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Abstract
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease.
In image analysis, for example, there is often more than one reader or more than one algorithm
applied to a certain data set. Combining of classifiers is often helpful, but determining the way in
which classifiers should be combined is not trivial. Standard strategies are based on learning
classifier combination functions from data. We describe a simple strategy to combine results from
classifiers that have not been applied to a common data set, and therefore can not undergo this
type of joint training. The strategy, which assumes conditional independence of classifiers, is
based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using
maximum likelihood analysis to determine a combination rule for each ROC operating point. We
offer some insights into the use of ROC analysis in the field of medical imaging.

1 Introduction
It is often desirable in clinical practice to combine the results of two or more diagnostic tests
or classifiers in order to obtain a more accurate and certain diagnosis. In the field of medical
imaging, combinations of independent assessments based on multiple imaging modalities
can be combined to create a joint classifier. See [2] for example. Results from segmentation
or recognition algorithms can also be combined [8, 3] to produce an improved estimate of
ground truth. Ideally, combination of classifiers would be done by joint training and analysis
on a common dataset to which all classifiers can be applied. Standard methods in machine
learning (logistic regression, PCA, SVMs, etc.) could then be used to find an optimized
combined classification scheme [5, 6]. In practice, however, it is often the case that joint
training data is not available, or is of insufficient quantity. Indeed, there is a “power rule”
involved: if it takes roughly N data points to estimate a distribution in order to train a single
classifier, it is reasonable to expect the need for on the order of Nc data points to estimate
the joint distribution needed to train c classifiers. In light of initiatives established to
encourage the sharing of algorithms, such as the ITK project (www.itk.org), the lack of
sufficient quantities of data for joint training has become more apparent. Accordingly, we
have developed the following simple algorithm, used to combine multiple classifiers without
the need for joint training. It is based on the maximum likelihood analysis of ROC curves of
classifiers.
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Although ROC analysis is widespread and standard in the medical field wher-ever
diagnostic tests are analyzed, it is far less common within the field of medical image
analysis [9]. We feel this is unfortunate, and that a wider use of these techniques would help
lead to general acceptance of image analysis algorithms, e.g. algorithms for detection,
segmentation and registration, within the clinical community.

2 Background on ROC Analysis
We begin with some basic notions from the standard ROC theory. See [4] for a review of its
use in biomedicine. Let I be an image, depending on a binary random variable T ∈ {0, 1}
representing unknown “truth” and suppose we have a classification process, or test, A
estimating T and depending on a vector of parameters kA, so that A(I, kA) ∈ {0, 1}. A
simple example would be where I is a pixel in a CT image, kA = (Ilow, Ihigh) consists of a
range for Hounsfield units used to segment some structure, and A is then either 1 or 0,
indicating the absence or presence of said structure, i.e. whether or not the intensity lies in
the range given by kA. A more sophisticated example might be where A is a segmentation
algorithm depending upon several parameters.

For each setting of the parameter kA we define two probabilities, the true positive rate tpA =
Pr(A = 1ǀT = 1) and the false positive rate fpA = Pr(A = 1ǀT = 0). The true positive rate is
also known as the sensitivity of the classifier, while 1 – fpA is known as A’s specificity. We
would generally like a classifier to be specific and sensitive. Thus, these notions give us a

partial ordering of the unit square [0, 1]2 : an operating point  is superior to

 if  and .

The Receiver Operator Characteristic or ROC for A is the set of points {(fpA(kA), tpA(kA))}
⊂ [0, 1]2, as kA ranges over all of its possible values. When kA is a single scalar value, the
ROC is a curve in the unit square parameterized by kA. We will assume that our ROC curves
are concave, and that tp ≥ fp for each point one the curve. Concavity is a standard and mild
assumption, for any ROC can be made concave by adding a stochastic component to the
classifier [7]. Given concavity, tp ≥ fp on the ROC curve as long as it contains some points
which are superior to (0, 0) and (1, 1). Our work is related to that of [7], who used stochastic
methods to create a combined classifier having an ROC equal to the convex hull of the
ROCs of the individual classifiers. Our method can produce superior classifiers, in the sense
of having an ROC superior to this convex hull, but requires a conditional independence
assumption.

