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Abstract

The maternal care that offspring receive from their mothers early in life influences the offspring’s development of emotional
behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related
behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display
altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing
behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related
behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early
postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in
mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of
developing anxiety disorders.
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Introduction

Anxiety is an emotional state that is elicited in anticipation of

threat and is essential for organisms to adapt to adverse

circumstances. However, excessive or inappropriate anxiety leads

to various mental disorders such as anxiety disorders. Human

susceptibility to mental disorders such as mood and anxiety

disorders can be determined early in life by genetic and

environmental factors [1–6]. Particularly, maternal behavior has

long-lasting effects on emotional behavior of the offspring. In rats,

offspring reared by less licking/grooming/arched-back nursing

mothers exhibit increased anxiety-related behavior and stress

response, compared to offspring reared by high licking/grooming/

arched-back nursing mothers [7,8]. Cross-fostering studies have

revealed that these influences are primarily attributable to the

difference of the maternal behavior of the mothers [9]. Also, in

nonhuman primates and rats, reduced levels of maternal care,

such as maternal deprivation and neglect, leads to an increase in

anxiety-related behavior of the offspring [10–12]. In humans,

childhood adversity such as childhood abuse, maternal deprivation

and maternal neglect is associated with a significantly increased

risk for multiple forms of mental disorders [13–16]. Thus, aversive

maternal care received during the early development influences

negatively the development of normal anxiety-related behavior of

the offspring.

In mammals, physiological and behavioral rhythms are

generated by a circadian clock located in the suprachiasmatic

nucleus of the hypothalamus [17,18]. The circadian clock

comprises transcription/translation-based feedback loops of

clock components such as Clock, Bmal1, Period and Cryptochrome

[17,18]. CLOCK and BMAL1, two transcription factors,

activate the transcription of Period and Cryptochrome genes, and

PERIOD and CRYPTOCHROME proteins in turn suppress

their own transcription through negative regulation of CLOCK

and BMAL1 to generate a circadian oscillation of the molecular

clock [17–19]. In rodents, the circadian clock governs nursing

behavior that shows a clear diurnal rhythm with higher amount

during the light period and lower during the dark period, as

mice with an impaired circadian clock display disrupted rhythm

of nursing behavior [20–22]. This raises the hypothesis that

offspring reared by mothers with impaired circadian clock may

exhibit emotional disturbance in adulthood, due to the altered

maternal care received.

In the present study, we examined levels of anxiety in mice

reared by mothers with a mutation in Clock, a key component of

the molecular circadian clock. We showed that Clock mutant

mothers display the altered daily pattern of nursing behavior and

that maternal care provided by Clock mutant mothers predisposes

the offspring to increased anxiety-related behavior. Furthermore,

the offspring at postnatal day 14 showed reduced levels of brain

serotonin that is known to be essential to the establishment of

anxiety circuits during the postnatal development. Thus, the

present study underscores an adverse impact of circadian-clock

disruption in mothers on anxiety levels in the offspring and

suggests that appropriate daily patterns of maternal care may be

crucial for establishing normal anxiety-related behavior in the

offspring.
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Results

Altered Daily Patterns of Nursing Behavior in Clock
Mutant Mice
Mice harboring a mutation in Clock gene, which results in a

dominant-negative protein with low transactivation ability, show

changes in circadian rhythmicity [23–25]. Heterozygous Clock

mutant mice display a1-hour increase in the period of the free

running rhythm of locomotor activity in constant darkness, and

homozygous mice exhibit a 3- to 4-hour increase in circadian

period, which is often followed by arrhythmicity in constant

darkness [25]. In a light-dark cycle, homozygous Clock mutant

mice show the diurnal rhythm in locomotor activity, but exhibit an

abnormal increase in activity during the light phase [26]. Similar

to the phenotype of homozygous Clock mutant mice, heterozygous

Clock mutant mice display a profound increase in activity during

the light phase without alternation of the total activity levels

(Fig. 1A–C). Thus, Clock mutant mice display the altered diurnal

rhythm in locomotor activity in a light-dark cycle.

