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Abstract
In this paper we used a network-based approach to characterize the microflora abundance in
colonic mucosal samples and correlate potential interactions between the identified species with
respect to the healthy and diseased states. We analyzed the modelled network by computing
several local and global network statistics, identified recurring patterns or motifs, fit the network
models to a family of well-studied graph models. This study has demonstrated, for the first time,
an approach that differentiated the gut microbiota in Alcoholic subjects and Healthy subjects using
topological network analysis of the gut microbiome.

Introduction
It has been suggested that the human gut contains between 500 and 1000 species with fewer
than 50 species making up the bulk of the microbial biomass [1]. This microbial community
has been defined as the Human gut microbiome and we define the microbial interactions
with the host as the Metabiome. Furthermore, the microbiome composition varies
significantly between healthy individuals raising the question whether there is a core
microbiome that provides core functionality. In diseased states, this core microbiome may
be altered shifting the functionality of the Metabiome [1][2].

In this project, we investigate the microbiome with respect to Alcoholic Liver Disease
(ALD), a serious condition due to heavy alcohol consumption. It is a major health problem
in the United States consuming 15% of total health care dollars [3] and is associated with
20% mortality [4]. To date, the impact of chronic alcohol consumption on gut microbiome
composition has not been fully studied. New advances in molecular biology have now made
it possible to fully interrogate the microbiota in complex biological environment like the
human gut. In our studies, we analyzed the microbiome composition in mucosal samples
identified using the first two variable regions of the 16S rRNA as this region contains taxa
specific signatures that allows identification of the taxa down to the species level. Using the
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identified species, we followed a network-based approach to model the correlations between
the different microbes. We were able to show significant differences amongst the potential
microbial correlations within the healthy and diseased patients, using network analysis [5]
[6], motif finding algorithms [7], and network fitting algorithms [8]. Previous network-based
analysis of microbial communities has involved the evolutionary relatedness across species
[9][10]. To the best of our knowledge this is the first attempt to investigate microbial taxa
networks and diversity within the human gut microbiome of ALD patients.

Results and Discussion
We plotted the network representation for the diseased classes (Figure 1). We observed that
the healthy group network (Figure 1a) is more dense with respect to the other networks as
reflected by the larger number of taxa that co-occur suggesting that the Healthy subjects
have a more robust network that can respond or adapt easier to environmental change.

Network Topology
In Table 1 we present the average correlation coefficient and the average diameter for the
five patient-derived networks. In Figure 2, we also present the cumulative distribution
function (CDF) of the degree distributions per node (taxa) for the five defined categories.
Nodes with a higher degree indicate the specific taxa that potentially have interaction with
more taxa. From Figure 2 we observed the difference between the “Healthy”, “Sober” and
“Alcoholic” classes. As an example, the plot shows that 60% of the species interact with less
than 50, 40, and 30 (approximately) species in the Healthy, Sober, and Alcoholic classes,
respectively. This indicates a potential larger number of interactions within the Healthy
class. The graphs did not distinguish between the classes with or without liver disease.

Core Microbiota
Using Cytoscape [5], we computed the intersections and differences amongst the edges or
taxa relationships across the different networks (Figure 3).

We also compared the Healthy network to four combinations of non-healthy networks: (i)
Alcoholics (+) and Alcoholics (−), (ii) Sober (+) and Sober (−), (iii) Alcoholics (+) and
Sober (+), and (iv) Alcoholics (−) and Sober (−). In Figure 3(a) we show the number of
common and distinct interactions between the healthy and the four union networks. We
observe that the Healthy network shares the most potential interactions with the Sober
(Sober (+) and Sober (−)) and no Liver Disease (Alcoholics (−) and Sober (−)) networks.
We also note that there are significant differences (distinction) between Healthy and the
other classes.

We also computed a core network, which presents the common correlations between nodes,
and superimposed this on the Healthy Network (Figure 3b). This network has 68 vertices
and 326 edges and may potentially represent the “core” microbiome relationships in our gut.
We can see that there are significantly many edges (1057) and vertices (112) involved in the
non-core part of the network.

