-four hours after CORM-3 or
iCORM-3 infusion, mice in groups I–IV were subjected to a sham open-chest procedure
(groups I and II) or a 30-min coronary occlusion/reperfusion (groups II and IV) followed 3 h
later by harvest of myocardial tissue samples [7]. Nuclear extracts were prepared from the
ischemic zone, and Western immunoblotting was performed for cleaved lamin A, cleaved
caspase-3, and cleaved PARP-1, common mediators of apoptosis. In groups V and VI, mice
received iCORM-3 or CORM-3 and were euthanized 24 h later (day 2) and myocardial
tissue samples were collected for Western immunoblotting assays of COX-2, Ec-SOD,
HO-1, Mcl-1, c-FLIPS, and c-FLIPL. In groups VII–X, mice were sacrificed 30-min after the
completion of iCORM-3 or CORM-3 infusion and myocardial tissue samples were
harvested for the determination of transcription factor activation and DNA-binding activity.
Myocardial samples were rapidly removed from the left ventricular free wall, and frozen
immediately in liquid nitrogen.

Preparation of cytosolic and membranous proteins
Myocardial tissue samples were homogenized in buffer A (25 mM Tris-HCl pH 7.4], 0.5
mM EDTA, 0.5mM EGTA, 1 mM PMSF, 25 µg/ml leupeptin, 1mM DTT, 25 mM NaF, and
1 mM Na3VO4) and centrifuged at 14,000g for 12 min at 4°C, and the resulting supernatants
were collected as cytosolic fractions [25]. The pellets were incubated in a lysis buffer (buffer
A+1% Triton X-100) for 2 h and centrifuged at 14,000g for 15 min at 4°C, and the resulting
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supernatants were collected as membranous fraction [25]. Protein contents were determined
by a Bio-Rad protein assay kit.

Preparation of nuclear extracts
Nuclear extracts were prepared using a modification of a previously described method [26].
The samples were homogenized in buffer A (10 mmol/L, HEPES pH 7.9], 1.5 mmol/L
MgCl2, 10 mmol/L KCl, 1 mmol/L DTT, 25 mg/mL leupeptin, and 1 mmol/L PMSF). After
a 10-min incubation on ice, the samples were centrifuged at 1,850g for 10 min at 4°C. The
pellets were dissolved in buffer B (buffer A+0.1% Triton X-100), incubated on ice for 10
min, and then centrifuged as above. The crude nuclear pellets were washed once with buffer
A and resuspended in buffer C (20 mmol/L HEPES [pH 7.9], 25% glycerol [vol/vol], 0.42
mol/L NaCl, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA, 0.5 mmol/L DTT, and 1 mmol/L
PMSF) for 30 min at 4°C. Nuclear proteins were recovered after centrifugation at 25,000g
for 30 min. The resulting clear supernatants were dialyzed against 100 volumes of buffer D
(20 mmol/L HEPES [pH 7.9], 4% glycerol, 50 mmol/L NaCl, 0.5 mmol/L EDTA, 1 mmol/L
MgCl2, 0.5 mmol/L PMSF, and 0.5 mmol/L DTT) for 6 h at 4°C. The dialysates were
centrifuged again at 25,000g for 30 min. The resulting supernatants were designated as the
nuclear protein extracts. The purity of the nuclear extracts was confirmed using lactate
dehydrogenase (LDH) as a cytosolic marker.

