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Introduction

Microarray analyses have been applied in the past to exam-
ine the differentially expressed (DE) genes in bladder cancer.1-7 
However, these findings are not always reproducible, mainly due 
to improper analysis/validation, insufficient control of false posi-
tives, inadequate reporting of methods and small sample size rela-
tive to large numbers of potential predictors. We have previously 
shown that the combination of information from multiple studies 
can increase the reliability and recognizability of the results, and 
can lead us to the focus of genes that play a role in the formation of 
bladder cancer, irrespective of the stage and/or grade of the tumor.

Such high-throughput analyses can provide a system-scale 
overview of how genes interact with each other in a network con-
text. This network is known as a gene regulatory network and 
can be defined as a mixed graph over a set of nodes (correspond-
ing to genes or gene activities) with directed or undirected edges 
(representing causal interactions or associations between gene 

Objective: Chromosome correlation maps display correlations between gene expression patterns on the same 
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Results: the top deregulated molecules among 129 bladder cancer samples were implicated in the pI3K/AKt signal-
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cellular functions were related to cell cycle, cell death, gene expression, molecular transport and cellular growth and pro-
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data were further simulated, exhibiting an excellent fit (0.7 < R2 < 0.9). the simulations revealed that along the different 
samples, genes on same chromosomes are expressed in a similar manner.

Materials and Methods: Following microarray analysis we used Ingenuity pathway Analysis (IpA) to construct gene 
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activities).8,9 As most biological processes arise from the complex 
interactions among multiple gene products, information about 
how genes function together can improve our understanding of 
the underlying biological mechanisms.

Chromosome correlation maps display correlations between 
the expression patterns of genes on the same chromosome and 
are considered of major importance in the understanding of 
gene expression regulation.10,11 Considering that gene expres-
sion represents just a “snap shot” of the state-space of the other-
wise dynamic behavior of bladder cancer, it would be of major 
interest to investigate the expression patterns by examining the 
chromosomal-based gene expression. Chromosomal gene expres-
sion is expected to be highly coordinated. However, it has not yet 
been elucidated based on chromosome correlation whether gene 
expression among same chromosomes from different samples is 
governed by similar patterns. If such a common mechanism of 
gene expression exists, we do not know whether it is of linear or 
nonlinear nature.
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molecules: CAMSAP3 and NCOR1, upregulated; and FHL1, 
DES, CAP2, GFAP, LTF and TNFRSF17, downregulated); (4) 
cellular compromise (p = 1.06E-03 − 2.11E-03; DES, downregu-
lated) and (5) cellular function and maintenance (p = 1.06E-03 − 
4.25E-02; seven molecules: CAMSAP3, upregulated; and GFAP, 
CAP2, DES, LTF, PEX5L and FHL1, downregulated).

The top upregulated molecules were: C7orf68, ANAPC11, 
NCOR1, LSM5, SNRPG, GDAP2, MAPKAP1, TOX4 and 
CAMSAP3, whereas the top downregulated molecules were 
TAC3, LTF, ODZ2, FHL1, TNFRSF17, DES, ANKRD29, 
GPSM1, QRICH2 and GFAP (Table 1). The top upstream 
regulators were as follows: KDM4A (targeting FHL1), RNF112 
(targeting TAC3), ALX3 (targeting GFAP), SOX11 (target-
ing C7orf68) and OLIG2 (targeting GFAP) (p = 1.06E-03 
− 5.27E-03).

Networks and canonical pathways for the DE genes revealed in 
Cohort B. Similarly, we performed IPA for the 458 co-DE genes 
among the 129 bladder cancers and the 17 normal tissue samples 
in Cohort B. The top canonical pathways were as follows: (1) 
PI3K/AKT signaling (p = 3.7E-04; ratio = 0.021), containing the 
genes CTNNB1, YWHAB and YWHAE (all upregulated); (2) 
cell cycle: G

2
/M DNA damage checkpoint regulation (p = 1.25E-

03; ratio = 0.041), containing the genes, YWHAB and YWHAE 
(both upregulated); (3) Myc-mediated apoptosis signaling (p = 
2.24E-03; ratio = 0.033), containing the genes YWHAB and 
YWHAE (both upregulated); (4) ERK5 signaling (p = 2.47E-
03; ratio = 0.031), containing the genes YWHAB and YWHAE 
(both upregulated); and (5) basal cell carcinoma signaling (p = 
3.14E-03; ratio = 0.027), containing the genes CTNNB1 (upreg-
ulated) and WNT10B (downregulated) (Fig. 2A–C).