3 Combining Classification Processes
3.1 Model Assumptions

Our model assumes that the classifiers A and B are conditionally independent. This means
that given some unknown truth, positive (T = 1) for example, we assume that the output of A
and B can be modeled as independent Bernoulli processes with respective probability of
success tpA and tpB, i.e. the true-positive rates for the two processes. Note the we do not
assume the independence of A and B; only the much weaker assumption of independence
conditioned on the true underlying value is required. Conditional independence assumptions
are common in machine learning and statistical and information theoretic image processing,
especially in relation to maximum likelihood estimation. In the area of ROC analysis, and
application to combinations of classifiers, the role of conditional independence is
investigated in [1]. This work is related to our own, but differs in the combination technique,
estimation of priors, and derivation of a joint statistic.
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3.2 Maximum Likelihood Estimation
Let us assume we have two classifiers A and B, and that they are operating according to
respective parameters kA and kB. We assume we know the ROC curves of the two
processes, and the true positive and false positive rates for every value of the parameters kA
and kB. Given some input, processes A and B will output either 0 (false) or 1 (true), giving
us a total of 4 possible cases. For each case we have an expression for the maximum
likelihood estimate (MLE) of the unknown truth T :

Each inequality (logical expression) in the rightmost column evaluates either to 0 or 1, and
the resulting value is the maximum likelihood estimate of the truth T. If conditional
independence is assumed, then Pr( A = 1 , B = 1 ǀ T = 1 ) = Pr( A = 1 ǀ T =1 ) Pr(B = 1 ǀ T =
1) = tpA tpB. See [1] for more details. Proceeding similarly for the other terms in the
rightmost column above, we get the following table:

From our assumptions detailed above, tpA tpB ≥ fpA fpB and (1 – tpA)(1 – fpB) ≥ (1 – fpA)(1
– fpB), so the first and last rows of Table 2 are determined, and whenever A and B are in
agreement their common output is the maximum likelihood estimate of T. Thus, only the
middle two rows of the table above need to be determined, resulting in one of 4 possible
MLE combination schemes, which we mnemonically name scheme “A and B,” scheme “A,”
scheme “B,” and scheme “A or B.” These are summarized in the following table:

It’s easy to calculate the false positive fp and true positive tp rates for these schemes, again
using the assumption of conditional independence:

Thus, under the assumption of conditional independence, these rates can be calculated from
information contained in the ROCs for A and B alone. In practice, this means that decision
processes can be combined without retraining, since there is no need to estimate joint
distributions for the output of A and B, nor the need to know the distribution of the
underlying truth T.

3.3 Effect of the Combination Rules on Composite Accuracy
When operating under scheme “A and B,” we have fp = fpA fpB ≤ fpA and similarly fp ≤
fpB, tp ≤ tpA, tp ≤ tpB. We see that when compared to A or B alone, this rule generally
decreases sensitivity tp but increases specificity 1 – fp, as one might expect for a scheme
that requires a consensus to return a positive result. For the scheme “A or B,” we have fp =
fpA + fpB − fpA fpB = fpA + fpb (1 – fpA) ≥ fpA, and similarly fp ≥ fpB, tp ≥ tpA, tp ≥ tpB. So
the “A or B” rule generally increases sensitivity but decreases specificity, again as one might
expect. Thus in each of these cases the operating rate (fp, tp) is not demonstratably superior
to either (fpA, tpA) or (fpB, tpB). However, an advantage is gained by an analysis of the
entire range of operating rates, as we describe below.

3.4 Calculating Attainable True and False Positive Rates
To combine processes A and B, we begin by calculating for each value of the parameter pair
(kA, kB), and corresponding 4–tuple of false-positive and true-positive rates (fpA, tpA, fpB,
tpB), the correct ML scheme to use according to Table 2 above, and the resulting combined
rates (fp, tp) for that scheme using the formulas in Table 4. In practice, we take discrete
values for kA and kB, say by sampling them evenly. The resulting set of points (fp, tp) for
two example ROCs are shown in Figure 1.

3.5 ROC Boundary Curve
The set of points (fp, tp) represent possible operating points for our joint process. However,
we do not need to consider points in the interior of the region containing these points. For
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each point in the interior, there is a point on the outer boundary of the region which is
superior, and thus a better operating point. For example, there is a point on the boundary
which has the same false positive rate and a greater true positive rate. Thus, we discard these
interior points, and consider only those points along the outer boundary. These points form a
curve which is the ROC of our combined process. This combined ROC is the graph of the
combined true positive rate thought of as a function of the combined false positive rate fp.
We take fp ∈ [0, 1] to be the parameter of our combined process. In practice, the outer
boundary ROC can be estimated by splitting the interval [0, 1] into a number of sub-
intervals i.e. bins, and within each bin finding the pair (fp, tp) having the largest value of tp.
The choice of the number of bins to use requires some care, but this is a common concern
which appears whenever data histogramming is required, and standard solutions can be
applied. We are currently researching a method by which an exact calculation of the joint
ROC curve can be obtained. Along with each point (fp, tp) on the combined ROC curve, we
keep track of a pair of parameters (kA, kB), and a ML combination scheme which allows us
to operate at (fp, tp).