Western immunoblotting
Protein expression was determined by standard SDS-PAGE immunoblotting techniques [25,
27]. Gel transfer efficiency and was recorded carefully by making photocopies of
membranes dyed with reversible Ponceau staining [25, 27]; gel retention was determined by
Coomassie blue staining [25, 27]. Polyclonal anti-Mcl-1 (Santa Cruz Biotechnology) and
monoclonal anti-rat c-FLIPL and c-FLIPS (Alexis, San Diego, CA), anti-COX-2 (Cayman
Chemical), anti-Ec-SOD (Stressgen), anti-Bax and anti-Bad (Santa Cruz), and anti-HO-1
(Stressgen) antibodies were used for respective assays. Antibodies against NF-κB p65
(Santa Cruz Biotechnology), pTyr(701)-STAT1 (Upstate Biotechnology), pTyr(705)-
STAT3 (Cell Signaling Technology), pSer(729)-STAT3 (Santa Cruz Biotechnology), and
Nrf2 (Santa Cruz Biotechnology) were used for the assays of NF-κB, phosphorylated
STAT1/3, and Nrf2. Antibodies against cleaved caspase-3 (Cell Signaling Technology),
cleaved PARP-1 (Cell Signaling Technology) and cleaved lamin A (Cell Signaling
Technology), were used for the respective assays. In order to ensure equal protein loading in
all lanes, the total amounts of proteins transferred from each lane to the nitrocellulose
membrane were quantified by Ponceau staining. Given the critical importance of
quantitating signal intensity as accurately as possible, each specific signal of the band of
interest detected by immunoblotting was normalized to the corresponding Ponceau stain
signal determined by densitometric analysis of the Ponceau stain record, as previously
described [25, 27, 28]. In all samples, the content of each protein was expressed as a
percentage of the corresponding protein in iCORM-3 control samples (100%).

Electrophoretic mobility shift assays
The DNA binding activity of STAT1/3, NF-κB, and Nrf2 was measured with
electrophoretic mobility shift assays. Nuclear fraction was isolated as above. A synthetic
double-stranded probe containing the STAT1/3 consensus sequence 5'-
GATCAGCTTCAATTTCCCGTAAATCCCTA-3' (Gibco, Carlsbad, CA) was used for
STAT1/3 DNA binding activity. A double-stranded 22-mer oligonucleotide containing the
κB consensus sequence 5'-AGTTGAGGGGACTTTCCCAGGC-3' (Promega Corp) was
used for NF-κB DNA binding activity. A double-stranded 27-mer oligonucleotide with the
Nrf2 consensus sequence 5'-TGGGGAACCTGTGCTGAGTCACTGGAG-3' (Santa Cruz)
was used for Nrf2 DNA binding activity. These probes were end-labeled using [γ-32P] ATP
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(3000 Ci/mmol, Amersham) and T4 polynucleotide kinase, and purified with a G-25
Sephadex column.

Statistical analysis
Data are reported as means±SEM. Differences among groups with respect to Mcl-1, c-
FLIPL, c-FLIPS, COX-2, HO-1, Ec-SOD, Bad, Bax, NF-κB, STAT1, STAT3, and Nrf2
were analyzed using one-way ANOVA. If the ANOVA showed an overall difference, post
hoc contrasts were performed with Student t-tests for unpaired data with the Bonferroni
correction. P<0.05 was considered statistically significant. All statistical analyses were
performed using the SPSS (version 8.0) statistical software (SPSS Inc., Chicago, IL).

RESULTS
A total of 56 mice were used (20 mice for the I/R studies [groups I–IV], 12 mice for the
determination of protein levels by Western immunoblotting [groups V and VI], and 24 mice
for the studies of transcription factor activation and gel shift assays [groups VII–X]).

CORM-3 attenuates the expression of common mediators of apoptosis in the ischemic/
reperfused myocardium