To explore the influence of Clock mutant mothers on the

offspring, we used heterozygous Clock mutant mice, due to

impaired reproductive function and poor milk production of

homozygous Clock mutant female mice [21,27–29]. We first

examined the diurnal pattern of nursing behavior in heterozygous

Clock mutant mice (referred to hereinafter as Clock mutant mice) on

postpartum day 2–3 (see Fig. 2). When mother mice exhibit

nursing postures (either an arched-back nursing posture, a blanket

nursing posture in which mother lays over the pups, or a passive

nursing posture in which mother is lying on her side with pups

attached) for at least 5 min [21,30,31], we measured duration time

of the nursing bouts (Fig. 3A). Wild-type mice, on postpartum day

2–3, exhibited nursing bouts that last for a long time (mean

duration: 133 min) during the light phase and were short/

intermittent (mean duration: 39 min) during the dark phase

(Fig. 3D). Total duration of nursing behavior of Clock mutant mice

within a day was not significantly different from that of wild-type

mice (Fig. 3B), whereas Clock mutant mice displayed a slight

decrease in nursing behavior during the light phase (Fig. 3C).

Noticeably, nursing behavior in Clock mutant mice was fragmented

during the light phase, as evidenced by shorter duration of nursing

bouts than that of wild-type mice during the light phase (Fig. 3D).

Together, Clock mutant mice showed the altered daily pattern of

their nursing behavior.

Elevated Anxiety-related Behavior in Offspring Reared by
Clock Mutant Mice
To examine the influence of heterozygous Clock mutant mothers

on behavioral phenotypes of the offspring, wild-type postnatal day

1 neonates (6–8 male neonates) were subjected to foster nursing by

either wild-type or Clock mutant mice. Body weight of pups

(postnatal day 31) reared by Clock mutant mice did not significantly

differ from those reared by wild-type mice (wild-type-reared pups:

Figure 1. Altered diurnal pattern in locomotor activity of female heterozygous Clock mutant mice. (A) Activity counts over the 24-hour
cycle during the light (unshaded) and dark (shaded) periods. Mean activity counts in 5-min bins of wild-type mice (blue line, n = 4) and heterozygous
Clock mutant mice (red line, n = 4) are plotted. (B) Activity counts were accumulated over the 12-hour light and 12-hour dark periods, and total
activity counts were presented as mean 6 SEM (n= 4). t(6) = 0.924, p.0.05 by Student’s t test. n.s.: not significant. (C) Light-period activity counts
were expressed as a percentage of total activity counts (n = 3). t(4) =23.39, *p,0.05 by Student’s t test. Wt: wild-type mice, Het: heterozygous Clock
mutant mice.
doi:10.1371/journal.pone.0066021.g001

Elevated Anxiety in Offspring of Clock Mutant Mice
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14.1 g 60.34 g, n = 8; Clock mutant-reared pups: 13.7 g 60.55 g,

n = 16, p= 0.59, Student’s t test), suggesting that growth of pups

reared by Clock mutant mice was almost normal. The offspring

were weaned at 28 days old and then subjected to behavioral tests

at 7–8 weeks of age (Fig. 2). We then measured anxiety-related

behavior by using open field test (OFT) and elevated plus maze

test (EPM), in which the amount of time spent in an anxiety-

provoking space such as the center area of the open field or

unprotected arms of the raised platform was used as a measure. In

the OFT, the offspring showed significantly decreased total

activity, spent less time at the center area and less frequently

entered the center area (Fig. 4A–D). The offspring also made less

entries and spent less time in the open arms of the EPM (Fig. 4E–

G). In addition, we examined home-cage locomotor activity of

offspring reared by Clock mutant mice. In a 24 hour period, total

activity levels were not significantly different between offspring

reared by wild-type and Clock mutant mice (Fig. 4H), suggesting

that the alterations in behaviors in the paradigms did not simply

reflect a decreased locomotor activity of the offspring. Thus, these

observations suggest that offspring reared by Clock mutant mice

display increased anxiety-related behavior. Similar increased

anxiety-related behavior was also observed in offspring at 14–16

weeks of age (Figure S1).

