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Abstract

Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities
(SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression
from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of
NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate.
We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.263.5 (mean6standard deviation) years and
then began using NSAIDs for 5.662.7 years, whereas two had used NSAIDs for 3.361.4 years and then discontinued use for
7.960.7 years. 161 BE biopsies, collected at 5–8 time points over 6.4–19 years, were analyzed using 1Million-SNP arrays to
detect SGAs. Even in the earliest biopsies there were many SGAs (2846246 in 10/13 and 14426560 in 3/13 individuals) and
in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The
estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1–8.6) off-NSAIDs and 0.6 (95% SI 0.3–1.5) on-
NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279686 SGAs affecting 53630 Mb of the genome
per biopsy per time point and in two we detected 1,4636375 SGAs affecting 1806100 Mb. In one individual who
progressed to EA we detected a clone having 2,291678 SGAs affecting 588618 Mb of the genome at three time points in
the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of
thirteen individuals. Barrett’s cells maintained relative equilibrium level of SGAs over time with occasional punctuations by
expansion of clones having massive amount of SGAs.
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Introduction

Clonal evolution is a theory that explains the phenomenon of

the progressive morphological and genetic change of somatic cell

populations from normal homeostatic cell division and death

within tissues to abnormal neoplastic growth and cancerous spatial

expansion within and across tissues [1–3]. Clonal evolution is the

Darwinian evolution by natural selection of asexually (mitotically)

dividing somatic cells. Somatic genomic abnormalities (SGA), such

as copy number alterations and loss of heterozygosity (LOH), can

be used as polymorphic DNA markers for identifying evolving

clones. Strictly defined, a clone is a genetically identical

subpopulation of cells within the cell population of a tissue, that

descends from a most recent common ancestor (MRCA) cell and

therefore all of the clone’s cells inherit the SGAs that were

originally present in the MRCA cell. However, a commonly used,

relaxed definition of a clone is descent with modification from a

MRCA cell, which allows for accumulation of additional SGA

heterogeneity among the cells of the clone. A clone ideally

represents the shared cell lineage history of a subpopulation of

cells. The acquisition of SGA variability (SGA polymorphism) over

the course of cell division allows for classification of cell

subpopulations into clones. In the remainder of this study, we

use clone in its relaxed definition and we estimate phylogenetic

trees from acquired SGA variability to qualitatively describe

relatedness among evolving clones. In other words, we call a clone

a set of biopsies that share a large number of SGA features by

descent, or from a phylogenetic tree point of view, a set of tips
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(taxa) of the phylogenetic tree, which are more related than others

(i.e. cluster together as a clade), but which are not necessarily

identical (identical tips will have interconnecting branches with

zero lengths). The generation of new clones is stochastic and the

change in clones’ frequencies in the population is determined by

clones’ relative fitness as well as stochastic effects (genetic drift).

New adaptive and new neutral clones can arise stochastically over

time [4] with every newly acquired SGA that does or does not

affect fitness, respectively. Though adaptive mutations are thought

to drive clonal expansions, it is an open question if adaptive clones

tend to expand to fill much or all of the BE segment, or if they tend

to remain relatively localized [5]. In order to prevent progression

to cancer, mechanisms that modulate clonal evolution by either

preventing or managing SGA acquisition and/or the spread of

SGA-containing clones need to be elucidated.

Barrett’s esophagus (BE) is a condition of the distal esophagus in

which the normal stratified squamous epithelium is replaced by

columnar epithelium with intestinal metaplasia [6]. BE is thought

to develop as a complication of chronic gastroesophageal reflux

disease (GERD) and individuals with BE are at increased risk of

progression to esophageal adenocarcinoma (EA): 1–7 persons with

BE progress to EA per 1000 person-years [7,8]. Strategies for early

detection and prevention of esophageal adenocarcinoma have

focused on all aspects of the GERD-BE-EA sequence: acid

suppression medications, anti-reflux surgery, esophagectomy,

ablation of BE, endoscopic biopsy surveillance of BE, and

chemoprevention using aspirin or other non-steroidal anti-

inflammatory drugs (NSAIDs) [6,9]. BE is a condition in which

clonal evolution can be studied in vivo, since a standard of care is

periodic endoscopic surveillance, allowing studies of clonal

evolutionary dynamics over time.

Genomic instability is a common feature of solid cancers [1,10–

13]. In a recent study, Beroukhim et al. evaluated 3131 cancer

specimens from 26 histologic types and 1480 normal tissue

specimens and found that copy number gains and losses affected

17% and 16% of the genome in a typical cancer specimen and

only 0.35% and 0.1% of the genome in a typical normal tissue

specimen [14]. Despite the recent massive accumulation of data on

genomic alterations in cancers from the Cancer Genome Atlas and

the International Cancer Genome Consortium initiatives, as well

as phylogenetic reconstruction of lineages within tumors [15–18],

theoretical modeling of the generative process (clonal evolution)

producing the observed SGA patterns and underlying neoplastic

progression has remained limited [2,3,15,19]. BE is associated

with genomic instability and acquired SGA [20–23] allowing

analysis of the acquisition of SGA over time. This provides data for

estimating SGA acquisition rate that is a key parameter of clonal

evolution.

NSAID use significantly reduces the incidence and mortality

rates of many types of cancer, including esophageal adenocarci-

noma [24–29]. Rothwell et al. showed that the hazard ratio for

cancer incidence of NSAID users vs. NSAID non-users was 0.66

(95% CI 0.50–0.87); however a robust NSAID cancer preventive

effect manifests significantly only after $5 years of regular use

[24]. The majority of epidemiological studies in BE suggest that

NSAID use in individuals with BE reduces risk of developing EA

[25–28]. Specifically, Vaughan et al. evaluated 350 individuals

followed up for a median of 5.4 years (range 0.2–8.9) and showed

that the 5-year cumulative incidence of EA was 14.3% (95% CI

9.3–21.6) for NSAID never users compared to 6.6% (3.1–13.6) for

current NSAID users and that the hazard ratio for EA incidence of

NSAID users vs. NSAID non-users was 0.20 (95% CI 0.10–0.41)

[27]. Galipeau et al. showed that NSAID use reduced the 10-year

cumulative incidence of esophageal adenocarcinoma from 79% to

30% in individuals with BE who had one or more somatic

genomic abnormalities detected at baseline endoscopy, which

included DNA content tetraploidy and/or aneuploidy, assayed by

DNA content flow cytometry, or genetic abnormalities, such as

loss of heterozygosity (LOH) on chromosomes 9p and 17p, assayed

by PCR of small tandem repeat (STR) loci [29]. NSAID use for

chemoprevention is attractive due to the widespread use and low

toxicity and side effects of that class of drugs; however the

molecular mechanisms underlying the NSAID cancer preventive

effect are not fully understood. In this study, our aim was to

evaluate the effect of NSAIDs on the accumulation of somatic

genomic abnormalities by evaluating the entire genome (1 Million

SNP loci) for SGA. We hypothesized that NSAID use modulates

clonal evolution by reducing the prevalence of SGA by either

reducing the incidence of SGA over time (SGA rate: number of

SGAs acquired per genome per year) or interfering with the

expansion of lineages bearing newly acquired SGAs over time.