The myocardial expression of molecular indicators of apoptosis were examined in iCORM-3
and CORM-3-treated mice that were subjected to coronary occlusion/reperfusion. Figure 2A
shows the representative immunoblots. In sham-operated mice treated with iCORM-3
(group I) or CORM-3 (group III) the levels of cleaved lamin A (100±15% vs. 98±21%,
respectively, Figure 2B), cleaved caspase-3 (100±3% vs. 98±12%, respectively, Figure 2C),
and cleaved PARP-1 (100±11% vs. 103±8%, respectively, Figure 2D) were similar.
However, compared with iCORM-3 (group II), pretreatment with CORM-3 (group IV)
significantly attenuated the levels of cleaved lamin A (+179±36% vs. +704±140%,
respectively, P<0.05, Figure 2B), cleaved caspase-3 (+183±27% vs. +573±76%,
respectively, P<0.05, Figure 2C), and cleaved PARP-1 (+230±34% vs. +761±180%,
respectively, P<0.05, Figure 2D) in the ischemic/reperfused myocardium. These data
indicate that infusion of CORM-3 attenuates the activation of proapoptotic signaling after
myocardial ischemia/reperfusion injury 24 h later.

CORM-3 increases myocardial levels of COX-2, HO-1, and Ec-SOD
The protein levels of cytoprotective molecules in myocardial tissues samples harvested 24 h
after CORM-3 and iCORM-3 administration were determined by Western immunoblotting.
In CORM-3-treated mice, the levels of COX-2 (+137±24% above iCORM-3-treated group,
P<0.05, Figure 3A), HO-1 (+185±55% above iCORM-3-treated group, P<0.05, Figure 3B),
and Ec-SOD (+77±7% above iCORM-3-treated group, P<0.05, Figure 3C) were
significantly greater compared with iCORM-3-treated mice. These data indicate that
CORM-3 infusion increases myocardial expression of molecules with known
cardioprotective and antiapoptotic effects.

CORM-3 increases myocardial antiapoptotic protein levels
As shown in Figure 4A, Western immunoblotting analysis revealed a marked increase in
Mcl-1 protein in the cytosolic fraction at 24 h after CORM-3 administration. Densitometric
analysis of the immunoreactive bands showed that in CORM-3-treated mice the expression
of Mcl-1 increased by 276±56% (P<0.05 vs. iCORM3, Figure 4A). Similarly, CORM-3
treatment was associated with a significant increase in the expression of c-FLIPL and c-
FLIPS (77±16% and 80±17% above iCORM-3-treated mice, respectively, P<0.05 for both,
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Figure 5) 24 h later, indicating that CORM-3 infusion induces an antiapoptotic milieu in the
myocardium.

The expression of proapoptotic proteins
In contrast to the above, Western immunoblotting analysis of the cytosolic fractions of
cardiac homogenates revealed no significant change in Bad (Figure 4B) and Bax (Figure 4C)
immunoreactivity 24 h after CORM-3 administration. Densitometric analysis of the
immunoreactive bands showed no statistically significant change in CORM-3-treated mice
compared with iCORM-3-treated mice.

CORM-3 activates stress-responsive transcription factors in the heart
In order to identify the molecular basis of the above observations, transcription factor assays
were carried out groups VII–X (Figure 1). As shown in Figure 6, Western immunoblotting
of the nuclear fraction for phosphorylated STAT1/3 revealed a marked increase in the
activated forms of these transcription factors in the nuclear fraction in CORM-3-treated
mice (pTyr[701]-STAT1: +178±29% above iCORM-3-treated mice, P<0.05, Figure 6A;
pTyr[705]-STAT3: +141±20% above iCORM-3, P<0.05, Figure 6B; and pSer[727]-STAT3,
+254±50% above iCORM-3, P<0.05, Figure 6C). These increases in phosphorylated
(activated) forms of STAT1 and STAT3 were consistent with greater STAT1/3 DNA
binding activity in nuclear extracts isolated from myocardial tissue samples of CORM-3-
treated mice (+198±29% above iCORM-3-treated mice, P<0.05, Figure 7). In addition, the
levels of p65 (a subunit of NF-κB) in the nuclear fraction at 30 min after CORM-3
administration showed a striking increase (+196±28% above iCORM-3-treated mice,
P<0.05, Figure 8A), indicating translocation of NF-κB from cytosolic to nuclear fraction.
Consistently, NF-κB DNA binding activity was greater in CORM-3-treated mice
(+349±48% above iCORM-3-treated mice, P<0.05, Figure 8B–C). Finally, CORM-3
administration was associated with increased translocation of Nrf2 to the nuclear fraction
(+133±35% above iCORM-3-treated mice, P<0.05; Figure 9A) and greater Nrf2 DNA
binding activity (+177±41% above iCORM-3-treated mice, P<0.05; Figure 9B–C) as
compared with inactive CORM-3. Together, these data indicate that CORM-3
administration is associated with rapid activation of several stress-responsive transcription
factors in the myocardium.