The top molecular and cellular functions were: (1) cell 
cycle (p = 1.66E-07 − 1.54E-02; 11 molecules: CDC20, 
CTNNB1, MARCKS, PCNA, PSEN1, KRT7, YWHAE, 

Figure 1A. Ingenuity analysis of the top pathways affected in differentially expressed genes among 10 bladder cancer and five normal tissue samples 
(Cohort A). Y-axis is an inverse indication of p-value or significance (A). Gene networks involved in “cell-to-cell signaling and interaction, cellular as-
sembly and organization, cellular function and maintenance” (B), and “cell signaling, molecular transport and nucleic metabolism” (C), generated by 
IpA for differentially expressed genes between bladder cancer and normal tissue. the selected scoring method was Fisher’s exact test p-value. the 
threshold value was set at p = 0.05. Red symbols are assigned for upregulated and green for downregulated genes. Node shape corresponds to the 
functional role of molecules as shown in the legend. Direct or indirect interactions are shown by complete or dashed lines.

Our goal was to construct networks of the co-deregulated 
(co-DE) genes in bladder cancer, to unveil the gene correlations 
among tumor samples and to describe these correlations math-
ematically in order to perform predictions of gene expression 
based on the chromosomes.

Results

Networks and canonical pathways. Networks and canonical path-
ways for the DE genes revealed in Cohort A. We performed Ingenuity 
Pathway Analysis (IPA) for 831 co-DE genes among the ten blad-
der cancers and the five normal tissue samples, in Cohort A. 
The top canonical pathways were as follows: (1) Systemic Lupus 
Erythematosus signaling (p = 1.9E-02; ratio = 0.009), containing 
the genes LSM5 and SNRPG (both upregulated); (2) signaling by 
Rho family GTPases (p = 2.52E-02; ratio = 0.008), containing the 
genes DES and GFAP (both downregulated); (3) April-mediated 
signaling (p = 3.94E-02; ratio = 0.023), containing the gene 
TNFRSF17 (downregulated); (4) B cell-activating factor signal-
ing (p = 4.15E-02; ratio = 0.022), containing the gene TNFRSF17 
(downregulated); and (5) mitotic roles of Polo-like kinase (p = 
6.36E-02; ratio = 0.015), containing the gene ANAPC11 (upreg-
ulated). Two major gene networks were constructed, with the 
following associated functions: (1) cell-to-cell signaling and inter-
action, cellular assembly and organization, cellular function and 
maintenance (score = 36) and (2) cell signaling, molecular trans-
port and nucleic metabolism (score = 11) (Fig. 1A–C).

The top molecular and cellular functions were: (1) cell 
death (p = 1.06E-03 − 2.20E-02; three molecules: LTF, 
TNFRSF17 and GFAP, all downregulated); (2) cell morphology  
(p = 1.06E-03 − 2.09E-02; three molecules: LTF, DES and 
GFAP, downregulated; and NCOR1, upregulated); (3) cellu-
lar assembly and organization (p = 1.06E-03 − 4.25E-02; eight 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

1546 Cell Cycle Volume 12 Issue 10

Figure 1B and C. For figure legend, see page 1545.

YWHAB, upregulated; and CD40LG, 
TPM2, WNT10B, downregulated); 
(2) cell death (p = 1.79E-05 − 1.95E-
02; 12 molecules: BCLAF1, CDC20, 
CTNNB1, PCNA, CTNNB1, PSEN1, 
YWHAE, YWHAB, upregulated; 
and ACTC1, CD40LG, GLP1R, 
downregulated); (3) gene expression  
(p = 2.65E-05 − 1.54E-02; 12 molecules: 
BCLAF1, CTNNB1, KRT7, PCNA, 
PSEN1, YWHAB, YWHAE, BCLAF1, 
ZFP, upregulated; and CD40LG, 
GLP1R, TAGLN, WNT10B, down-
regulated); (4) molecular transport (p = 
4.18E-05 − 1.55E-02; seven molecules: 
PSEN1, YWHAB, YWHAE, PCNA, 
MARCKS, upregulated; and CCKAR, 
GLP1R, downregulated); and (5) cellular 
growth and proliferation (p = 1.83E-04 
− 1.90E-02; nine molecules: CTNNB1, 
PSEN1, CDC20 and PCNA, upregu-
lated; and CD40LG, TPM2, GLP1R, 
WNT10B, downregulated).

The top upregulated molecules 
were KRT7, APOBEC3B, CDC20, 
MARCKS, BCLAF1, ZFP36L2, 
YWHAE, PSEN1, CTNNB1 and 
YWHAB, whereas the top downregu-
lated molecules were ACTC1, TPM2, 
TAGLN, GLP1R, SPARCL1, MFAP4, 
CDC40LG, WNT10B, CCKAR and 
HES1 (Table 2). The top transcription 
factors were as follows: MKL1 (target-
ing ACTC1, TAGLN and TPM2), KLF5 
(targeting ACTC1, TAGLN and TPM2), 
SMAD3 (targeting GFAP), HTT (tar-
geting CTNNB1, PCNA, TAGLN and 
TPM2) and FOXA1 (targeting ACTC1, 
TAGLN and TPM2) (p = 1.66E-06 
− 1.06E-04).