We also performed Porsolt forced swim test and tail suspension

test, in which the amount of time immobile in an inescapable

situation is used as a measure of behavioral despair. These

behavioral tests are often used in the context of studies on

depression. In these tests, total duration of immobility was similar

in offspring reared by wild-type and Clock mutant mice (Figure S2).

Decrease in Serotonin Levels in the Brain of Offspring
Reared by Clock Mutant Mice
Serotonin has been shown to be an important factor for the

development of anxiety-modulating circuits, and alterations of

serotonin levels and signaling during the early postnatal period

lead to emotional disturbance in adulthood [6,32]. We then sought

to examine levels of serotonin in the brain of offspring. Offspring

reared by Clock mutant mice had significantly lower levels of

serotonin at postnatal day 14 than offspring reared by wild-type

mice (Fig. 5A). On the other hand, no significant difference was

observed in offspring at 7 weeks of age (Fig. 5B). These

observations together suggest that rearing by Clock mutant mother

leads to a decrease in serotonin levels in the brain of the offspring

during the early development as well as predisposes the offspring

to increased anxiety-related behavior in adulthood.

Discussion

In the present study, we found that offspring reared by Clock

mutant mothers exhibited increased anxiety-related behavior in

adulthood. In humans, monkeys and rats, aversive and aberrant

maternal care such as childhood abuse and maternal deprivation

has been shown to increase the risk of development of emotional

disturbance such as increased anxiety-related behaviors [3,5,10–

Figure 2. Schematic representation of the experimental design.
Wild-type male neonates (postnatal day 1, P1) were separated from
their wild-type mother and fostered on postpartum wild-type mice or
heterozygous Clockmutant mice. At P2-3, maternal behavior of mothers
was video-recorded. The offspring were weaned at P28. The offspring at
7–8 weeks of age or at 14–16 weeks of age were subjected to four
behavioral tests in the following order; open-field test (OFT), elevated
plus maze test (EPM), forced swim test (FST) and tail suspension test
(TST). Mice were given one test per day for 4 consecutive days.
doi:10.1371/journal.pone.0066021.g002

Figure 3. Altered diurnal pattern in nursing behavior of female heterozygous Clockmutant mice. (A) Representative actogram of nursing
behavior in wild-type and heterozygous Clock mutant mice at postpartum day 2–3 under a light-dark cycle (indicated by a bar at top). Black bars
represent duration of nursing bouts. (B–D) Total duration of nursing activity per day (B), duration of nursing activity during the light period (C) and
mean duration of nursing bouts (D) are shown as mean 6 SEM (n= 4, n.s.: not significant, *p,0.05, Student’s t test). t(6) = 1.82, p.0.05 in (B),
t(6) = 2.93, p,0.05 in (C), t(4) = 4.00, p,0.05 and t(6) =20.318, p.0.05 in (D). Wt: wild-type mice, Het: heterozygous Clock mutant mice.
doi:10.1371/journal.pone.0066021.g003
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16]. The present study suggests that impaired circadian rhythms in

mothers can also become an aversive factor to predispose the

offspring to increased anxiety-related behavior.