DISCUSSION
In recent years there has been a remarkable paradigm shift with respect to our understanding
of the function of CO in biological systems. Mounting evidence indicates that this gaseous
molecule, traditionally regarded as a toxic byproduct of HO-1 activity, exerts an important
homeostatic function and plays a cytoprotective role in many pathophysiological conditions.
In the heart, CO released by CORM-3 induces infarct-sparing benefits similar in magnitude
to that induced by the late phase of ischemic PC [7, 14, 24]. The present study is the first to
explore the mechanism of CO-induced cardioprotection.

Salient findings
Our results demonstrate that administration of a CO-releasing molecule (CORM-3): (i)
attenuates the expression of common mediators of apoptosis after ischemia/reperfusion
(cleaved lamin A, cleaved caspase-3, and cleaved PARP-1); (ii) upregulates several key
cardioprotective molecules (COX-2, HO-1, and Ec-SOD) in the myocardium 24 h later; (iii)
increases myocardial levels of a battery of antiapoptotic proteins (Mcl-1, c-FLIPS, and c-
FLIPL) known to influence both the mitochondria-dependent as well as death receptor-
mediated apoptosis pathways; and (iv) induces rapid nuclear translocation of stress-
responsive transcription factors (NF-κB, STAT1, STAT3, and Nrf2) with increased DNA

Stein et al. Page 6

J Mol Cell Cardiol. Author manuscript; available in PMC 2013 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



binding. Taken together, these results indicate that CO induces a genetic reprogramming of
the heart that promotes cell survival in a manner that recapitulates the functional and
molecular aspects of late PC. These findings advance our understanding of the role of CO in
cardiovascular homeostasis by elucidating its molecular effects.

CORM-3 upregulates the mediators of late PC
Since the magnitudes of infarct-sparing effects afforded by CO and ischemia-induced late
PC are similar [7], we sought to investigate whether the mechanism that underlies CO-
induced protection recapitulates the mechanism for ischemia-induced late PC. Two of the
obligatory mediators of late PC are HO-1 and COX-2 [27, 29]. The current results
demonstrate, for the first time, that CO released by CORM-3 upregulates COX-2 and HO-1
in the heart 24 h later. Moreover, CORM-3 infusion also increased myocardial contents of
Ec-SOD, viral induction of which has been shown to protect against both myocardial
stunning [30] and myocardial infarction [31] in a fashion akin to the late phase of ischemic
PC. These results indicate that CO and ischemia share several common mediators of delayed
cardioprotection.

CORM-3 induces an antiapoptotic milieu in the myocardium
With regard to programmed cell death, two major pathways have been identified: the
extrinsic or death receptor pathway, which is triggered by exogenous signals and leads to
caspase-8 activation; and the intrinsic or mitochondrial pathway, which is activated by
intrinsic cellular perturbations and leads to caspase-9 activation [32]. In order to beget
apoptosis, these pathways utilize common mediators, such as cleaved lamin A, cleaved
caspase-3, and cleaved PARP-1. As for antiapoptotic molecules, recent evidence suggests
that c-FLIPL and c-FLIPS suppress primarily the extrinsic pathway, whereas Mcl-1 serves to
inhibit the intrinsic pathway [32, 33]. To gain insight into the mechanism whereby CORM-3
induces delayed cardioprotection, we examined the effect of this agent on cleaved lamin A,
cleaved caspase-3, and cleaved PARP-1, as well as Mcl-1, c-FLIPS, and c-FLIPL. The
rationale for these studies stems from the fact that apoptosis contributes importantly to
ischemia/reperfusion injury and that ischemic PC reduces apoptosis through these pathways
[17]. In addition, CO has been shown to exert powerful anti-apoptotic actions in various
noncardiac tissues [4, 5, 18, 34, 35].

