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Abstract
Quinazolin-4-one 1 was identified as an inhibitor of the HIF-1α transcriptional factor from a high-
throughput screen. HIF-1α up-regulation is common in many cancer cells. In this paper, we
describe an efficient one-pot sequential reaction for the synthesis of quinazolin-4-one 1 analogues.
The structure-activity relationship (SAR) study led to the 5-fold more potent analogue, 16.
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Hypoxia-inducible factor (HIF-1) is a dimeric transcription factor consisting of an oxygen
regulated α-component and a constitutively expressed β-component. At normal oxygen
levels, HIF-1α is degraded via the pVHL-mediated ubiquitin-proteosomal pathway. Under
hypoxic conditions, HIF-1α rapidly accumulates and dimerizes with HIF-1β. This
heterodimer binds to the DNA hypoxia-response element (HRE) and activates a diverse
array of target genes.1 This pathway is particularly relevant to the cancer field because
oxygen levels in tumors are commonly lower than in the surrounding tissues. Hypoxic cells
are resistant to radiation damage and their distances from blood vessels reduce the potency
of anti-cancer drugs. Hypoxia additionally promotes the up-regulation of genes involved in
drug resistance. HIF-1 is directly responsible for the induction of numerous genes that are
present at higher levels in cancer cells, in particular VEGF. The overexpression of HIF-1 has
been related to the aggressiveness and vascularity of tumors, and mortality rate in patients.
Despite the introduced difficulties in treating hypoxic tumors, the hypoxic environment
found in tumor cells can be exploited for targeted therapy. One strategy to achieve this
involves the identification of HIF-1 inhibitors as potential anti-cancer drugs.2 We recently
reported a high-throughput cell-based HIF-1 mediated β-lactamase reporter gene assay.
Upon screening a library of 73,000 compounds (PubChem AID:915 (http://
pubchem.ncbi.nlm.nih.gov)), several compounds were identified as novel inhibitors of the
HIF-1 signaling pathway.3 Among these hits, quinazolin-4-one 1 (NCGC00056044) showed
good drug-like properties and was selected for further exploration.

© Published by Elsevier Ltd.
*Corresponding author. Tel: 301-217-5740; Fax: 301-217-5736; huangwe@mail.nih.gov.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Bioorg Med Chem Lett. Author manuscript; available in PMC 2013 June 13.

Published in final edited form as:
Bioorg Med Chem Lett. 2011 September 15; 21(18): 5239–5243. doi:10.1016/j.bmcl.2011.07.043.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubchem.ncbi.nlm.nih.gov
http://pubchem.ncbi.nlm.nih.gov


Three areas were selected for structure-activity relationship (SAR) studies: (1) substitution
in area A; (2) piperazine region B; and (3) phenyl substitution in area C (Figure 1).

To facilitate our compound synthesis for the SAR study, we modified a reported method4 to
remove the need for intermediate purification. In addition, a microwave reactor was used to
accelerate the synthesis. Acylation of anthranilic acid 2 with chloroacetyl chloride gave 3,
which was treated with aniline 4 to afford chloride 5 (Scheme 1). The chloride was reacted
with amine 6 to give compounds 1, 7-36. All three steps were conducted in one-pot without
the need for intermediate isolation. This protocol was carried out in a parallel fashion to
prepare the analogues which were purified via HPLC.5

Compound 39 was prepared as described in Scheme 2. Reaction of 37 with 2-furoyl
chloride, followed by a hydrolysis reaction yielded acid 38. The desired 39 was obtained via
a microwave assisted one-pot three-component reaction of 38, acid 2a, and 2-ethoxyaniline.6

Scheme 3 describes the synthesis of the area C analogue 42. Nitro-reduction of 40 gave 41.
Alkylation of the aniline nitrogen in 41 using ethyl iodide followed by a Boc-deprotection
gave 42.

All analogues were evaluated in a cell-based HIF-1 mediated β-lactamase reporter gene
assay under hypoxic conditions.7 Area A showed little tolerance for substitution (Table 1).
The C-6 methoxy (7), C-5 iodo (9), and C-4 and C-5 dimethoxy (10) substitutions were
inactive. Compound 8 with a methyl group at C-6 was active, but it was 3-fold less potent
than the original hit (1). Considering these results, our efforts focused on the optimization of
areas B and C (Figure 1).