Motif Finding
We used the Fanmod motif detection algorithm to search for three, four, and five vertex sub-
graphs, while generating 1,000 random models with a locally constant number of
bidirectional edges and 3 exchanges and tries per edge for computing the statistically
significant motifs. As in other biological networks [26] we found the feed-forward 3-node
motif to be present in all the patient-derived networks with at least a 20% frequency. We
present the most significant 4-node motifs discovered across the five networks in Figure 4,
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along with the frequency of occurrence in the network and the random networks. We found
a total of four motifs in the Healthy and Sober classes, and 3 motifs in the Alcoholics classes
that were significant. The first two motifs are much more abundant in the Healthy and the
Sober (−) classes when compared to the others. On the other hand the third motif is more
abundant in the Alcoholics and the Sober (+) classes. These results reflect that there may be
specific patterns of interactions existing within different patient classes.

Network Model Fitness
Using GraphCrunch [8], we generated 30 instances of all the five random models (ER, ER-
DD, GEO-3D, SF-BA, and Sticky) for each of our patient-derived networks. We compared
the real networks to these set of random instances using a set of both global and local
properties of networks that were described earlier to find the best-fit model. In Figures 5(a)
and 5(b) we plot the GDD-agreement (arithmetic mean) and RGF-distance between our
patient networks and derived random models, respectively. Analyzing Figure 5(a), we notice
that the trend is similar for the families of random models, though the agreement for the
Healthy and Sober (−) networks is the lowest, and highest for the Sober (+) class. In Figure
5(b), we see that the STICKY and ER-DD model fits best with our patient-derived networks,
as computed by the RGD-distance measure.

In this work we presented an approach to model the potential interactions within the
microbiome using a network-based approach. We used a range of network analysis tools to
characterize the modelled networks for different classes of patients. In particular, we
analyzed the 16S rRNA sequences in the gut microbiome from healthy patients and
alcoholic patients (with or without liver disease).

We found a core set of correlations (interactions or relationships) that exist in all of these
networks that may suggest that there is a core set of metabolic or immune functions that are
provided by the human gut microbiome. We also found potential interactions that only occur
in the Healthy patients reflecting that these relationships may be crucial for good health and
that disruption of these interactions may lead to instability in the ecosystem or disease. We
also found that the Healthy network was denser, with a higher degree distribution per node
and a greater number of motifs present. One potential hypothesis that needs evaluation is
that the healthy gut microbiome is more robust and adaptable to changing environmental
conditions. The comparison against specific random null model networks gives us further
insight in the topology of these networks.

To test the robustness and significance of our analysis we need to apply the same technique
to larger alcohol liver disease datasets. We also would like to test it for other potential
diseases, and for microbial communities in other species or even environments. In the future
we aim to use a weighted graph representation and validate the abundance of interactions
using metabolomic, metaproteomic, and metagenomic studies.

Experimental Part
Our analysis of the potential correlations amongst microbes within the gut follows the
following five steps: (i) identification of abundant species within the patient sample using
16S RNA sequencing, (ii) defining the network collectively for a patient type, (iii)
computing network statistics and set operations, (iv) motif finding, and (v) fitting the
network to a family of graph models.

Datasets
The data we used for this study was the mucosal microbiome composition from Alcoholic
Liver Disease (ALD) and Healthy Control patients produced by Multitag Pyrosequencing
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(MTPS) of the 16S rRNA of mucosal biopsies from the gut. There were five distinct clinical
patient classes that we studied, which included the healthy controls, alcoholics with liver
disease, alcoholics without liver disease, sober alcoholics with liver disease, and sober
alcoholics without liver disease denoted as Healthy, Alcoholic (+), Alcoholic (−), Sober (+),
and Sober (−), respectively. These clinical samples were collected by AK at Rush University
Medical Center in Chicago, Illinois from a total of 51 middle-aged male and female patients
[13]. We define sober patients are those patients that were alcoholics and have stopped
drinking due to adverse health effects. In Table 2 we report the general statistics of the entire
set, including the defined classes, patients, 16S reads, number of family-level taxa identified
within the samples.