Clock mutant mother used in the present study (heterozygous

Clock mutant mice) displayed altered daily pattern of nursing

behavior without change in total duration of the behavior. This

abnormality was less severe than homozygous Clock mutant mice

that show arrhythmic nursing behavior with decreased total

duration of the behavior [21]. In addition, homozygous Clock

mutant mice show less anxiety-related behavior [33], whereas

female heterozygous Clock mutant mice used in the present study

showed no significant difference in the total activity and time spent

at the center area in the OFT (Figure S3). We also found no

significant difference in entries to and time spent in the open arms

in the EPM (Figure S3). These results suggest that anxiety levels in

female heterozygous Clock mutant mice were not significantly

altered and that increased anxiety levels in the offspring reared by

Clock mutant mice is unlikely attributable to alteration of anxiety

levels in mothers. Considering the altered daily pattern of nursing

behavior in Clock mutant mice, it is conceivable that appropriate

temporal pattern of maternal care may be crucial for establishing

normal anxiety levels in the offspring. It is known that quantity of

licking/grooming of the mother affects anxiety levels of the

offspring [7–9]. Increased anxiety levels of the offspring reared by

Clock mutant mother is, however, unlikely attributable to the

behavior, as evidenced by the absence of difference in magnitude

of licking/grooming between wild-type and Clock mutant mothers

(Figure S4). It is also hypothesized that certain milk constituents

that affect maturation of anxiety levels of the offspring are altered

in Clock mutant mice. Considering that brain serotonin levels at

postnatal day 14 were reduced in the offspring reared by Clock

mutant mother, Clock mutant mother might have lower levels of

serotonin precursors in milk. To examine the possibility, we

measured levels of tryptophan, a precursor of serotonin, in milk of

Clock mutant mother. The levels of tryptophan in milk (as well as

plasma in the pups) of Clock mutant mothers were not reduced.

Rather, the tryptophan levels were increased (Figure S5),

suggesting that decreased serotonin levels in the brain of the

offspring reared by Clock mutant mothers are unlikely attributable

to lower levels of tryptophan in milk of Clock mutant mothers.

Figure 4. Elevated anxiety-related behavior in offspring reared by Clock mutant mice. (A–D) In the open-field test, total activity counts
measured by the total number of squares crossed by the mouse (A), activity counts at the center area measured by the number of center squares
crossed (B), time spent at the center area (C) and the percentage of the number of center squares crossed (1006center squares/total squares crossed)
(D) are shown. Data are presented as mean 6 SEM (n= 8, *p,0.05, **p,0.01, Student’s t test). t(14) = 3.09, p,0.01 in (A), t(7) = 2.96, p,0.05 in (B),
t(7) = 3.38, p,0.05 in (C), t(7) = 3.22, p,0.05 in (D). Wt-r: wild-type mother-reared mice, Het-r: heterozygous Clock mutant mother-reared mice. (E–G)
In the elevated plus maze test, time spent in the open arms (E), entries to the open arms (F) and the percentage of open arm entries (1006open arm/
total entries) (G) are shown. Data are presented as the mean 6 SEM (n = 10–14, *p,0.05, **p,0.01, Student’s t test). t(14) = 2.60, p,0.05 in (E),
t(14) = 3.19, p,0.01 in (F), t(22) = 2.21, p,0.05 in (G). (H) Home cage activity was measured, and total activity counts over the 24-hour cycle are
presented as mean 6 SEM (n= 3). t(4) =20.146, p.0.05 by Student’s t test. n.s.: not significant.
doi:10.1371/journal.pone.0066021.g004
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Nonetheless, it remains possible that some other maternal

behaviors or milk constituents that are controlled by the circadian

clock associate with increased anxiety levels of the offspring reared

by Clock mutant mother. Together, appropriate circadian clock-

controlled maternal cares/factors in mothers are likely to be

important for the development of normal anxiety-modulating

circuits in the offspring.

In the present study, we found that brain serotonin levels were

altered in offspring reared by Clock mutant mice at postnatal day

14. Serotonin has been shown to be an important factor for

development of anxiety-modulating circuits. In fact, functional

genetic variants of serotonin transporter gene (5-HTT), which

transports serotonin from the extracellular space, and the

monoamine oxidase A gene (MAO-A), which is a key enzyme

responsible for degrading serotonin, have been implicated in

mental disorders such as mood and anxiety disorders [3,5,34–37].

It has also been reported that both insufficient and excessive levels

of serotonin lead to increased anxiety-related behavior in animal

models such as mice deficient to 5-HTT, MAO-A/B and

tryptophan hydroxylase, an enzyme generating serotonin precur-

sor 5-hydroxytryptophan [6,32]. Noticeably, suppression of 5-

HTT only in the early postnatal period (from postnatal day 4–21)

mimics abnormal emotional behaviors seen in knock-out mice

[38]. Also, serotonin 1A receptor expression during the early

postnatal period, but not in the adult, has been shown to be

necessary for the development of normal anxiety-related behavior

in mice [39,40], suggesting that disruption of serotonin homeo-

stasis and signaling during the early postnatal period causes

emotional abnormalities such as elevated anxiety-related behavior

in adult. Thus, increased anxiety levels in offspring reared by Clock

mutant mice are likely due, at least in part, to alteration of

serotonin homeostasis and serotonergic system in the brain during

the early development.