To test this hypothesis, we used a prospective observational

crossover study design: a longitudinal study in which the sequence

of NSAID use was recorded for each individual during the follow-

up period (Figure 1A). We selected thirteen individuals with BE

from our cohort, who had endoscopic follow-up of mean 11.863

years (range: 6.4–19) and who began or discontinued NSAID use

exactly once during follow-up. All thirteen individuals had to have

at least two consecutive time points ($6 biopsies) off NSAIDs and

at least two consecutive time points (additional $6 biopsies) on

NSAIDs (time and locations of all the biopsies are shown in

Figure 1B). To estimate SGA prevalence in biopsies on and off

NSAIDs we used summary statistics of observed patterns of SGA;

to estimate SGA rates on and off NSAIDs we used an evolutionary

analysis of observed SGA patterns to take into account SGA

phylogenetic identity by descent. Drummond et al. showed that

mutation rates can be estimated from longitudinal samples in virus

populations using coalescent and phylogenetic methods within a

Bayesian Markov Chain Monte Carlo framework for sampling

model parameter space (BEAST package, Bayesian Evolutionary

Analysis Sampling Trees) [30,31]. This takes into account the fact

that samples at later time points are neither direct descendants of

Author Summary

Cancer is a disease that develops over decades as result of
accumulation of abnormalities in the genomes of other-
wise normal cells. Cells in tumors compete for space and
resources. Those cells able to survive the Darwinian
struggle for existence within tissues progressively evolve
uncontrolled growth and in some cases this results in
cancer. Aspirin and other non-steroidal anti-inflammatory
drugs (NSAIDs) reduce death rate from multiple types of
cancer by about 20%. However, the mechanisms by which
NSAIDs act to prevent cancer are not fully understood. By
examining thirteen individuals with Barrett’s esophagus
over time, we showed that the rate of accumulation of
genomic abnormalities decreased when most individuals
started taking NSAIDs. We also observed that, surprisingly,
the number of abnormalities in the Barrett’s tissues did not
increase much over decades. However, in one individual
who progressed to esophageal cancer, we observed
massive genomic abnormalities affecting 19% of the
genome. These findings suggest that NSAIDs may prevent
cancer by reducing the accumulation of genomic abnor-
malities over time and that detection of stable versus
unstable genomes may be used in the clinic to help
manage treatment options in Barrett’s esophagus.

NSAIDs Modulate Clonal Evolution in Barrett’s
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samples from earlier time points, nor independent samples, but

rather share common ancestors in a phylogeny that represents

their evolutionary relationships. BEAST simultaneously estimates

the mutation rates, population sizes, and the forest of most likely

phylogenetic trees within an individual’s Barrett’s segment. We

adapted BEAST to separately estimate SGA acquisition rates on

and off NSAIDs. Thus, the crossover study design provided 13

independent tests of the hypothesis of NSAID-associated reduction

in SGA acquisition rate since every individual had both on and off

NSAID periods and SGA acquisition during those periods.

Results

We evaluated the dynamics of detected SGAs over time. The

mean number of SGAs and the proportion of the genome they

affected did not obviously increase over time, for as many as 19

years (e.g., Figure 2, individual a). Individuals b, f, and j, shown in

red in Figure 2A and 2B, showed much greater variation in

detected SGA per biopsy, per time point, compared to the rest of

the individuals, shown in black. Progression to EA was not part of

our study inclusion criteria, and individual j was the only

individual who progressed. Individual f did not progress to EA,

but rather opted for esophagectomy for high-grade dysplasia after

6.4 years of follow-up and subsequently died of a different cancer

11.9 years later. In individuals b, f, and j, the mean (6 standard

deviation) number of SGAs per biopsy per time point was

1,0826177, 1,8446573, and 1,1546746, and the amount of

genome affected by SGAs was 119679 Mb, 2426121 Mb, and

2276222 Mb, respectively. In the rest of the individuals, the mean

number of SGAs per genome per time point was 279686 and the

amount of genome affected was 53630 Mb. Assuming a human

genome length of 3,164 Mb (Human genome GCRh37.p5

assembly), individuals b, f, and j had 3.862.5%, 7.663.8%, and

7.267% altered somatic genome per time point, compared to

1.760.9% altered somatic genome in the rest of the individuals.

The number of events and total sizes for each type of lesion, as well

as the detected presence of within-biopsy heterogeneity, in each

biopsy are shown in Table S1 and Figures S1, S2. In 10 out of 13

individuals (everyone except b, f, and j) the number of SGAs

remained relatively constant over time. Different biopsies from

Figure 1. Study design and biopsy sampling. Throughout this figure, white indicates time off NSAIDs and gray indicates time on NSAIDs. (Panel
A) Thirteen individuals with BE, showing times of endoscopies as black x’s, and indicating time on and off NSAIDs. (Panel B) The temporal and spatial
location of all biopsies in the study. Red lines show the extent of Barrett’s segment from the gastroesophageal junction (GEJ) to the squamocolumnar
junction (SCJ). The Y-axis is measured in cm from the GEJ. The X-axis is scaled in years of follow-up, with the total amount of follow-up for each
individual indicated below the data for that individual. Small black circles indicate the locations of the biopsies that were assayed in this study.
doi:10.1371/journal.pgen.1003553.g001

Figure 2. SGA remains approximately constant over time in most individuals. Black lines indicate 10 individuals with apparent evolutionary
stasis and red lines indicate 3 individuals with apparent increase in SGA over time. (Panel A) Mean number of SGA lesions. Solid lines connect the
means at each time point for all individuals (a–m), where the symbols a–m are plotted at the end of the lines. (Panel B) Mean amount of genome
affected by SGA.
doi:10.1371/journal.pgen.1003553.g002

NSAIDs Modulate Clonal Evolution in Barrett’s
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these individuals displayed different SGA lesions, leading to

upward and downward fluctuations in mean number or genome

amount of SGA. In some cases a biopsy from an earlier time point

had more genomic lesions than a biopsy at a later time point,

suggesting that we sampled a persistent but more ancestral clone at

the later time point. For example, the first biopsy in individuals i

and l had the highest number of SGAs compared to biopsies at

later time points (Figure S1 and Table S1). Overall, the dynamics

of SGAs in BE segments appear more consistent with equilibrium

over time rather than with accumulation of SGAs affecting ever

greater portions of the genome over time.