Taxonomic Identification
Molecular methods that examine the 16S ribosomal RNA (rRNA) gene are routinely used to
identify the phylotypes of the bacteria comprising the Human Microbiome [14]. We used the
bacterial primers 27F (5′-AGAGTTTGATCM TGGCTCAG-3′) and 355R (5′-
GCTGCCTCCCGTAGGAGT-3′) to amplify the first two variable region in the 16S rRNA
and then using the new generation Roche GS-FLX high-throughput instrument [12] in
combination with a multi-tag approach to produce several thousand 16S sequence reads for
each sample [11].

We identified the taxa or phylogenetic class for each read by performing a BLAST [15]
search against the Ribosomal Database Project (RDP 8.1) [16][17]. In our study we
determined the taxa using blast parameters “-e 0.01 –p 0.97 –w 60 –m 8”. We discovered
that a word size of 60 was the most efficient and accurate for the identification of signatures
in the rRNA and associating them with a taxa. The RDP is a database of 16S rRNA small
sub-unit sequences for the Bacteria and Archaea organisms along with annotation
information. The RDP provides a hierarchical phylogenetic categorization for the 16S rRNA
sequences. It also provides several web-services related to the identification of taxonomical
distribution of microbiome samples.

We identified the taxonomical information for each sequence reads by annotating each read
with the best BLAST search hit to the RDP database. We used the fifth level in the RDP 8
taxonomic hierarchy, the family level, for the taxa assignment as it provided sufficient
resolution of the species in the sample microbiomes.

We computed the taxa distribution for each set of 16S rRNA reads obtained from the biopsy
of a patient and filtered out any taxa that have less than 1% normalized abundance. Every
patients microbiome is slightly different and much of this difference lies in the low abundant
taxa below 1%[1]. Thus, filtering the data also helps identify trends in the microbiome
above this background variation. We also experimented with using the Bayesian-based
RDP10 [17] classifier to determine the taxonomical information and found the differences in
the final analysis not as significant.

Network Modeling
We modelled a networks for each the five patient types. An undirected graph G = (V,E) was
used to represent the potential correlations between the different taxa within patient groups.
The set of vertices V represents the set of identified taxa, and an edge Ei,j exists between
vertices Vi and Vj if both these taxa were found together above a defined threshold in the
reads obtained from a patient’s sample. In this study, we defined that threshold as the
average abundance for that taxa in each class. The edge Ei,j indicates a potential correlation
between the bacterial species. We can also compute the weight of the edge Ei,j by counting
either the number of patient samples where both these taxa were present and abundant, or by
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using the abundance information of the interacting partners. For the purpose of this study,
we neglect the edge weights and use an undirected, un-weighted graph representation. We
pursue the analysis of weighted graphs in the near future.

The network models are visualized in the popular open-source Cytoscape [5] software,
developed for visualization of protein-protein interaction networks obtained from high
throughput proteomic studies. Figures 1(a)–(e) shows the network models for the five
patient classes – Healthy, Alcoholics (+), Alcoholics (−), Sober (+), and Sober (−),
respectively.

Network Statistics and Operations
We computed several global and local network properties to distinguish between the
different patients. In Table 1 we report some of the computed statistics for the different
networks. The global network properties that were calculated were the degree distribution,
the average network diameter, and the average clustering coefficient. The degree of a node
represents the number of neighbours for a given node. The average network diameter is the
average shortest path length over all pairs of nodes in the network. The clustering coefficient
of a node z in a network, is the probability that two nodes x and y which are connected to the
node z are themselves connected. The average of this over all nodes z of a network is the
clustering coefficient of the network [8]. We used GraphCrunch to quickly and efficiently
compute these network statistics.