Analysis of the co-deregulated genes 
in Cohort B. Comparison between all 
tumor and control samples. We did not 
detect any correlation between tumor 
and control samples. Interestingly, on 
chromosome 1, the mean value of the 
DE genes was positive, indicating that 
they are all upregulated. CDC20, whose 
upregulation in bladder cancer has previ-
ously been reported,7 appeared to be the 
most interesting. Moreover, GPREL1 on 
chromosome 4 and HCCS on chromo-
some X were the most active genes among 
all tumor samples (Fig. S1). Similarly, we 
compared all the control and tumor sam-
ples. Once again, CDC20 appeared to be 
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Table 2. top deregulated molecules, in cohort B

Upregulated molecules in bladder cancer 
vs. normal tissue

Exp. value (fold change)

KRt7 2.267

ApoBeC3B 2.030

CDC20 2.024

MARCKS 1.882

BCLAF1 1.775

ZFp36L2 1.768

YWHAe 1.655

pSeN1 1.647

CtNNB1 1.577

YWHAB 1.552

Downregulated molecules in bladder 
cancer vs. normal tissue

Exp. value (fold change)

ACtC1 −3.188

tpM2 −2.694

tAGLN −2.504

GLp1R −2.248

SpARCL1 −1.914

MFAp4 −1.755

CD40LG −1.721

WNt10B −1.504

CCKAR −1.502

HeS1 (includes eG:15205) −0.776

129 bladder cancer and 17 normal tissue samples, as identified by IpA

Table 1. top deregulated molecules in cohort A

Upregulated molecules in bladder cancer 
vs. normal tissue

Exp. value (fold change)

C7orf68 2.633

ANApC11 2.562

NCoR1 2.433

LSM5 (includes eG:23658) 1.720

SNRpG 1.705

GDAp2 1.635

MApKAp1 1.624

toX4 1.580

CAMSAp3 1.570

epAS1 0.489

Downregulated molecules in bladder 
cancer vs. normal tissue

Exp. value (fold change)

tAC3 −2.518

LtF −2.464

oDZ2 −2.438

FHL1 (includes eG:14199) −2.315

tNFRSF17 −2.065

DeS −2.015

ANKRD29 −1.937

GpSM1 −1.789

QRICH2 −1.739

GFAp −1.737

10 bladder cancer and five normal tissue samples, as identified by IpA.

upregulated in bladder cancer, thus strengthening its significant 
implication in the disease. An interesting gene expression pattern 
was revealed on chromosomes 11, 13, 18, 21 and 22 (Fig. S2). 
All genes were upregulated on average, indicating that for these 
chromosomes, their respective genes are the most active in all 
tumor samples examined.

Comparison between Tα-grade 1 tumors and control samples. 
Chromosome correlation maps for Tα-grade 1 tumors revealed 
co-expressed gene patterns along various chromosomes (Fig. 3). 
Since correlation does not necessarily mean causation, we further 
searched for possible ways that would describe these patterns of 
expression. Indeed, these patterns could be described with third 
degree polynomials, and all simulations manifested an excellent 
fitting (R2 > 0.99). This was a hint that in this tumor sample, 
gene expression is highly conserved and related to the nature 
of the tumor, irrespective of the genes. It was also interesting 
as the DE genes were randomly selected, since they were pro-
duced through a filtering procedure from a t-test. The simulation 
showed that among different samples, genes on the same chro-
mosome are expressed in a similar manner. Simulation results for 
all chromosomes are presented in Figure 4.

Comparison between Tα-grade 2 tumors and control samples. 
There was a mixture of correlation profiles in Tα-grade 2 tumors. 
In the case of Tα-grade 1 tumors, we observed a plethora of cor-
relations with rho > 0.9 and p < 0.05. Due to the small sample 

number (n = 3), we assumed that fitting, simulation and cor-
relations were close to the ideal. Therefore, in the case of the 
Tα-grade 2 group, chromosome correlation maps were also built 
in order to allow the visualization of co-expressed genes along the 
chromosomes (Fig. 5). Simulating gene expression with respect 
to chromosome location did not give straightforward results, as in 
the case of the Tα-grade 1 tumor group. Polynomial approxima-
tions were used, and the R2 values ranged between 0.7 and 0.91. 
However, it appeared that they could be simulated with poly-
nomials despite the difficulty to find the most suitable function 
for the data. This indicates that chromosome-based gene expres-
sion is a quasi-linear problem, possibly of a nonlinear nature. The 
results of the simulations are presented in Figure 6.

Comparison between Tα-grade 3 tumors and control samples. 
Similarly, chromosome correlation maps were constructed for 
Tα-grade 3 tumors in order to allow visualization of co-expressed 
genes along the chromosomes (data not shown due to space 
limitations).

Comparison between T1-grade 2 tumors and control samples. 
As also expected in the present case, gene expression was highly 
correlated (Fig. 7). Similarly, simulation of the data showed that 
they could be fitted easily, as was also the case of the Tα-grade 1 
samples (data not shown due to space limitations).

Comparison between T1-grade 3 tumors and control samples. 
Chromosome correlation maps for T1-grade 3 tumors did not 
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exhibit highly co-expressed genes along the chromosomes. The 
data were not further investigated.