All biopsies sampled from an individual are related due to

common ancestry arising from, or prior to, the time of origination

of the Barrett’s segment through the process of cell and crypt

division. Therefore, we expect biopsies to share some SGAs and

we accounted for the statistical non-independence of observed

SGA across biopsies, due to common ancestry, by estimating

maximum parsimony phylogenetic trees for each individual using

SGAs as characters and biopsies as taxa. We estimated phyloge-

netic trees using PAUP and found that for the majority of

individuals the maximum number of SGA events per lineage

occurred in branches when the individual was off NSAIDs as

opposed to in branches during periods when they were taking

NSAIDs (Figure 3). For example, PAUP analysis showed massive

SGA on a single off-NSAID lineage in individual j, which resulted

in subsequent SGA-heavy descendant on-NSAID lineages (phy-

logeny of individual j, Figure 4H,I).

While the natural history of clonal evolution is different in each

individual, some common patterns can be discerned. The majority

of SGAs are present in the first time point, with little accumulation

of SGAs afterwards (Figure S3). In the earliest biopsies, taken at

baseline endoscopy, there were many SGAs (14426560 in

individuals b, f, and j and 2846246 in the rest). This can also

be seen in the radial spokes apparent in the Circos plots

(Figures 4B, 4C, 5B, 5C, and S4), and also in the lesions that

were detected in all biopsies of an individual (some of which are

the most common lesions in BE [21,23], on chromosomes 9p

(CDKN2A) and 3p (FHIT) (Figure S5).

Multiple clones appear to co-exist over the entire period of

follow-up. This can be seen in the strong spatial divergence

between biopsies at the same time point in individuals a, f. g and I

(Figure S6). However, within a given level (61 cm), there was no

significant increase in genetic divergence with time. While it is

often assumed that the evolutionary history of a cancer involves

multiple selective sweeps by new, selectively advantageous

genotypes, we found only one such case of a clone that grew to

stably dominate the Barrett’s segment (individual h, Figures S8

and S9) over at total of 153 patient-years. Due to sampling

limitations, we cannot be sure that clone drove all other clones

extinct (went to fixation). Genetic divergence, based on number of

SGA events, only significantly increased during follow-up in

individuals b and j (Figure S6) (individuals d and f also showed

increasing divergence based on amount of SGA; Figure S7) but

decreased in the one individual (h) with a large clonal expansion

(Figure S6). The absence of selective sweeps can also be seen in the

consensus trees generated by BEAST (Figures 4D, 4G, 5D, 5G,

and S8). Even in the one individual who progressed to EA,

individual j, the clone with massive SGAs remained spatially

localized (Figure 4). This clone is defined as the set of biopsies 8,

10, 11, and 13, which had a combined 2,291678 SGAs affecting

588618 Mb or 19% of the genome, and which were sampled at

levels 41, 39, 41, and 40 cm in a segment that spanned levels 35–

44 cm from SCJ to GEJ (Figure 4 C, G–I). Interestingly, a

precursor of that clone had been detected nine years prior to its

emergence (biopsy 2 in Figures 4 G–I).

We show clonal evolution in individuals b, j, and f in higher

detail in Figures 4 and 5 since these individuals had a higher than

average number of SGA events and amount of genome affected by

SGA (Figure 2). We show clonal evolution in individual l (Figure 5)

in higher detail to show clonal evolution during an on-off NSAID

use pattern. In addition, the SGA amount in individual l is close to

the mean SGA amount in all individuals, except b, f, and j, while

SGA amount in individual f is higher than the mean (Figure 2) and

using Circos plots side-by-side contrasts qualitatively SGA amount

and SGA chromosomal location between individuals l and f

(Figure 5 B,C).

In summary, the majority of individuals showed no dramatic

accumulation of new SGAs consistent with long-term evolutionary

stasis during follow-up (Circos plots in Figures 4, 5, S1, S2), and

the one progressor to EA, individual j, showed that evolutionary

Figure 3. PAUP analysis of SGA events distribution on lineages of within-individual phylogenies suggests that the greatest number
of SGA events occurred on outlier minority of lineages that evolved during off-NSAID periods. Two violin plots show the distribution of
lineage lengths (estimated number of SGA events) that evolved during off-NSAID (white) and on-NSAID (grey) periods within an individual phylogeny
(solid line across the violin denotes the median). The volumes of a pair of violin plots are scaled relative to the number of data points the pair
contains. Scatter plots show the raw data underlying the violin plots and illustrate the outliers. The majority of individual phylogenies (a, b, d, e, f, g, h,
i, j, k) show an off-NSAID lineage containing the maximum number of SGA events.
doi:10.1371/journal.pgen.1003553.g003

NSAIDs Modulate Clonal Evolution in Barrett’s
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Figure 4. Clonal evolution in individuals b and j. (Panel A) Solid lines connect the mean amount of SGA detected across biopsies at each time
point; dots correspond to individual biopsies. In individual b (black line), we observed evolutionary stasis with mean SGA remaining at 119679 Mb
over more than a decade of follow-up. In individual j (red line), a massive burst of SGA was detected in year 8.5; three years later individual j
progressed to esophageal adenocarcinoma. Individual b started NSAIDs after year 5, while individual j started NSAIDs only after year 10. (Panels B and
C) Circos plots showing genome-wide views of SGA over time. Each ring, labeled with a biopsy number, represents whole-genome SGA data from a
different biopsy, with earlier samples toward the center. Thin black line rings separate endoscopies (time points), white background shows time
periods off-NSAIDs and gray background shows time periods on-NSAIDs. Within the rings, black segments designate homozygous deletion, red
single copy loss, orange copy-neutral LOH, and green copy gain. (Panel B) Circos plot of individual b. Note the appearance of ‘‘new’’ whole
chromosome LOH at chromosome 6 and 11 in biopsy 5, taken during the off-NSAIDs period, and the detection of a minimally mutated clone in
biopsies 9 and 7, taken during the on-NSAIDs period. (Panel C) Circos plot of individual j. A massive burst of SGAs was detected first in biopsy 8, in
year 8.5, before the individual began regular NSAID use. Biopsy 2 (second inner ring), taken at the baseline endoscopy 8.5 years prior to the burst,
shared a subset of the SGAs seen in the massively altered clone (chromosomes 10, 12, 17 and 18), and thus is likely an early example of its lineage.
(Panels D and G) Consensus phylogenetic trees estimated by BEAST reveal long-term co-existence of clones. Branch lengths are scaled according to
time, the tips of the phylogeny are biopsies aligned on the x-axis according to their sampling time, and all internal nodes are estimated coalescence
times assuming a logistic population growth. Dashed gray line represents the start of NSAID use. (Panels E, F, H, I) Maximum parsimony trees
estimated by PAUP reveal the ancestral relationships among biopsies based on shared SGA characters. Differences between the topology of the trees
estimated by PAUP and BEAST are typically due to poorly supported short branches and do not affect the analyses of SGA acquisition rates. Branch
lengths are scaled according to estimated number of SGAs (Panels E, H) or the amount of genome affected by SGA (Panels F, I). Note that these trees
appear very different from those estimated by BEAST as the BEAST branch lengths are scaled by inferred time depth, and the rate of SGA
accumulation appears highly variable with time.
doi:10.1371/journal.pgen.1003553.g004

NSAIDs Modulate Clonal Evolution in Barrett’s
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stasis can be punctuated by the expansion of a clone with massive

amount of SGAs (Figure 4 C,G–I).