We also performed network operations that involved overlapping the different class
networks in order to find the intersection, union and difference of particular nodes and edges
(correlations). We also computed a core network i.e., the intersection or the common set of
the entire five patient networks that may represent the “core” microbiome.

Motif Detection
Motifs within networks are frequently occurring sub-graphs generally made up of small
number of vertices or nodes. Motifs may reveal important structural principles or a unique
signature in complex network models [18][19]. We attempted to use a motif-finding
algorithm to differentiate between the various patient-derived networks. However, searching
through these networks is a NP-complete problem. FANMOD is one of the heuristic-based
motif finding algorithm that has proven to be more efficient in determining small motifs
within biological networks [7] in contrast to other motif finding algorithms like MAVISTO
[20]. FANMOD also determines the significance of a discovered motif by counting the
occurrence of the identified motif in a set of randomized networks (generated with the same
degree distribution).

Network Fitting
We also compared our generated network models to five sets of well-studied family of
random graph models, which are the Erdös–Rényi [21], Erdös–Rényi with same degree
distributions [22], Scale-free Barabasi-Albert [23], N-dimensional geometric [24], and
Stickiness [25] models denoted by ER, ER-DD, SF-BA, GEO-3D, and STICKY,
respectively. All of these random null models are common in real networks, such as social,
protein interaction, and World Wide Web networks [19]. We used GraphCrunch [8], to
assess how well our networks fit some of these random graph models. GraphCrunch ensures
that the different random models have the number of nodes and edges that are within 1% of
the input network.

Since the comparison of a pair of networks leads to subgraph isomorphism (i.e., NP-
complete), GraphCrunch uses a set of heuristics for computing the local sub-graph
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dependent statistics. In particular, the RGF-distance and GDD-agreement are local measures
of structural similarities between two networks. These measures are based on 3–5 node
graphlets, which are small-connected non-isomorphic induced sub-graphs of large networks.
RGF-distance compares the frequencies of the appearance of all 3–5-node graphlets in two
networks (real and random), while the GDD-agreement generalizes the notion of the degree
distribution to the spectrum of graphlet degree distributions.
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Figure 1. Network Representation of Gut Microbiome
Figure 1 depicts the Network representation for the (a) Healthy (b) Alcoholics (+) (c)
Alcoholics (−) (d) Sober (+) (e) Sober (−) microbiomes. These networks are visualized using
the Cytoscape network modeling tool.
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Figure 2. Degree Distribution Graph
Graph of the Cummulative Distribution Function for the five patient classes.
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Figure 3. Network Operations
Figure 3a depicts the intersection and difference statistics of union networks (Alcoholics,
Sober, Liver Disease, and No Liver Disease) with respect to the Healthy class. Figure 3b
depicts the superimposition of the Core Network (yellow) over the Healthy Network in blue.
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Figure 4. Motif Detection
Table of statistically significant 4-vertex motifs detected across the five network using the
FANMOD motif finding algorithm.
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Figure 5. Local metrics
Graphs of GDD-Agreement (5a) and RGF-Distance (5b) comparing the patient-derived
networks against the ER, ER-DD, GEO-3D, SF-BA, and STICKY graph models
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Table 1

Global Network Properties.

Class Total Interactions Average Diameter Average Clustering Coefficient

Healthy 2604 1.608 0.636

Alcohol (+) 1726 1.709 0.626

Alcohol (−) 1781 1.719 0.632

Sober (+) 2052 1.711 0.538

Sober (−) 1867 1.638 0.688
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Table 2

General Dataset Statistics.

Class # Patients # Reads #Reads per Patient #Taxa Identified

Healthy 10 8058 805 114

Alcohol (+) 8 13025 1628 107

Alcohol (−) 9 10016 1112 109

Sober (+) 11 13694 1244 113

Sober (−) 13 19240 1480 99

Total 51 64033 1255 116
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