Our data demonstrate that CORM-3 attenuates the ischemia/reperfusion-induced expression
of the common mediators of apoptosis (cleaved lamin A, cleaved caspase-3, and cleaved
PARP-1). Our finding that CORM-3 upregulates the expression of Mcl-1, c-FLIPL and c-
FLIPS further indicates that CORM-3-induced cardioprotection involves inhibition of both
the intrinsic and the extrinsic pathways. This is congruent with the protective role of FLIP
against ischemia/reoxygenation-induced apoptosis in cardiomyocytes [36]. To our
knowledge, this is the first indication that CO reprograms the ensemble of apoptosis-related
proteins in a manner that inhibits both the intrinsic and the extrinsic pathways.

Activation of stress-responsive transcription factors
Having established that CO upregulates anti-apoptotic and cytoprotective proteins, we
sought to elucidate the molecular mechanism responsible for this phenomenon. We focused
on NF-κB, STAT1, STAT3, because these stress-responsive transcription factors have been
previously implicated in the development of the late PC phenotype [25, 37, 38]. Several
additional lines of evidence indicate that NF-kB and STAT1/3 are involved in the
transcriptional control of Mcl-1, c-FLIPL, c-FLIPS, COX-2, and HO-1 [39–44]. Unlike NF-
κB and STAT1/3, Nrf2 has not been extensively studied in myocardial ischemia/reperfusion
injury. Nrf2, a member of the “cap ‘n’ collar” family of basic leucine zipper transcription
factors [45], has been shown to mediate several responses to stress [46, 47]. Nrf2 has also
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been implicated in the transcriptional regulation of HO-1 [48–50], and recently in
endothelial cells Nrf2 has been shown to provide a mechanism whereby CO can induce
HO-1 and inhibit apoptosis [23].

Our current data demonstrate that CORM-3 induces rapid activation of all of these
transcription factors, supporting the concept that the recruitment of one or more of these
factors leads to transcriptional activation of anti-apoptotic and cytoprotective genes. To our
knowledge, these data constitute the first evidence that CO activates NF-κB, STAT1/3, and
Nrf2 in the heart. Further studies will be necessary to firmly establish a causative role of
these factors in CO-dependent protection. Nevertheless, the results of this study suggest a
paradigm whereby CORM-3 induces delayed cardioprotection by activating NF-κB,
STAT1/3, and Nrf2 leading to subsequent activation of Mcl-1, c-FLIPS, and c-FLIPL. Both
NF-κB and STAT1/3 are also known to be activated by ischemic PC, leading to the
upregulation of various cardioprotective genes, such as COX-2 and HO-1 [25, 37]. Our
present data indicate that a similar activation can be elicited by CO, corroborating the notion
that CO effectively reproduces the signaling cascade triggered by ischemic PC. An
association between CO, Nrf2, and HO-1 has not been previously shown in cardiomyocytes,
and thus, our observation is the first suggestion that such a relationship exists.

Clinical relevance of CORM-3
The implicit goal of studying PC is to exploit this phenomenon for the protection of
ischemic myocardium in patients with coronary artery disease. Although many
pharmacological agents have been shown to induce a late PC phenotype in a variety of
animal models [8], many of these agents are not clinically applicable or have significant side
effects. Using CORMs it is possible to administer CO in biological systems in a predictable,
effective, and safe manner. Moreover, unlike other late PC-mimetic agents, CORM-3 has
also been shown to reduce infarct size when given at the time of reperfusion [14]. These
results suggest that CO delivered by CORM-3 may offer a feasible and safe method of
inducing clinically-relevant cardioprotection.