The maximum parsimony phylogenetic analysis revealed the

shared common ancestry of biopsies within an individual based on

SGA homology. Inferred PAUP phylogenetic trees, which had

branches scaled by the estimated number of shared SGA events in

Figures 4E,H, 5E,H, and Figure S9, showed significantly

imbalanced tree shapes (Table S2) for all individuals, except

individual f and j. When we rescaled the branch lengths of the

same phylogenetic trees by the amount of genome affected in

Figures 4F, I, 5F, I, and Figure S10, the trees showed that within

an individual the majority of biopsies are closely related and only

few biopsies or lineages diverge dramatically from the majority

cluster, which is indicative of SGA bursts.

Phylogenetic methods of analysis are required to account for the

complex dependency structures in samples that are related by

Figure 5. Clonal evolution in individuals l and f. (Panel A) Amount of SGA in biopsies (dots) and mean SGA over all biopsies at that time point
(lines) for individual l (black) and individual f (red). (Panels B and C) Circos plots showing genome-wide view of SGA over time (see Figure 4 legend for
details). (Panel B) Individual l. During the off-NSAID period we detected a whole-chromosome gain of chromosome 8 in biopsy 12 (green band) and
copy-neutral LOH events on chromosome 1 in biopsies 9 and 11 (orange bands). (Panel C) We detected 1,8446573 of SGAs in individual f, who opted
for esophagectomy for high-grade dysplasia after 6.4 years of follow-up and died of another cancer 11.9 years later. (Panels D, E, F) BEAST consensus
tree, parsimony tree of SGA number, and parsimony tree of SGA quantity for individual l. (Panels G, H, I) BEAST consensus tree, parsimony tree of SGA
number, and parsimony tree of SGA quantity for individual f. In both individuals, BEAST trees reveal long-term co-existence of multiple clones. and
maximum parsimony trees reveal an underlying progressive evolution of SGA events irrespective of time. Phylogenetic trees generated as indicated
in the legend to Figure 4.
doi:10.1371/journal.pgen.1003553.g005

NSAIDs Modulate Clonal Evolution in Barrett’s
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common ancestry. Bayesian methods allow for more detailed

models of evolution than parsimony methods. We tested our

hypothesis that NSAID use reduces SGA acquisition rate in BE by

estimating SGA acquisition rate during off-NSAID and on-

NSAID periods using a custom modified version of BEAST

[31]. This reconstructs the set of most likely phylogenies that relate

the samples within the Barrett’s segment and simultaneously

estimates the SGA rates along the branches of those phylogenies

during the on and off NSAIDs periods. This method is based on

the coalescent in which lineages may disappear either because they

are not sampled or because they go extinct. We added a new

evolutionary model of SGA into BEAST in order to estimate SGA

rate using Bayesian MCMC sampling (see Methods and Text S1:

Equations S3–4). We excluded SGAs detected in the first time

point and only measured SGAs that were detected during follow-

up, in order to reduce the influence of clonal evolution that

occurred prior to surveillance. For the two individuals who were

already on NSAIDs when we started surveying them, and later

went off NSAIDs, individual l showed a lower SGA rate on

NSAIDs than off NSAIDs, but the 95% support intervals for the

two rates overlap (Figure 6). In contrast, individual m showed a

higher SGA rate on NSAIDs than off NSAIDs. In individuals a–k,

the SGA rate on NSAIDs was approximately an order of

magnitude lower than the SGA rate off NSAIDs, with non-

overlapping 95% support intervals (Figure 6), which is consistent

with the hypothesis that NSAID use reduces SGA acquisition rate

(on average 7.8 SGAs per genome per year off-NSAID vs. on

average 0.6 SGAs per genome per year on-NSAID in individuals

a–k).

Discussion

While it is clear that NSAIDs prevent many forms of cancer

[24], particularly esophageal adenocarcinoma [25–27], the

mechanism of that preventive effect is unknown. Because

neoplastic progression is a process of somatic evolution, NSAIDs

must affect somatic evolution in order to prevent cancer. We

hypothesized that NSAIDs slow the rate of somatic evolution by

lowering the mutation rate, specifically, the rate of acquisition of

copy number alterations and loss of heterozygosity (SGAs). By

adapting a tool from evolutionary biology (BEAST) we were able

to estimate the SGA rates in vivo both on and off NSAIDs within

the same individuals.

Our data shows that overall NSAID use is associated with an

approximately 10-fold reduction in the rate of acquisition of SGAs

and expansion of those lineages to detectable levels, from 7.8

SGAs per genome per year (95% support interval [SI], 7.1–8.6) to

0.6 SGAs per genome per year (Figure 6). However, this was only

clear in 11 of our 13 individuals (with non-overlapping 95%

support intervals in 8 of those 11). In the two individuals who

stopped NSAID use during follow-up, the data does not show a

significant reduction in SGA rate by NSAIDs. This may be due to

the fact that these individuals were originally off NSAIDs for some

unknown period of time prior to surveillance, and the lesions

acquired during that time are being lumped into the on-NSAIDs

SGA rate estimation. It is likely that NSAID use will not affect all

individuals in the same way, and that their effects may be

modulated by other factors that vary across individuals. A future

larger cohort study will be required to determine if this effect

generalizes to most individuals with BE.

The BEAST phylogenetic analysis assumes two constant SGA

rates, one on-NSAIDs and one off-NSAIDs. To relax this

assumption, we added a maximum parsimony analysis (PAUP)

of the biopsy SGA data that allows for differences in SGA load on

estimated lineages. In 10/13 individuals we observed the

maximum SGA load occurring on an off-NSAID lineage

(Figure 3). In individual j, we observed a single lineage arise

during the period off NSAIDs that carried a massive SGA load,

and spawned descendant lineages also with heavy SGA loads

(individual j in Figure 3 and Figure 4H,I). This suggests that

NSAIDs may prevent the occurrence of massive numbers of SGA

on single lineages (branches of the phylogeny) or limit the clonal

expansion of such lineages.