Modern 24-hour/7-day society and lifestyle such as chronic

restriction of sleep, night work and rotating shift work inherently

perturb our natural circadian behavioral patterns and our body’s

circadian timing system [41]. Our study imply that irregular daily

life schedule in parents may pose risks of emotional disturbance in

their offspring, whose potential linkage has been noticed by several

studies [42–45].

Materials and Methods

Ethics Statement
All animal experiments were conducted in accordance with

guidelines set by The University of Tokyo and approved (permit

number 21-01) by the Committee on Animal Care and Use of the

Graduate School of Science in The University of Tokyo.

Animals
Mice harboring a mutation in Clock (BALB/c background) were

a kind gift from Joseph S. Takahashi (Northwestern University,

Evanston, IL). Mice were housed under a 12 h light/12 h dark

cycle with food and water available ad libitum. The room was kept

at 23uC61uC. Zeitgeber time (ZT) is used for representing

biological time in light-dark cycles, in which ZT0 and ZT12

correspond to the lights-on time and the lights-off time,

respectively.

For monitoring maternal behavior of mothers and performing

behavioral tests of the offspring, 6–8 wild-type male neonates

(BALB/c at postnatal day 1) were separated from their wild-type

mother and fostered on postpartum wild-type mice or heterozy-

gous Clockmutant mice, in the absence of male mice. The offspring

were weaned at 28 days old and housed individually in a cage. The

offspring at 7–16 weeks of age were subjected to four behavioral

tests in the following order; open-field test, elevated plus maze test,

forced swim test and tail suspension test. Mice were given one test

per day for 4 consecutive days (see Fig. 2). For behavioral tests of

female mice, animals (virgins) at 12–22 weeks of age were

subjected to behavioral tests in the following order; open-field test

and elevated plus maze test. Mice were given one test per day for 2

consecutive days.

Evaluation of Locomotor Activity
Locomotor activity was recorded under a light-dark cycle by a

video camera equipped with the infrared light. On the recorded

video, the cage was horizontally divided into three equal parts by

two lines, and the number of times that the mouse crossed the lines

was counted. Activity counts in 5-min bins over a 24-hour cycle

were measured for individual mice, and mean activity counts in 5-

min bins were calculated.

Evaluation of Nursing and Licking/grooming Behaviors
Maternal behavior was recorded under a light-dark cycle by a

video camera equipped with the infrared light. Video-recordings

were made on postpartum day 2–3. When mothers exhibit nursing

postures (either an arched-back nursing posture, a blanket nursing

posture in which mother lays over the pups, or a passive nursing

posture in which mother is lying on her side with pups attached)

for at least 5 min, we measured duration time of the nursing bouts.

We also measured duration time of licking/grooming behavior

on postpartum day 2–3 in a 1-hour bin of 6 time-points within a

day (ZT 2–3, ZT 6–7, ZT 10–11, ZT 14–15, ZT 18–19 and ZT

22–23). The duration time of licking/grooming at 6 time-points

was then accumulated for individual mice and presented as

percentage to the total observation time.

Open Field Test
The apparatus consisted of a polypropylene white box

(40640640 cm). The illumination at the level of the arena is

80–90 lx. The experiment was performed between ZT8–ZT12.

For testing, mice were individually placed in one corner of the

arena and allowed to explore the arena freely. The behavior of

mice was video-recorded for 5 min. On the recorded video, the

arena of the open filed was divided into 16 equal square areas; the

Figure 5. Brain serotonin levels in offspring reared by Clock
mutant mice. (A, B) Serotonin levels in the brain of offspring reared by
wild-type mice (Wt-r) and Clock mutant mice (Het-r) at 14 days old (A)
and 7 weeks old (B). Data are presented as mean 6 SEM (n= 5–8, n.s.:
not significant, *p,0.05, Student’s t test). t(8) = 2.45, p,0.05 in (A),
t(14) = 0.530, p.0.05 in (B).
doi:10.1371/journal.pone.0066021.g005

Elevated Anxiety in Offspring of Clock Mutant Mice
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four inner square areas in the center (center areas) and 12 squares

in the periphery along the wall. Total number of squares crossed

by the mouse, the number of center areas crossed, time spent at

the center areas, and the percentage of the number of center areas

crossed (1006center areas/total areas crossed) were measured for

individual mice.