3.6 Calculating a Combined Statistic
In theory, the classifiers A and B can be any binary decision process governed by
parameters kA and kB, where these parameters may be vector valued. In practice however, it
is often the case that kA and kB are simple thresholds applied to scalar outputs sA and sB
calculated as part of the A and B decision processes respectively. Thus A returns the
estimate T = 1 if and only if kA ≤ sA, and similarly for B. In this case, it may be desirable to
have a new derived statistic s for the combined process. Let C denote our combined
classifier, created as described above. For a chosen operating point (fp, tp) on the ROC
curve for C, we have associated thresholds kA and kB and an MLE combination rule to be
applied in order to derive an estimate C ∈ {0, 1} of T based on the pair of statistics sA and
sB. We define our joint statistic s as a function of sA and sB and the chosen operating level as
follows:

To use s, we treat it as a statistic and return C = 1 if and only if s ≥ 0. It is easy to see that the
true positive and false positive rates for this process are the same as the rates associated with
the point on the joint ROC at which we wish to operate. We are currently refining a method
by which a single joint statistic can be produced without the need for an apriori specification
of an ROC operating point.

4 Illustration of the Method
We illustrate the method described above on a synthetic example. In Figure 2 we show two
normal distributions for each of two classifiers A and B. One is the probability distribution
for the statistic sA or sB given that T = 0, and the other is for these statistics given T = 1. The
thresholds to use, shown as vertical lines, are determined by our algorithm after we choose
an operating point (fp, tp) on the combined ROC curve, shown circled on the in Figure 3.
Also displayed in Figure 3 are the ROC curves for A and B and the corresponding operating
levels which result from the thresholds our algorithm chooses.

5 Conclusion and Discussion
We have developed a simple algorithm for combining multiple classifiers without the need
for joint training, based on the maximum likelihood analysis of ROC curves of classifiers.
Our work has been motivated by the general paucity of joint training data to use with a
rapidly expanding array of new segmentation algorithms and diagnostic tests. Future work
will include the testing of the method on a range of image and other clinical data, including
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an investigation of the validity of the conditional independence assumption across this
range.

As mentioned before, ROC analysis, though standard in the medical community, has not
been as widely adopted in the medical image processing field. Often, a segmentation or
registration algorithm requires the specification of numerous parameters, such as kernel
sizes, time steps, thresholds, weights applied in a weighted sum of functional terms, etc. The
engineer typically varies these parameters to find the single point which gives a good result
for a training data set, then applies them to a test data set. Yet finding this single point in
parameter space is neither necessary nor desirable. What is more in tune with medical
research outside of image processing is to report the ROC for the entire range of parameters,
or the outer boundary of these possible operating points. Note that in the latter case, the
outer boundary effectively reduces the degrees of freedom in the specification of parameters
to one.

Medical image processing is maturing, with standardized algorithms for detection,
segmentation and registration readily available to the general community in shared form
through mechanisms like the ITK project. We believe more widespread use of ROC analysis
will lead to greater clinical acceptance.
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Fig. 1.
Two ROCs (solid line, broken line), together with set of points (circles), the outer boundary
of which represents the ROC of the combined ML process
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Fig. 2.
Distributions associated with the statistics sA and of a thresholding classification scheme.
The thresholds to use are determined by our algorithm.
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Fig. 3.
ROC curves for classifiers A and B. The circled point on the combined ROC curve
represents a level at which we wish to operate. Our algorithm determines the thresholds to
use to attain this level, shown in Figure 2, and the corresponding operating levels for A and
B, shown circled on their respective ROC curves.
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Table 1

Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 Pr(A = 1, B = 1ǀ T = 1) ≥ Pr(A = 1, B = 1ǀ T = 0)

1 0 Pr(A = 1, B = 0ǀ T = 1) ≥ Pr(A = 1, B = 0ǀ T = 0)

0 1 Pr(A = 0, B = 1ǀ T = 1) ≥ Pr(A = 0, B = 1ǀ T = 0)

0 0 Pr(A = 0, B = 0ǀ T = 1) ≥ Pr(A = 0, B = 0ǀ T = 0)
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Table 2

Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 tpA tpB ≥ fpA fpB

1 0 tpA(1 – tpB) ≥ fpA(1 – fpB)

0 1 (1 – tpA)tpB ≥ (1 – fpA)fpB

0 0 (1 – tpA)(1 – tpB) ≥ (1 – fpA)(1 – fpB)
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Table 4

False (fp) and True (tp) Positive Rates by Combination Scheme

Scheme fp tp

“A and B” fpA fpB tpA tpB

“ A ” fpA tpA

“ B ” fpB tpB

“A or B” fpA + fpB − fpA fpB tpA + tpB − tpA tpB
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Table 5

Formulas for Joint Statistic s

Scheme Formula for s

“A and B” min(sA – kA, sB – kB)

“ A ” sA – kA

“ B ” sB – kB

“A or B” max(sA – kA, sB – kB)
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