Modification of piperazine region B is shown in Table 2. Acetylation of N-4 (11) resulted in
similar activity to the hit compound (1), but capping the piperazine nitrogen with a
benzamide (12) or ethyl carbamate (13) resulted in a loss of activity. N-4 methylation (14)
or benzylation (15) resulted in a 2-fold and 64-fold loss of activity respectively. Ultimately,
the most active compound was the unsubstituted N-4 analogue (16), which was about 5-fold
more potent than 1. N-4 was critical for activity because when it was replaced with either a
carbon (19) or oxygen (18), activity was lost. In fact, both piperazine nitrogens were
important because replacement of N-1 with a carbon (39) also resulted in a 40-fold loss of
activity. Finally, the piperazine ring was expanded to homopiperazine (17) and there was a
slight loss in activity relative to 16, but this analogue was still more potent than 1.

The modification of area C was explored in table 3. The first set of compounds was based on
piperazine scaffold A (Table 3, entries 1-12) and there was almost no tolerance for
substitution. The only moderately successful analogue was 2-OMe (29), but even this was 8-
fold less active than 1. Scaffold B presented a greater opportunity for SAR analysis (entries
13-20). Large alkoxy groups, such as benzyloxy (33), or isobutyloxy (34) at C-2 resulted in
significant loss of activity in comparison with ethoxy (16). Moving the methoxy group from
the 2 to 4 position resulted in a complete loss of activity (29 vs. 36). A dramatic substitution
effect was observed at the 5 position. Replacement of the nitro group (32) with a CF3 (31)
resulted in more than a 20-fold improvement in potency. Finally, by comparing 35, 16, and
42, the ethoxy group appeared to be better than ethoxythio or ethylamine at the C-2 position.

To confirm HIF-1α inhibition activity, compounds 18 and 16 were evaluated in a Western
blot analysis.8 At 1 μM, 16 completely suppressed HIF-1α accumulation while 18 had no
effect on the protein accumulation (Figure 2). This result is in agreement with the
compounds’ activities observed in the cell-based assay. However, compound 18 at 10 μM
also inhibited HIF-1α protein accumulation. Stockwell and coworkers reported that these
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quinazolin-4-ones caused rapid death of human tumor cells (BJ-TERT/LT/ST/RASV12 cells)
via RAS-RAF-MEK dependent signaling.9 Because Ras, a well known oncogene, has been
shown to stimulate HIF-1α expression via the Raf/Mek/ERK pathway,10 it is possible that
the activity of these quinazolin-4-ones against HIF-1α accumulation is via the RAS
signaling pathway.

In conclusion, we have identified a series of novel quinazolin-4-one HIF-1α inhibitors. A
library synthesis and SAR studies revealed analogue 16 as the new lead, which was almost
5-fold more potent than the hit (1). The inhibition of HIF-1α was further confirmed in
Western blot analysis. Detailed mechanistic studies and evaluation of these compounds as
anti-cancer agents in rare types of cancer are currently under investigation and will be
reported in due course.
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Figure 1.
Optimization plan for NCGC00056044 (1)
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Figure 2.
Effect of compounds 16 and 18 on the accumulation of the HIF-1α protein under hypoxia
conditions
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Scheme 1.
Reagents and conditions: (i) iPrNEt2, ACN, r.t.; (ii) ArNH2 (4), POCl3, MW 150 °C, 15
min; (iii) K2CO3, EtOH, MW 150 °C, 5 min; then amine 6, MW 150 °C, 10 min.
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Scheme 2.
Reagents and conditions: (i) iPrNEt2, DCM, 2-furoyl chloride; (ii) LiOH; (iii) 2-
ethoxyaniline, 2a, pyridine, MW 230 °C, 10 min.
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Scheme 3.
Reagents and conditions: (i) Na2S2O4; MW 100 °C, 10 min (ii) EtI, DMF, iPr2NEt, K2CO3,
MW 150 °C, 15 min; (iii) DCM, TFA, r.t. 2 h
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Table 1

Modification at the R1 position*

Structure Entry Compd R1 1% O2 IC50 (uM)

1 1 H 0.43

2 7 6-Methoxy inactive

3 8 6-Methyl 1.2

4 9 5-Iodo inactive

5 10 4,5-Dimethoxy inactive

*
Values of IC50 are the mean of three independent experiments.
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Table 2

SAR study for the piperazine region*

Entry Compd X 1% O2 IC50 (uM)

1 1 0.43

2 11 0.47

3 12 1.7

4 13 9.4

5 14 0.81

6 15 27.5

7 39 27.6

8 16 0.09

9 17 0.16

10 18 27.6

11 19 inactive

*
Values of IC50 are the mean of three independent experiments.
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