Comparison between T1-grade 2/3 tumors and control samples. 
Chromosome correlation maps for T1-grade 2 and T1-grade 3 
tumors also revealed highly co-expressed gene patterns along 
the chromosomes (data not shown due to space limitations). 
Similarly, data simulation showed a high ability for fitting, as was 
also the case of the Tα-grade 1 and T1-grade 2 tumor samples 
(data not shown).

No further correlation could be identified in the chromo-
some correlation maps for the following tumor comparisons: 
comparison between T1-grade 2/3/4 tumors and control sam-
ples; comparison between group A tumors and control samples; 
comparison between group B tumors and control; comparison 
between group C tumors and control samples; and comparison 
between metastatic tumors and control samples.

Comparison among all control samples. We further investigated 
the existence of correlations separately among tumor and control 
samples. Interestingly, the control samples exhibited correlations 
on certain chromosomes, such as chromosomes 2, 4, 5, 7, 10, 
13, 15 and 17 (Fig. S3). Based on the observed correlations, we 
attempted to fit our data in order to discover patterns of gene 
expression. If a simulation existed, it should be true for all the 
samples in specific chromosomes. For this purpose, we calculated 
the mean values of each sample for all genes and for each chro-
mosome. Surface fittings were selected based on their R2 value, 
which should be > 0.9. This finding was interesting, as it hinted 
toward an expression pattern in the physiological samples, point-
ing out that gene expression is indeed highly correlated in cells 
(Fig. S4).

Comparison between all tumors and control samples. The above 
results suggest a need for a different approach when it comes to 
analyzing these data. Since gene expression is multidimensional, 
taking into account that we have 22 chromosomes and two sex 
chromosomes, the analysis should take place for each one of 
them. Supposed that we have k samples with j genes each and c = 
22 + 2 chromosomes, the gene expression x would be defined as: 
x

k,j,c
. Thus, we need three variables in order to describe the expres-

sion of a gene. This leads to the formation of a 3D matrix of the 
form m × n × p. Yet, such a matrix is a multidimensional structure 
that cannot be easily visualized. In the present case, in order to 
visualize gene expression in such a way that would give mean-
ingful interpretation of chromosome-based gene expression, we 
created this 3D structure. In order to simplify this structure, we 
isolated 2D matrices of genes vs. samples with constant chromo-
somes, and genes vs. chromosomes with constant samples. The 
second problem that we encountered was how to further reduce 
the complexity of the data and find similarities between gene 
expression values with respect to chromosomes. 3D visualizations 
of the initial data were too complex to analyze and to obtain pat-
terns of gene expression. The answer to this question came from 
the utilization of k-means clustering. K-means classifies gene 
expressions, based on similarities. Thus, if genes are sorted with 
respect to chromosomes, then possible patterns could be revealed 
using the k-means algorithm. In Figure S5, the result of the 
k-means clustering is presented as implemented for the genes vs. 

Table 3. Selected Go terms of chromosomal-based gene expression

GO analysis

ID Name p-value (Adj)

chromosome 1

Go:0060669 embryonic placenta morphogenesis 0.0045

Go:0005839 proteasome core complex 0.0014

Go:0005031 tumor necrosis factor receptor activity 0.0067

chromosome 2

Go:0009952 anterior/posterior pattern formation 0.0018

Go:0007350 blastoderm segmentation 0.0064

Go:0048468 cell development 0.0071

Go:0048562 embryonic organ morphogenesis 0.0025

Go:0048706 embryonic skeletal system development 0.0062

Go:0005152 interleukin-1 receptor antagonist activity 0.0052

Go:0004918 interleukin-8 receptor activity 0.0052

chromosome 3

Go:0016493 C-C chemokine receptor activity 4.71e-05

Go:0071425 hemopoietic stem cell proliferation 0.0043

chromosome 4

Go:0001525 Angiogenesis 0.0052

Go:0008009 chemokine activity 2.99e-07

Go:0008083 growth factor activity 0.0008

Go:0005134 interleukin-2 receptor binding 0.0059

Go:0051781 positive regulation of cell division 0.0001

Go:0045741
positive regulation of epidermal growth 

factor receptor activity
0.0008

Go:0050729
positive regulation of inflammatory 

response
0.0027

Go:0045410
positive regulation of interleukin-6 bio-

synthetic process
0.0003

Go:0045840 positive regulation of mitosis 0.0061

Go:0034105 positive regulation of tissue remodeling 0.0087

Go:0008202 steroid metabolic process 0.0065

chromosome 5

Go:0042977 activation of JAK2 kinase activity 0.0010

Go:0035240 dopamine binding 0.0020

Go:0008083 growth factor activity 0.0048

Go:0070851 growth factor receptor binding 0.0056

Go:0005138 interleukin-6 receptor binding 0.0068

Go:0004923
leukemia inhibitory factor receptor 

activity 0.0023

chromosome 6

Go:0060333
interferon-gamma-mediated signaling 

pathway 1.78e-09

Go:0046415 urate metabolic process 0.0094

Go:0001570 vasculogenesis 0.0089

chromosome 7

the terms were considered significant if they obtained an adjusted 
p-value < 0.01.
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cancer cases were carefully selected in order to obtain at least one 
pair from each of the following groups: T1-grade 2, T1-grade 
3 and T2/T3-grade 3. Furthermore, in our pooled microarray 
analysis, a wide range of data from publicly available microarray 
data sets was included, increasing the total number to 129 blad-
der cancer and 17 control samples. Statistical analysis results were 
obtained from our previous works,7,35 and the same collection of 
genes was used. All conclusions and further analyses were based 
on the differential gene expression reported. The main difference 
is that this same data set was further divided according to the 
chromosomal location of each identified gene.