CONCLUSIONS
Our results indicate that CO induces a delayed cardioprotective phenotype by activating
prosurvival signaling pathways that attenuate ischemia/reperfusion injury via the recruitment
of a cluster of stress-responsive transcription factors, leading to the upregulation of
antiapoptotic molecules that inhibit both extrinsic and intrinsic pathways of apoptosis, and
cytoprotective proteins that alleviate myocardial ischemia/reperfusion injury. These
observations also indicate that CO induces a cardioprotective and antiapoptotic milieu in the
myocardium via molecular mechanisms similar to those involved in the late phase of
ischemic PC. Thus, far from being a toxic waste product, CO exerts a fundamental function
in protecting the heart against ischemia and apoptosis. Our findings support that CO-
releasing agents may be potentially useful for inducing a sustained cardioprotective
phenotype in patients at risk for myocardial infarction.

Research Highlights

1. CORM-3 activates stress-responsive transcription factors in the heart.

2. CORM-3 upregulates several cardioprotective molecules.

3. CORM-3 attenuates the mitochondria-dependent apoptotic pathway

4. CORM-3 attenuates the death-receptor-mediated apoptotic pathway
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5. CORM-3 induces a late PC-mimetic cardioprotective milieu in the heart.
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Figure 1.
Experimental protocol. Ten groups of mice were used. On day 1, mice in groups I and III
received 3.54 mg/kg of iCORM-3 i.v. over 60 min, while mice in groups II and IV received
3.54 mg/kg of CORM-3 i.v. over the same period. Twenty-four hours later, mice were
subjected to either a sham open-chest procedure (groups I and II) or a 30-min coronary
occlusion followed by reperfusion (groups III and IV). Three hours later tissue samples were
harvested from the risk region for cleaved lamin A, cleaved caspase-3, and cleaved PARP-1
assays. On day 1, mice in groups V and VI received the same dose of iCORM-3 and
CORM-3, respectively, and myocardial tissue samples were harvested for the measurement
of Mcl-1, c-FLIPS, c-FLIPL, COX-2, HO-1, Ec-SOD, Bad, and Bax 24 h later. For
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transcription factor assays, mice in groups VII and IX received the same dose of iCORM-3,
while mice in groups VIII and X received the same dose of CORM-3. Thirty min after the
completion of infusion, myocardial tissue samples were harvested for the determination of
nuclear translocation and/or phosphorylation of p65, pTyr-STAT1, pTyr-STAT3, and Nrf2
(groups VII and VIII) and DNA binding activity using gel shift assays (groups IX and X).
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Figure 2.
Effects of iCORM-3 and CORM-3 pretreatment on ischemia/reperfusion-induced expression
of the common mediators of apoptosis. Panel A: Representative Western immunoblots
showing attenuation of ischemia/reperfusion-induced increase in levels of common
mediators of apoptosis with CORM3 pretreatment. Panels B–D: Densitometric analysis of
cleaved lamin A (B), cleaved caspase-3 (C), and cleaved PARP-1 (D) signals. Data are
means±SEM. *P<0.05 vs. iCORM-3,#P<0.05 vs. iCORM-3+I/R.
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Figure 3.
Effects of inactive CORM-3 (iCORM-3, group V) and CORM-3 (group VI) administration
on myocardial levels of COX-2, HO-1, and Ec-SOD 24 h later. Upper panels:
Representative Western immunoblots showing increased expression of COX-2 (A), HO-1
(B), and Ec-SOD (C) in the hearts of CORM-3-treated mice compared with iCORM-3-
treated mice. Lower panels: Densitometric analysis of COX-2, HO-1, and Ec-SOD signals.