This intensive longitudinal study with 5–8 time points per

individual, with 10–20 biopsies per individual, over 6.4–19 years

of follow-up, revealed a number of additional surprises. There was

long-term evolutionary stasis in most individuals (Figure 2), only

one large clonal expansion (in individual h; Figures S8, S9), and

the sudden appearance of a massively altered clone in individual j

(though a precursor of that clone was detected in biopsy 2, nine

years earlier; Figure 4).

The term evolutionary stasis has been used in evolutionary

biology to describe a lack of phenotypic change in a species over a

given timeframe [32]. Models of this stasis are based on an

evolving population diffusing across a fitness plateau due to

evolutionarily neutral mutations, until they find an adaptive

genotype [33–35]. This definition of stasis predated the advent of

technologies that allowed characterization of genomic alterations,

large and small, that can occur in a lineage that does not lead to

measurable phenotypic changes. We are using the term stasis in

Figure 6. BEAST analysis suggests that NSAID use reduces the
SGA rate (number of SGA events per genome per year). For all
individuals (a–m), the mean off-NSAID SGA rate was 7.8 (95% support
interval [SI]: 7.1–8.6) and the mean on-NSIAD SGA rate was 0.6 (95% SI:
0.3–1.5). For individuals a–k, the mean off-NSAID SGA rate was 8.8 (95%
SI: 8.1–9.5,), whereas the mean on-NSAID SGA rate was 0.2 (95% SI:
0.03–1.0). For the two individuals l and m that started surveillance on
NSAIDs and then went off NSAIDs, there are mixed results. The mean
on-NSAID SGA rate for individual l was 3.1 (95% SI: 2.2–4.7) and the
mean off-NSAID SGA rate was 4.4 (95% SI: 3.1–5.9). However, for
individual m the mean on-NSAID SGA rate was 2.5 (95% SI: 2.1–3.0) and
the mean off-NSAID SGA rate was 0.1 (95% SI: 0.01–0.6). Note that
confidence intervals are tighter for the earlier time period for each
individual as more inferred ancestry events fell within that time period.
doi:10.1371/journal.pgen.1003553.g006
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this study to describe genomes that maintain in equilibrium a

relatively constant level of genomic alterations over time and

space, in contrast to those individuals in which large scale genomic

alterations develop. Our results suggest that while clones may

come and go, along with the SGAs they carry, the overall

population of Barrett’s cells maintains an equilibrium level of SGA

events, that only grows slowly if at all (Figures 2, 6). The only

exception was the one individual (j) who progressed to cancer, in

whom we detected large-scale SGAs just before they started using

NSAIDs. The observation of long-term evolutionary stasis is

consistent with the observation that BE rarely progresses to EA

[7,8] and the hypothesis that BE can function as a benign and

perhaps protective evolutionary adaptation of epithelial tissue to

duodenal gastroesophageal reflux [36]. Our selection criteria, both

for individuals that have used NSAIDs, and for at least 4 time

points over at least 4.5 years of follow-up may have also led to

selection bias for individuals with evolutionary stasis in their

Barrett’s epithelium.

Apparent evolutionary stasis at the level of analyses of biopsies

may miss ongoing accumulation of SGAs within single crypts. If

those clones never grow larger than a few crypts, they would not

be detected by our assays. Further work will be necessary to

determine if the stasis seen at the biopsy level is a result of the lack

of accumulation of SGAs in crypts or the lack of clonal

expansions of those SGAs to detectable sizes. In addition, SNP

arrays do not reveal point mutations, small indels, and some

structural rearrangements that would be revealed by genomic

sequencing. Additional analyses will be required to test if there is

significant accumulation of these other genomic alterations

during progression.

The dominant model of neoplastic progression, with sequen-

tial selective sweeps, is not supported by our data. There are

enough novel lesions in each biopsy that if a clonal expansion

was driven by a point mutation, epigenetic change, or other

structural alteration not assayed by a SNP array, we would still

be able to detect the expansion in the hitchhiker LOH and copy

number alterations. In only one case (individual h) did we

observe a clone taking over the entire Barrett’s segment during

follow-up, and in that individual it only happened once. Rather,

we observed that after the initial expansion of the Barrett’s

epithelium, there is long-term coexistence of Barrett’s cell

lineages (Figures S8, S9, S10). In fact, there is little genetic

divergence within the same level of the BE segment over time,

though biopsies at different levels tend to be genetically divergent

(Figures S6, S7).

We used a relatively simple model of the likelihood of SGA

events in BEAST. Future work should improve on this with better

models of genomic lesions as well as the inclusion of natural

selection in the inferred dynamics. In addition, assaying single cells

[37,38], or single crypts, would avoid potential confusion

generated by mixed clonal populations within a sample.

In summary, NSAID use in BE is associated with approximately

an order of magnitude reduction in the rate of acquisition of SGA

in 11 of the 13 individuals, suggesting that the pathway whereby

NSAIDs exert their protective effect involves the reduction in

number of SGAs or the inhibition of spread of SGA-containing

clones. Our results also suggest that most genetic lesions occur

prior to baseline detection in the clinic, but that during clinical

management the Barrett’s cells remain in equilibrium at the

genome level. Measurement of mutation rates (i.e. SGA rates) in

vivo might be used in the clinic to reduce overdiagnosis and

unwarranted treatment and detection of high mutation rates or

massive bursts of SGA might be used to better identify patients

needing more aggressive surveillance and therapy.

Methods

Human subjects
Individuals were selected from the Seattle Barrett’s Esophagus

Study, a research cohort founded in 1983. Surveillance endosco-

pies were performed and biopsies were taken using a standardized

four quadrant sampling protocol [39]. At endoscopy, anatomical

landmarks including the gastroesophageal junction (GEJ) and

squamocolumnar junction (SCJ) were noted, which define the

lower (distal) and upper (proximal) boundaries, respectively, of the

Barrett’s segment. During an endoscopy, biopsies were taken every

one or two cm along the length of the Barrett’s segment. At each

level, four biopsies were taken approximately at 0u, 90u, 180u, and

270u around the circumference of the esophagus for histologic

evaluation. Endoscopic biopsies for molecular studies were

collected in Minimal Essential Media (MEM) with 10% DMSO

(Sigma #D-5879), 5% heat inactivated fetal calf serum, 5 mM

Hepes buffer on ice and frozen at 270uC. In 1995 the research

protocol added an epidemiologic interview in which individuals

were questioned about NSAID use, as previously described [27].

In addition, the protocol added blood collection at the time of

endoscopy for use as a control, since blood DNA represents

putatively unaltered germline genotype.