We performed IPA for two separate cohorts (A and B) and con-
structed chromosome correlation maps for all bladder tumors in 
order to visualize co-deregulated genes along the chromosomes. 
Network analysis manifested two distinct signaling pathways, 
the glucocorticoid receptor (GR) and NFκB signaling pathway. 
These pathways are known to be antagonistic, since the second is 
responsible for the inflammatory response while the first for the 
anti-inflammatory one.22 It has been reported that tumors of the 
urinary tract are not considered to be hormone-dependent, yet 
it has been shown that nuclear receptors participate in urinary 
tumor ontogenesis.23 Also, there are no reports connecting blad-
der cancer to NFκB. The finding that genes that possibly par-
ticipate in the progression of the tumor are related to the NFκB 
signaling pathway is presented for the first time.

The mean value of the DE genes in tumor groups vs. control 
samples on chromosome 1 was positive, implying that these genes 
are upregulated. The most interesting case, however, was the 
appearance of CDC20, also previously reported to be significantly 
overexpressed in bladder cancer.7 Also, GPREL1 (chromosome 4) 
and HCCS (chromosome X) were the most active genes among 
all tumor samples. CDC20 has been previously reported to act as 
a potent TP53 target and is a putative therapeutic target gene.24

the samples with constant chromosome location. These results 
were further fitted using Fourier series (Eqn. 3). The result for 
chromosome 1 is presented in Figure S6. We further analyzed 
the data by calculating the confidence intervals at the 95% level, 
the first and second derivatives, as well as the integral of the fitted 
data. An interesting observation was that the derivatives of the 
fitted data manifested oscillatory behavior. In addition, we pres-
ent the results of our analysis for chromosome X in Figure S7. 
All remaining chromosomes were analyzed accordingly (data not 
shown due to space limitations).

Our analysis proceeded with the consideration of chromo-
somes vs. gene expression. Similarly, we performed k-means 
clustering analysis (Fig. S8) for the first 10 samples. The remain-
ing 130 samples were clustered accordingly. Simulations of this 
dimension of the cube were succeeded with Fourier series as men-
tioned in the “Materials and Methods” section and Equation 3. 
The result is presented in Figure S9 with indicative diagrams of 
our analysis. The cubical matrix that was implemented is a very 
complex structure, which eventually manifests nonlinear dynam-
ics with respect to gene expression.

Gene ontology (GO) enrichment analysis. Gene expression was 
further investigated using GO enrichment. Function distribution 
along chromosomes is presented in Figure S10. Chromosome 
5 presented more functions compared with the other chromo-
somes. GO enrichment was not proportional to the chromosome 
size, since the largest chromosome 1 presented 35 significant 
functions. All the significant gene functions per chromosome are 
presented in Table 3.

Discussion

Several studies have focused on the expression profiling of blad-
der cancer using microarrays.12-21 In the present study, the bladder 

Figure 2A. Ingenuity analysis of the top pathways affected in differentially expressed genes among 129 bladder cancer and 17 normal tissue samples 
(Cohort B). Y-axis is an inverse indication of p-value or significance. (A) Gene networks involved in “cell cycle, gene expression and cell death” (B), and 
“cell morphology, cellular function and maintenance and cell death” (C), generated by IpA for differentially expressed genes between bladder cancer 
and normal tissue. the selected scoring method was Fisher’s exact teast p-value. the threshold value was set at p = 0.05. Red symbols are assigned 
for upregulated and green for downregulated genes. Node shape corresponds to the functional role of molecules as shown in the legend. Direct or 
indirect interactions are shown by complete or dashed lines.
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Figure 2B and C. For figure legend, see page 1549.
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the genes on the same chromosomes 
were expressed in a similar manner.

Likewise, we constructed chro-
mosome correlation maps for the 
Tα-grade 2 tumors and found that 
chromosome-based gene expression 
manifested diverse correlation pat-
terns. Thus, it was not a strong indi-
cation of correlation in this type of 
tumor. As in the case of Tα-grade 1 
tumors, expression data simulation 
also showed an excellent fit (0.7 < R2 
< 0.9). These two cases suggest that 
correlation possibly also meant cau-
sation for these tumor types.