Data are means±SEM. *P<0.05 vs. iCORM-3.
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Figure 4.
Effects of inactive CORM-3 (iCORM-3, group V) and CORM-3 (group VI) administration
on myocardial levels of Mcl-1, Bad, and Bax 24 h later. Upper panels: Representative
Western immunoblots showing increased expression of antiapoptotic molecule Mcl-1 (A)
and no significant change in expression of proapoptotic proteins Bad (B) and Bax (C) in the
hearts of CORM-3-treated mice compared with iCORM-3-treated mice. Lower panels:
Densitometric analysis of Mcl-1 (A), Bad (B), and Bax (C) signals. Data are means±SEM.
*P<0.05 vs. iCORM-3.
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Figure 5.
Effects of inactive CORM-3 (iCORM-3, group V) and CORM-3 (group VI) administration
on myocardial levels of c-FLIPL and c-FLIPS 24 h later. Upper panels: Representative
Western immunoblots showing increased expression of antiapoptotic molecules c-FLIPL and
c-FLIPS in the hearts of CORM-3-treated mice compared with iCORM-3-treated mice.
Lower panels: Densitometric analysis of c-FLIPL and c-FLIPS signals. Data are means
±SEM. *P<0.05 vs. iCORM-3.
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Figure 6.
Nuclear contents of pTyr-STAT1 (A), pTyr-STAT3 (B), and pSer-STAT3 (C) at 30 min
after administration of iCORM-3 (group VII) and CORM-3 (group VIII). Upper panels:
Representative Western immunoblots showing increased nuclear levels of pTyr(701)-
STAT1 (A), pTyr(705)-STAT3 (B), and pSer(727)-STAT3 (C) in myocardial samples from
CORM-3-treated mice compared with iCORM-3-treated mice. Lower panels: Densitometric
analysis of pTyr(701)-STAT1 (A), pTyr(705)-STAT3 (B), and pSer(727)-STAT3 (C)
signals. Data are means±SEM. *P<0.05 vs. iCORM-3.
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Figure 7.
STAT1/3 DNA binding activity. Myocardial tissue samples were harvested from mice in
groups IX (iCORM-3-treated) and X (CORM-3-treated) 30 min after the completion of
infusion. (A) Representative EMSA showing STAT1/3 DNA binding activity. (B)
Densitometric analysis shows a striking increase in STAT1/3 DNA binding activity in
CORM-3-treated hearts compared with iCORM-3-treated hearts. Data are means±SEM.
*P<0.05 vs. iCORM-3.
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Figure 8.
Nuclear translocation of p65 subunit and NF-κB DNA binding activity. Myocardial tissue
samples were harvested from mice in groups VII and IX (iCORM-3-treated) and VIII and X
(CORM-3-treated) 30 min after the completion of infusion. (A) Upper panel: A
representative Western immunoblot showing increased nuclear levels of p65 in CORM-3-
treated hearts compared with iCORM-3-treated hearts. Lower panel: Densitometric analysis
of p65 signals. (B) EMSA showing NF-κB DNA binding activity. (C) Densitometric
analysis shows a marked increase in NF-κB DNA binding activity in CORM-3-treated
hearts compared with iCORM-3-treated hearts. Data are means±SEM. *P<0.05 vs.
iCORM-3.
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Figure 9.
Nrf2 nuclear translocation and DNA binding activity. Myocardial tissue samples were
harvested from mice in groups VII and IX (iCORM-3-treated) and VIII and X (CORM-3-
treated) 30 min after the completion of infusion. (A) Upper panel: A representative Western
immunoblot showing increased nuclear levels of Nrf2 in CORM-3-treated hearts compared
with iCORM-3-treated hearts. Lower panel: Densitometric analysis of Nrf2 signals. (B)
EMSA showing Nrf2 DNA binding activity. (C) Densitometric analysis shows increased
Nrf2 DNA binding activity in CORM-3-treated hearts compared with iCORM-3-treated
hearts. Data are means±SEM. *P<0.05 vs. iCORM-3.
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