Study design
Individuals were selected in the cohort who had at least a 3 cm-

long BE segment at baseline. Individuals were further selected

based on NSAID use status changing exactly once during

prospective follow-up and based on having at least two endoscopic

procedures while using NSAIDs and at least two while not using

NSAIDs. At least five years of follow-up was also required in order

to observe evolution over time. Thirteen individuals met these

inclusion criteria (Figure 1A). The history of NSAID use at each

endoscopy was evaluated with a questionnaire that was also used

in a US collaborative case-control study of esophageal adenocar-

cinoma [40]. As part of the questionnaire, individuals are shown

cards (i.e., typed lists of drugs with trade names and generic names)

to facilitate recall. Individuals were also asked about indications for

taking NSAIDs, and reasons for stopping in those who were no

longer regular users. The criterion for regular NSAID use at an

endoscopy was taking an NSAID at least once per week for the last

6 months. Regular NSAID use over multiple endoscopies defines a

time interval on-NSAIDs and absence of NSAID use over multiple

endoscopies defines a time interval off-NSAIDs. We approximated

the transition point between NSAID use and non-use by taking the

middle time point equidistant between the two endoscopies when

the NSAID use changed (Figure 1A, white-gray boundary). Eleven

individuals (a–k) were not on NSAIDs at the start of surveillance

and then went on NSAIDs (had an ‘‘off–on NSAIDs’’ pattern

during surveillance), and two individuals (l, m) had the opposite,

starting surveillance on NSAIDs and then stopping their use (an

‘‘on–off NSAIDs’’ pattern). The median follow-up surveillance

time per individual was 11.6 years (range 6.3–19). A total of 74

endoscopies and 161 biopsies were selected (Figure 1B) as well as

one blood sample for each of the thirteen individuals to serve as

normal constitutive genotype control.

Sample preparation
The 161 frozen biopsies were thawed and rinsed in Hanks

buffered salt solution without divalent cations (HBSS, Gibco/

BRL). Biopsies were incubated 60 minutes at room temperature in

30 mM EDTA in HBSS preheated to 37uC. Barrett’s epithelium

was isolated by gently peeling it away from the stroma with

microdissection needles under a dissecting microscope [41]. The
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13 frozen blood samples were processed the same way as the

biopsies, except for the epithelial isolation step. DNA was

extracted using Puregene DNA Isolation Kit as recommended

by the manufacturer (Gentra Systems, Inc. Minneapolis, MN).

Samples were quantitated using the Picogreen method (Quant-iT

dsDNA Assay, Invitrogen). A total of 200 ng of DNA at 50 ng/ul

concentration was analyzed using Illumina Omni-Quad 1M SNP

arrays according to manufacturer’s protocol. All samples were

evaluated at the Fred Hutchinson Cancer Research Center

Genomics Core Laboratory.

GenomeStudio processing
All raw intensity files were loaded in Illumina’s GenomeStudio

v3, normalized and clustered using the SNP manifest and cluster

files for build37 of the human genome. In all our analyses we used

the total signal intensity R for each SNP, which is the sum of the

normalized X (‘‘A’’ allele, Cy5 red) and Y (‘‘B’’ allele, Cy3 green)

intensities. We also used the B allele frequency (BAF), which is a

modified version of the allelic intensity ratio theta (h= 2/

p*arctan(Y/X)), to reduce SNP-to-SNP variation in theta using

the canonical clusters.

GLAD segmentation
Each individual’s BE DNA samples were paired to the

individual’s control sample (DNA from blood from the same

individual), which always appeared normal, i.e. lacking any

chromosomal alterations (none of the control samples had any

split in BAF over the entire genome, Figure S11). For each

individual, we first excluded the 0.2% of SNPs with the lowest R

values in the control sample, to remove SNP probes that either

perform poorly or fall within germline copy number variant

(CNV) regions. We corrected for dye bias (higher fluorescence of

the B allele, Cy3 green) by re-centering the BAF of heterozygous

and homozygous SNPs of all samples from observing that the

median BAF of heterozygous SNPs was ,0.53, instead of 0.5.

Then, for each individual, we identified the set of heterozygous

SNPs; i.e., SNPs having a BAF in control sample between 0.33

and 0.66. Finally, we separated the data into three signal profiles:

log2 (R of BE sample/R of control sample) for heterozygous SNPs

only, log2 (R of BE sample/R of reference) for homozygous SNPs

only, and reflected and scaled BAF of BE sample, (mBAF = abs

(BAF of BE sample – 0.5)*2) for heterozygous (informative for

LOH) SNPs only. We performed separate wavelet-based segmen-

tation on these three signal profiles using the HaarSeg algorithm

[42] from the GLAD [43] package (using parameters haar-

Start = 3, haarEnd = 9, fdrQ = 0.0001, onlySmoothing = T).

SGA detection
For each individual, we combined all break points of the

segmented three signal profiles from each biopsy to create the set

of all the observed breakpoints. We defined the events as the

segments between each pair of consecutive breakpoints in this set.

Thus, events had to have the same exact breakpoints in order to be

considered the same event. For every new segment, we used

thresholds to call allelic imbalance based on the smoothed mBAF

profile, and to call single or double copy gain or loss, based on the

homozygous and heterozygous log2R profiles. Thus every new

segment meeting the thresholds received one of eight molecular

state calls: AB (normal), AA (copy neutral LOH), A (single copy

loss), 0 (double copy loss), AAB (single copy gain), AAA (LOH plus

subsequent single copy gain), AAAA (LOH plus subsequent double

copy gain), AABB (double copy gain). In summary, Table S3

shows all calling thresholds used and Dataset S1 shows raw data

segmentation and SGA calls for all 161 biopsies of individuals a–

m.

The GLAD segmentation detects break points of SGA for each

sample individually. For each individual, we ran a segment

merging procedure that merged two adjacent, neighboring

segments if they had the same molecular state call across all

samples of that individual. Thus, the number of segments per

individual can vary. IMPUTE2 [44] and a reference dataset of

566 CEU haplotypes, part of the 1000 Genomes Project [45], was

used to phase each individual’s blood control sample. Having

haplotype assignments for the A and B alleles of every SNP, we

developed an algorithm to assign a haplotype state for every

segment of allelic imbalance. This results in conversion of AA, A,

AAB, AAA, AAAA calls to BB, B, BBA, BBB, BBBB calls for

segments having lost or gained the opposite allele. For simplicity of

all subsequent analyses, all segments having AB molecular states

were assigned an ‘‘absence of SGA’’ call, and all segments having

other molecular states were assigned a ‘‘presence of SGA’’ call.

The final results are individual-specific phylogenetic matrices

having samples as taxa, chromosomal segments as characters, and

binary molecular states (SGA absence/presence, or 0/1) as

character states.