Elevated Plus Maze Test
The apparatus consisted of four arms (30 cm long65 cm wide)

connected to the central platform (5 cm65 cm). The maze was

elevated 45 cm above the floor. Two of the arms were enclosed

with walls (20 cm height, closed arms), and the other arms had no

border in place of the walls (open arms). The illumination at the

level of the platform is 60–70 lx. The experiment was performed

between ZT8–ZT12. For testing, mice were individually placed on

the central platform with its head facing toward a closed arm, and

its behavior was video-recorded for 5 min. An entry was judged

when all four paws of the mouse entered an open or closed arm.

The number of open arm entries, the number of closed arm

entries, time spent in the open arms, and the percentage of open

arm entries (1006open arm/total entries) were measured for

individual mice.

Tail Suspension Test
Mice were individually suspended with the tail 8 cm above the

floor in a grey box (21 cm wide615 cm length638 cm high) and

video-recorded for 6 min. Immobility time was scored through

6 min duration of the test, as an index of behavioral despair in the

face of an inescapable stress [46]. The illumination at the level of

the mice was 900–1000 lx. The experiment was performed

between ZT9–ZT12.

Forced Swim Test
The apparatus consisted of a transparent glass cylinder (28 cm

high618 cm diameter) filled up to 15 cm with water that was

equilibrated in the room temperature for more than 2 days. The

illumination at the level of the floor was 1000–1100 lx. The

experiment was performed between ZT9–ZT12. For testing, mice

were gently placed in the water and video-recorded for 6 min.

Total immobility time was measured for last 4 min, as an index of

behavioral despair in the face of an inescapable stress [46].

Measurement of Brain Serotonin
Animals were sacrificed by cervical dislocation at ZT16. The

forebrain was separated from the brainstem at the level of superior

colliculus, immediately frozen in liquid nitrogen and stored at

280uC until use. The brain samples were homogenized in 0.2 N

perchloric acid (10 ml of 0.2 N perchloric acid/mg of tissue) by a

Teflon-glass homogenizer. Thereafter, the homogenates were

sonicated briefly (XL-2000 Microson Ultrasonic Cell Disruptor,

Misonix, Level 5, 10 sec62), centrifuged at 16,0006g for 30 min

at 4uC. The supernatant was filtrated through 0.22 mm filter and

neutralized with borate buffer. The resultant samples were used

for measurement of serotonin with EIA serotonin kit (Beckman

Coulter Company) according to the manufacturer’s protocol.

Measurement of Milk and Plasma Tryptophan
Mother mice on postpartum day 2–4 were separated from their

fostering wild-type pups 2 hours prior to milking. Each mother was

intraperitoneally injected with 0.1 ml (2 IU) of oxytocin. A second

injection of oxytocin was carried out a few minutes later. Milk was

collected into a 1.5 ml tube with a vacuum pump. Milk collection

was performed at ZT4-6. Also, pups at postnatal day 14 were

quickly decapitated at ZT16 for trunk blood collection. Blood was

collected with Vacutainer EDTA tubes (Becton, Dickinson and

Company). Blood samples were then centrifuged (1,2006g for

20 min at room temperature), and the supernatants (plasma

extracts) were stored at 280uC until use. The milk and plasma

samples were used for measurement of tryptophan with trypto-

phan ELISA kit (Labor Diagnostika Nord GmbH & Co. KG)

according to the manufacturer’s protocol.

Statistical Analyses
All bar graphs were plotted as mean 6 SEM. Data were

analyzed by two-tailed Student’s t test. The significance level was

set at p,0.05 for all tests. All statistical analyses were performed

using Excel.