Next, we constructed chromo-
some correlation maps for the control 
samples alone in order to examine 
whether the correlations had to do 
only with relative ratios of tumors vs. 
the controls. Our analysis revealed 
chromosomal domains of gene co-
expression for the control samples as 
well. Fitting attempts also showed 
that gene expression data could be 
simulated using polynomial func-
tions, and again correlation hinted 
toward causation in normal tissue 
samples. To the best of our knowl-
edge, this is the first time that micro-
array data are analyzed in such a way.

Despite the interesting type of 
mechanisms observed so far, espe-
cially in Tα-grade 1 and Tα-grade 2 
tumors, we still wished to investigate 
whether such correlations appeared 
due to the small sample size that 
was used in the simulation proce-
dures. Therefore, the next step was 
to perform the analysis in the com-
plete sample size, in an attempt to 
gain insight into the whole picture 

of chromosome-based gene expression. For this purpose, we cre-
ated the “gene cube.” The idea was that similarly regulated genes 
should manifest similar dynamics. Interestingly, it appeared that 
experimental data could be fitted with transformations, indicat-
ing that there are, at least in part, linear dynamics governing sim-
plifications of the system described. New findings of molecular 
markers have been reported in the past in similar studies, using 
bioinformatics tools to identify gene expression signatures.25,26 
Thus the dynamics of chromosomal gene expression is of high 
significance in tumor biology. From our analysis, it was evident 
that gene expression has partly linear dynamics.

Genes on chromosomes 1 and 12 manifested functions 
related to embryonic development. The role of developmental 
genes in urothelial carcinomas was also previously reported.23,27 

Significantly co-expressed genes along chromosomes 1, 2, 3, 
7, 12 and 19 appeared among the tumor subgroups with respect 
to the control samples. To our knowledge, this is the first report 
that indicates such gene expression correlations in bladder cancer. 
Since this was a first indication of gene regulatory mechanism, we 
wished to ascertain whether gene expression could be simulated. 
It is known that the existence of correlation (gene co-expression) 
does not automatically mean causation. This was confirmed to 
be true by successful simulation. Interestingly, when we separated 
the genes based on their chromosome location, they could be fit-
ted with a third-degree polynomial, hinting toward the existence 
of linear correlation regulatory mechanisms. This suggests that 
gene expression falls into a conserved mechanism of expression. 
The simulation revealed that among different tumor samples, 

Figure 3. Chromosome correlation maps of the De genes between tα-grade 1 tumors and control 
samples, on chromosomes 1, 2, 3, 7, 12 and 19. the X and Y axes represent the individual genes that were 
differentially expressed between control and ta-grade 1 tumors.
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Figure 4. Simulations of the De genes with respect to their chromosome location, among tα-grade 1 tumors and control samples. each chromosome 
is presented separately. All genes could be simulated with a third-degree polynomial and R2 > 0.99. Axes represent gene expression values of the 
log2 ratio of the ta-grade 1 tumors over control samples, where each axis represents one sample from the tumor subtype (ta-grade 1 tumor group 
consisted of three samples).
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Figure 5. Chromosome correlation maps for tα-grade 2 tumors allow visualization of co-expressed genes along all chromosomes.
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Figure 6. Simulations of the De genes with respect to their chromosome location, among tα-grade 2 tumors and control samples. each chromosome 
is presented separately. All genes could be simulated with a third degree polynomial and R2 > 0.99. Axes represent gene expression values of the 
log2 ratio of the ta-grade 2 tumors over control samples, where each axis represents one sample from the tumor subtype. ta-grade 2 consisted of 12 
samples in total. the figure includes representative fittings of the samples GSM2526_ta gr2, GSM2536_ta gr2 and GSM2507_ta gr2 for each chromo-
some, respectively.
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silencing.29 Also, TCF7L2 has been reported to play a role in the 
WNT signaling pathway, where its inhibition seems to lead to 
G

1
 arrest and growth inhibition of the bladder cancer. Genes on 

chromosome 4 and 9 participated in chemokine regulation. In 
particular, on chromosome 4, a large CXCL family is represented, 
including CXCL10, CXCL11, CXCL13, CXCL3, CXCL5, 
CXCL6, CXCL9 and IL8, PF4 and PPBP. The CXCL family 
of chemokines has been reported to participate in the microen-
vironment of bladder carcinoma.30 IL8 has also been reported to 

In particular, the genes related to this function were IL10 and 
VCAM1. VCAM1 has been reported to be upregulated in blad-
der carcinomas.28 On the other hand, genes on chromosome 12 
were LRP6, WNT1 and WNT10B. There are no reports linking 
LRP6, WNT1 and WNT10B with bladder cancer. Genes on chro-
mosome 10 were related to the WNT receptor signaling path-
way (BAMBI, BTRC, DKK1, FBXW4, FRAT1, FRAT2, FZD8, 
HHEX, LDB1, SFRP5, TCF7L2 and WNT8B). BAMBI has been 
linked with high-grade bladder carcinomas through epigenetic 

Figure 7. Chromosome correlation maps for t1-grade 2 tumors allow visualization of co-expressed genes along all chromosomes. the X and Y axes 
represent the individual genes that were differentially expressed between control samples and t1-grade 2 tumors.
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discovery rate (FDR) was 8.6% for p < 0.05, calculated as previ-
ously described.41-43

Cluster analysis. K-means clustering with squared Euclidean 
as a metric distance was used to partition the gene expression 
profiles throughout the experimental setups.44 The procedure was 
repeated 100 times, each with a new set of initial cluster cen-
troid positions. The predictive power of the k-means algorithm 
was estimated using a figure of merit (FOM).45 A FOM value vs. 
number of clusters was computed by removing each sample in 
turn from the data set, clustering genes based on the remaining 
data and calculating the fit of the withheld sample to the cluster-
ing pattern obtained from the other samples.