Mixtures of clones and technical detection
reproducibility

We found evidence of a mixture of clones in 24 of the 161

biopsies (15%, Table S1), based on differential split in BAF on at

least two locations within the same chromosome or on at least two

locations in two distinct chromosomes. We have done technical

replicates comparing two independent blood samples for individ-

uals m and f (Table S5). All four blood DNA samples were assayed

with the Illumina OmniQuad platform on different dates and our

results show high concordance between blood samples within

individuals (Pearson r.0.99 for B allele frequency and r.0.94 for

intensity; Figure S11). We detected only 6 and 18 SGA events in

blood samples of individuals f and m, respectively, when using the

same SGA detection pipeline and SGA events calling thresholds

(Table S6). Overall, the SGA calls are based on many SNPs and

are robust to technical noise in single SNPs.

Phylogenetic analyses
To measure mutation rate change associated with NSAID use,

we used a two epoch model in BEAST [31], where the transition

time between the first and second sampling periods is the time of

change in NSAID use. We ran BEAST for 10 million Bayesian

MCMC iterations that sample the space of genealogies and

population parameters to obtain posterior distributions for model

parameters that best fit the data. We used uniform prior

distributions for SGA rate with lower and upper bounds of 1025

and 104 SGAs per biopsy genome per year, respectively, for the

duration of any of the on-NSAID and off-NSAID periods and

estimated SGA rate separately for the first and second sampling

periods, where each SGA rate adheres to the molecular clock

hypothesis (SGA occur at constant rate for all evolving lineages) for

the period duration. We added a 0/1 mutation model in BEAST

for the SGA absence/presence character states (Text S1:

Equations S3–4) and this model assumed that SGAs do not revert

to the normal type, i.e., 1R0 transition is impossible. An SGA

character was defined by the breakpoints, which had to occur at

the exact same SNPs between samples to be considered the same

character. We also modified BEAST’s likelihood calculation

algorithm to consider a last universal common ancestor (LUCA)

that has an unaltered genomic state (zeros for all sites), and that

connects to the most recent common ancestor (MRCA), at the root
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of the tree, creating an extra LUCA-MRCA branch. Thus, the

final likelihood of the tree is the product of the likelihood of the

tree at the root, calculated with Felsenstein’s pruning algorithm

[46], multiplied by the probability of the LUCA-MRCA branch

length. We used crypt density results (Table S4) and a logistic

growth model (Text S1) to estimate the age of the root of the tree

and to constrain the internal node coalescence times in the two

epoch (off- on- NSAID) BEAST analysis.

Maximum parsimony trees were estimated using Wagner

parsimony with delayed transformation (DELTRAN) on the

individual-specific phylogenetic matrix with 0/1 SGA states using

the PAUP program [47]. For PAUP analyses, we also used a

character transition matrix that assumes infinite cost for 1R0

transitions, i.e. SGAs do not revert to normal type. For individuals

with off-on NSAID regimens (a–k) all lineages (i.e. phylogeny

branches) having any off-NSAID descendant lineages (i.e. leading

to off-NSAID biopsies) were considered to have evolved during

off-NSAID usage period. Similarly, for individuals l and m, all

lineages having any on-NSAID descendant lineages were consid-

ered to have evolved during on-NSAID usage period. In all

individuals (a–m), lineages having descendant lineages leading to

all on-NSAID or all off-NSAID biopsies were considered to have

evolved during on-NSAID and off-NSAID usage periods, respec-

tively.

Non-phylogenetic analyses of SGA data
We calculated genetic divergence between biopsies separated by

time and space (Text S2, Figures S6, S7). We also performed

additional analyses of SGA lesions new appearances and

regressions during on- and off- NSAID periods that do not use

phylogenies (Text S3, Figures S12, S13 and Text S4, Figure S14).

The spatial distribution of the number of SGA events detected in

biopsies is summarized with a violin plot for each individual

(Figure S15).

All code used for the above analyses is licensed under the GNU

Lesser GPL (http://www.gnu.org/licenses/lgpl.html) and made

publicly available at https://github.com/rkostadi/BEClonalEvolution

NSAID.

Ethics statement
The Seattle Barrett’s Esophagus Study has been approved by

the University of Washington Human Subjects Review Committee

since 1983 with reciprocity from the Fred Hutchinson Cancer

Research Center Institutional Review Board since 1994. .

Informed consent had been collected from the research partici-

pants. Seventy seven percent of the participants are male and 23%

are female. The ethnic distribution of the study cohort is 85%

White, 0.4% Black, 1.3% Hispanic, 0.9% Asian, and 0.9% Native

American and 11% unknown. This gender and ethnic distribution

reflects the known demographics of Barrett’s esophagus and

esophageal adenocarcinoma in the United States, which is

predominantly a disease of white, middle aged and elderly men.

Supporting Information

Dataset S1 Raw data segmentation and SGA calls for all
161 biopsies of individuals a–m. Every page shows an

individual biopsy and has 5 panels (top to bottom): first panel, raw

Log2R ratio between biopsy and leukocyte control, where gray

SNPs are homozygous SNPs and black SNPs are heterozygous

SNPs; second panel, GLAD segmentation of homozygous SNPs

(blue line) and heterozygous SNPs (red line); third panel, raw

mBAF (reflected and scaled B Allele Frequency of the BE sample)

where homozygous SNPs are shown in gray, and heterozygous

SNPs are shown in black; fourth panel, GLAD segmentation of the

mBAF data of heterozygous SNPs, which are informative for

allelic imbalance; fifth panel, final SGA calls for chromosomal

regions: GN (copy gain, green), CNLOH (copy neutral LOH,

orange), SD (single deletion, or single copy number loss, red), HD

(homozygous deletion, or double copy number loss, black). Please

note, this file is 23.1 Mb.

(PDF)

Figure S1 Number of SGA events in every biopsy over
time for each individual show that the genomes of
biopsies maintain equilibrium in the number of SGA
events, with few exceptions (note biopsies with high
variation in the number of SGA events in individuals b, f,
and j).

(TIF)

Figure S2 The total amount of SGA (in Mb) in every
biopsy over time for each individual show that the
genomes of biopsies maintain equilibrium in the total
amount of SGA, with few exceptions (note biopsies with
high total SGA in individuals b, d, f, and j).

(TIF)

Figure S3 Linear chromosome plot of detected somatic
genomic abnormalities (SGAs) in biopsies from the
baseline endoscopy (top panel), the first sampling
period (off-NSAIDs for a–k and on-NSAIDs for l, m;
middle panel), and the second sampling period (on-
NSAIDs for a–k and off-NSAIDs for l, m; bottom panel).
This plot shows the genomic location and size of newly detected

SGAs during off-NSAID (red) and on-NSAID (green) periods that

are summarized in Figure 3A. Black bars represent SGAs observed

in a prior sampling period or at baseline; top panel – black

represents SGAs detected in any biopsy from the baseline

endoscopy; middle panel – black represents SGAs detected in

any biopsy from baseline endoscopy that is also detected in at least

one biopsy in the first sampling period; bottom panel – black

represents SGAs detected in any biopsy from baseline or first

sampling period, or both, that is also detected in at least one biopsy

in the second sampling period. In the middle panel, red and green

bars represent newly acquired SGAs that are detected in at least

one biopsy in the first sampling period, but not detected at

baseline. In the bottom panel, red and green bars represent newly

acquired SGAs that are detected in at least one biopsy in the

second sampling period, but not detected in any biopsy from

baseline or first sampling period.