Supporting Information

Figure S1 Elevated anxiety-related behavior in off-
spring reared by Clock mutant mice. Offspring reared by

wild-type mice (Wt-r) or Clock mutant mice (Het-r) were subjected

to behavioral tests at 14–16 weeks of age. In the open-field test,

total activity counts (A), activity counts at the center area (B), time

spent at the center area (C) and the percentage of the number of

center squares crossed (D) are shown as in Fig. 4. Data are

presented as mean 6 SEM (n= 8, *p,0.05, Student’s t test).

t(14) = 2.27, p,0.05 in (A), t(8) = 2.37, p,0.05 in (B), t(14) = 2.24,

p,0.05 in (C), t(9) = 2.41, p,0.05 in (D). In the elevated plus

maze test, time spent in the open arms (E), entries to the open

arms (F) and the percentage of open arm entries (1006open arm/

total entries) (G) are shown. Data are presented as mean 6 SEM

(n= 14–15, *p,0.05, Student’s t test). t(18) = 2.43, p,0.05 in (E),

t(18) = 2.34, p,0.05 in (F), t(27) = 2.13, p,0.05 in (G).

(TIF)

Figure S2 Forced swim test and tail suspension test of
offspring reared by Clock mutant mice. (A, B) Immobility

time in the forced swim test (A) and in the tail suspension test (B)

are shown as mean 6 SEM (n= 6–13). No significant difference

(n.s.: not significant, Student’s t test) was observed between

offspring reared by wild-type mice (Wt-r) and Clock mutant mice

(Het-r). t(19) = 1.05, p.0.05 in (A), t(16) =20.213, p.0.05 in (B).

(TIF)

Figure S3 Anxiety-related behavior in female Clock
mutant mice. Female wild-type mice (Wt) or Clock mutant mice

(Het) were subjected to behavioral tests at 12–22 weeks of age. In

the open-field test, total activity counts (A), activity counts at the

center area (B), time spent at the center area (C) and the

percentage of the number of center squares crossed (D) are shown

as in Fig. 4. Data are presented as mean6 SEM (n=7–8, n.s.: not

significant, Student’s t test). t(13) = 1.71, p.0.05 in (A),

t(13) = 0.561, p.0.05 in (B), t(13) = 0.205, p.0.05 in (C),

t(13) =20.532, p.0.05 in (D). In the elevated plus maze test,

time spent in the open arms (E), entries to the open arms (F) and

the percentage of open arm entries (1006open arm/total entries)

(G) are shown. Data are presented as mean 6 SEM (n= 7–8, n.s.:

not significant, Student’s t test). t(13) =20.358, p.0.05 in (E),

t(13) = 0.422, p.0.05 in (F), t(13) =20.0453, p.0.05 in (G).

(TIF)

Figure S4 Licking/grooming behavior in Clock mutant
mice. Duration time of licking/grooming behavior on postpar-

tum day 2–3 was measured in a 1-hour bin of 6 time-points within

a day (ZT 2–3, ZT 6–7, ZT 10–11, ZT 14–15, ZT 18–19 and ZT

22–23). The duration time of licking/grooming at 6 time-points

was then accumulated for individual mice and presented as
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percentage to the total observation time. Data are shown as mean

6 SEM (n= 3). t(4) =20.917, p.0.05 by Student’s t test. n.s.: not

significant. Wt: wild-type mice, Het: heterozygous Clock mutant

mice.

(TIF)

Figure S5 Tryptophan levels in milk of Clock mutant
mice. (A) Tryptophan levels in milk of wild-type mother (Wt) and

Clock mutant mother (Het) on postpartum day 2–4. Data are

presented as mean 6 SEM (n= 3–4). t(5) =22.66, *p,0.05 by

Student’s t test. (B) Plasma tryptophan levels in the offspring reared

by wild-type mother (Wt-r) and Clock mutant mother (Het-r) at 14

days old. Data are presented as mean6 SEM (n= 3). t(4) =23.78,

*p,0.05 by Student’s t test.

(TIF)
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