Chromosome mapping and linear correlations. Since con-
secutive genes are often similarly expressed, we mapped the genes 
on chromosome regions and identified their correlations through 
their chromosomal location.10 The Gene Ontology Tree Machine, 
WebGestalt web-tool (Vanderbilt University, The Netherlands, 
http://bioinfo.vanderbilt.edu/gotm/)46 and the Matlab® (The 
Mathworks Inc.) computing environments were used. Linear cor-
relations were calculated using Pearson’s correlation coefficient. 
The value R2 > 0.9 was set as a threshold for statistical significance.

Gene ontology (GO) enrichment. GO analysis was applied 
to highlight the different functionalities among the experimen-
tal setups. For each chromosomal gene set formed, statistical 
analysis of GO term overrepresentation was performed against 
the common gene set, which was utilized as a reference set.47,48 
The chosen approach was the parent-child-union method.49 
Overrepresentation analysis (ORA) was performed with the pub-
licly available Ontologizer 2.0 tool50 using GO terms definitions 
and associations between genes and GO downloaded from the 
Gene Ontology consortium.51 The threshold for statistical sig-
nificance was set to < 0.01 using Bonferroni correction.

Mathematical modeling and simulations. Simulations were 
performed using Matlab®. For fitting purposes we used polyno-
mial equations for 2D (Eqn. 1) and for 3D (Eqn. 2):

Equation 1:
f (x) = a

0
 + a

1
xn + a

2
xn−1 +…+a

n
x

Equation 2:

f (x,y) = a
0
 + a

1
xn + a

2
xn−1 y + a

3
xn−2 y2 + a

4
xn−3 y3 + … + a

5
x3yn−3

+ a
6
x2yn−2 + a

7
xyn−1 + a

8
yn

Fourier series model as in Equation 3:

Sum of sin functions as in Equation 4:

Fitting algorithm finds the coefficients of a polynomial f(x) of 
degree n that fits the data, f[x(i)] to y(i), in a least squares sense. 
The result p is a row vector of length n+1 containing the poly-
nomial coefficients in descending powers as shown in Equations 
1 and 2.

On the other hand the Fourier series is a sum of sine and 
cosine functions that describes a periodic signal (Eqn. 3). It is 
represented in either the trigonometric form or the exponential 
form. The algorithm used in the present work used the trigono-
metric Fourier series form, where a

0
 models a constant (intercept) 

participate in bladder cancer.31 GHR, IL12B and PRLR on chro-
mosome 5 presented functions related to JAK2 kinase activity. 
So far, there are no reports connecting these genes with bladder 
tumors. Yet, it has been reported that the JAK/STAT participates 
in the inflammatory mechanisms of urinary bladder, relating it 
to the oncogenetic mechanisms of the disease.32 Finally, on chro-
mosome 22, MAPK1, MAPK11 and MAPK12 participate in the 
MAPK pathway. Interestingly, it has been reported that the inhi-
bition of MAPK and NFκB signaling pathways inhibits growth 
and induces apoptosis of bladder tumor cells.33,34

Our data support the hypothesis that gene expression signa-
tures can provide further information on gene regulatory mecha-
nisms, based on chromosomal correlations of gene expression. 
The “Gene Cube” proved that gene expression has partly linear 
dynamics. Future research should focus on the investigation of 
these correlations in gene expression.

Materials and Methods

Strategy of the study. In the first part, we performed microarray 
experimentation as previously described in detail7,35 (Cohort A). 
The tumor samples were divided into three groups, as follows: 
T1-grade 2, T1-grade 3 and T2/T3-grade 3. All raw microarray 
data were MIAME compliant and uploaded on the GEO data-
base (GSE27448).7 The study was approved by the institutional 
review board of the University of Crete. For further data analysis, 
the Matlab® software was used.

In the second part, we extracted raw microarray expression 
data from 4 GEO data sets: (1) GSE89;13 (2) GSE3167;14 (3) 
GSE7476;36 (4) GSE12630,37 and incorporated them in our anal-
ysis, as previously described in detail.7 All microarray data were 
background corrected and cross-normalized using a quantile 
algorithm.38-40 In total, our pooled microarray analysis comprised 
17 normal tissues and 129 bladder cancer samples (Cohort B).

All samples used from each data set with their respective GSM 
accession number, and detailed information regarding each sam-
ple’s tumor type has been previously described in detail.7

Network analysis. The co-deregulated genes among bladder 
cancer samples were investigated for network interrelation using 
the Ingenuity Pathways Analysis (IPA) software (www.ingenuity.
com). The DE genes between cancer and normal tissue were used 
to generate a set of networks with a maximum network size of 35 
genes/proteins. The median log

2
 fold change value was used for 

analysis.
Microarray data statistics. First, we compared all the blad-

der cancer vs. all the normal tissue samples, entailing all bias 
by comparing them as unified groups. This analysis provided 
us with the co-DE genes. Second, we separated the 129 bladder 
cancer samples into 11 groups: (1) Tα-grade 1 tumors vs. con-
trols; (2) Tα-grade 2 tumors vs. controls; (3) Tα-grade 3 tumors 
vs. controls; (4) T1-grade 2 tumors vs. controls; (5) T1-grade 3 
tumors vs. controls; (6) T1-grade 2 and T1-grade 3 tumors vs. 
controls; (7) T1-grade 2, T1-grade 3 and T1-grade 4 tumors vs. 
controls; (8) group A15 vs. controls; (9) group B15 vs. controls; 
(10) group C15 vs. controls; (11) metastatic tumors vs. controls. 
Each group was compared against all control samples. The false 
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term in the data and is associated with the i = 0 cosine term, w is 
the fundamental frequency of the signal, n is the number of terms 
(harmonics) in the series, and 1 ≤ n ≤ 8.

Table 3. Selected Go terms of chromosomal-based gene expression

GO analysis

ID Name p-value (Adj)

chromosome 1

Go:0060669 embryonic placenta morphogenesis 0.0045

Go:0005839 proteasome core complex 0.0014

Go:0005031 tumor necrosis factor receptor activity 0.0067

chromosome 2

Go:0009952 anterior/posterior pattern formation 0.0018

Go:0007350 blastoderm segmentation 0.0064

Go:0048468 cell development 0.0071

Go:0048562 embryonic organ morphogenesis 0.0025

Go:0048706 embryonic skeletal system development 0.0062

Go:0005152 interleukin-1 receptor antagonist activity 0.0052

Go:0004918 interleukin-8 receptor activity 0.0052

chromosome 3

Go:0016493 C-C chemokine receptor activity 4.71e-05

Go:0071425 hemopoietic stem cell proliferation 0.0043

chromosome 4

Go:0001525 Angiogenesis 0.0052

Go:0008009 chemokine activity 2.99e-07

Go:0008083 growth factor activity 0.0008

Go:0005134 interleukin-2 receptor binding 0.0059

Go:0051781 positive regulation of cell division 0.0001

Go:0045741
positive regulation of epidermal growth 

factor receptor activity
0.0008

Go:0050729
positive regulation of inflammatory 

response
0.0027

Go:0045410
positive regulation of interleukin-6 bio-

synthetic process
0.0003

Go:0045840 positive regulation of mitosis 0.0061

Go:0034105 positive regulation of tissue remodeling 0.0087

Go:0008202 steroid metabolic process 0.0065

chromosome 5

Go:0042977 activation of JAK2 kinase activity 0.0010

Go:0035240 dopamine binding 0.0020

Go:0008083 growth factor activity 0.0048

Go:0070851 growth factor receptor binding 0.0056

Go:0005138 interleukin-6 receptor binding 0.0068

Go:0004923
leukemia inhibitory factor receptor 

activity 0.0023

the terms were considered significant if they obtained an adjusted 
p-value < 0.01.

Table 3. Selected Go terms of chromosomal-based gene expression
(continued)

GO analysis

ID Name p-value (Adj)

chromosome 6

Go:0060333
interferon-gamma-mediated signaling 

pathway 1.78e-09

Go:0046415 urate metabolic process 0.0094

Go:0001570 vasculogenesis 0.0089

chromosome 7

Go:0035425 autocrine signaling 0.0022

Go:0060571 morphogenesis of an epithelial fold 0.0072

Go:0045765 regulation of angiogenesis 0.0038

chromosome 9

Go:0005125 cytokine activity 4.39e-05

chromosome 10

Go:0005739 mitochondrion 0.0096

Go:0016055 Wnt receptor signaling pathway 0.0078

chromosome 12

Go:0031076
embryonic camera-type eye develop-

ment 0.0071

Go:0048048 embryonic eye morphogenesis 0.0051

chromosome 16

Go:0006264 mitochondrial DNA replication 0.0068

Go:0005759 mitochondrial matrix 0.0060

Go:0010834
telomere maintenance via telomere 

shortening 0.0068

chromosome 17

Go:0008009 chemokine activity 5.09e-05

chromosome 21

Go:0004904 interferon receptor activity 0.0004

chromosome 22

Go:0004707 MAp kinase activity 0.0007

chromosome X

Go:0004896 cytokine receptor activity 0.0055

the terms were considered significant if they obtained an adjusted 
p-value < 0.01.
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