(TIF)

Figure S4 Circos plots of individuals a, c, d, e, g, h, i, k,
and m. Each ring represents whole-genome SGA data from a

different biopsy. Thin black line rings separate endoscopies

(time points), white background shows time periods off-NSAIDs

and gray background shows time periods on-NSAIDs. Within

the rings, black segments designate homozygous deletion, red

single copy loss, orange copy-neutral LOH, and green shows

copy gain.

(TIF)

Figure S5 Linear chromosome plot of SGAs that are
common across all biopsies within an individual. These

are lesions that were present by the time of the first endoscopy and

so may have been established with the hypothesized initial

expansion of Barrett’s epithelium in competition with squamous

epithelium.

(TIF)
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Figure S6 Genetic divergence, estimated as average
pairwise SGA-based Hamming distance, between biop-
sies over time and space (y-axis). For each individual

(individuals a–m, rows), column 1 shows genetic divergences

among biopsies within time points over individual follow-up time

(the x-axis represents follow-up time); column 2 shows genetic

divergences only among biopsies that are within 61 cm of each

other regardless of the time point of sampling (x-axis represents

temporal distance in years); and column 3 shows genetic

divergences only among biopsies that are within the same time

point (x-axis represents spatial distance between pairs of biopsies in

cm).

(PDF)

Figure S7 Genetic divergence, estimated as average
pairwise proportion of differentially altered genome,
between biopsies over time and space (y-axis). The three

columns of plots are identical to those in Figure S6; only the y-axis

has changed.

(PDF)

Figure S8 Estimated trees by BEAST for individuals a–
m. Branch lengths are scaled according to time, the tips of the

phylogeny are biopsies aligned on the x-axis according to their

sampling time, and all internal nodes are estimated coalescence

times assuming a logistic population growth model (see Methods).

Dashed gray line represents the time point of change in NSAID

use. All these trees show long-term co-existence of clones and only

one case of a clonal expansion taking over the Barrett’s segment

(individual h).

(TIF)

Figure S9 Estimated trees by PAUP trees where branch
lengths represent estimated number of SGA events for
individuals a, c, d, e, g, h, i, k and m. The topologies of

these trees suggest progressive accumulation of SGAs.

(TIF)

Figure S10 Estimated trees by PAUP trees where
branch lengths represent the total amount of SGA (Mb)
of the estimated 0R1 SGA events from Figure S9 for
individuals a, c, d, e, g, h, i, k and m.

(TIF)

Figure S11 Log2 R ratio between replicate blood
samples from the same individual (m and f, panels A
and B, respectively) showed no detectable large-scale
alterations and high Pearson correlation of SNP probe
total intensity R (Pearson r = 0.9481 and r = 0.9407, for
individual m and f, respectively). B allele frequency showed

high correlation within replicate blood samples from the same

individual (Pearson r = 0.995 and r = 0.9962, for individuals m and

f, panels D and E, respectively). Log2 R ratio between two blood

samples from two different individuals (m and f) showed no

detectable large-scale alterations and decreased Pearson correla-

tion between SNP probes total intensity R (Pearson r = 0.8739,

panel C). B allele frequency between blood samples from different

individuals showed that SNP probes can fall into all nine possible

genotype categories reflecting the difference between germline

genotype of individuals (Pearson r = 0.6755, panel F). Supplemen-

tary Table S5 describes blood sample details.

(TIF)

Figure S12 An individual-specific SGA matrix (panel A)
is used as example to show the conceptual difference
between using summary statistics and using phyloge-
nies to compute the rate of acquisition of new SGA. The

individual-specific SGA phylogenetic matrix shows the SGA

molecular states absence/presence (0/1) for 4 biopsies (numbered

1–4, rows) and for 4 SGA characters/events (lettered a–d,

columns). According to an independent lineages model, each

biopsy samples a clone that is evolving independently. Here de

novo SGA are counted simply by counting SGA events that are

never observed in previous time periods (panel B). According to a

clonal evolution model, acquisition of SGA events is assumed to

occur strictly on a phylogenetic tree that maximizes the number of

shared SGA events (for example, events a and b are observed in

biopsies 1 and 2, therefore they most likely occurred on a branch

prior to their most recent common ancestor; similarly event d most

likely occurred once on the branch leading to the most recent

common ancestor of biopsies 3 and 4, and minimizes the number

of homoplasies (for example, event c is observed in biopsies 2 and

3, therefore it appears twice on branches of the phylogeny most

likely due to convergent evolution) (panel C). There is uncertainty

in estimating the dates of most recent common ancestors (internal

nodes in the phylogeny) therefore we used BEAST with a minimal

set of assumptions to estimate the rates of acquisition of SGA

events during off-NSAID and on-NSAID time periods. We show

how the two models may differ when estimating the SGA rate

during two time periods (panel D). We have used both models

when estimating SGA rate off- and on-NSAID (Figures S13 and

6), and found consistent results that NSAIDs reduce acquisition of

SGAs.

(TIF)

Figure S13 NSAIDs influence the number of SGA events
entering and leaving detection. (Panel A) Number of new

SGA events detected during on- and off-NSAIDs intervals. (Panel

B) Number of previously observed SGA events not observed at the

final biopsy (Panels A, B). We binned newly appearing or

regressed, but previously sampled, SGA according to lesion size

(0 bp–100 Mb, x-axis), but detected no apparent effect of NSAID

use on selection for or against clones with lesions of a specific size

category; rather, NSAID use affected clones with all size categories

of SGAs equally. (Wilcoxon rank-sum test, * = one-sided p-value

,0.05, box-whisker plots show the medians and interquartile

ranges, with the default whisker ranges).

(TIF)

Figure S14 Dropout SGA events analysis. For each

individual, the probability of a lesion dropping out of detection

1-P was estimated (y-axis). In 7 out of 13 individuals the

probability of a lesion dropping out of detection was higher on-

NSAIDs.

(TIF)

Figure S15 Spatial distribution of SGA load within
Barrett’s segments. No consistent and striking differences

were found between SGA load in the upper level of the Barrett’s

segment (SCJ, squamocolumnar junction) compared to the lower

level (GEJ, gastroesophageal junction). Note that previous analyses

of the Seattle Barrett’s Esophagus cohort have not found any

preferential level of occurrence of adenocarcinoma in relation to

SCJ and GEJ boundaries of Barrett’s segments.

(TIF)

Table S1 Number of SGA events and total amount of
SGA detected for each of 161 biopsies. For each biopsy

(rows), the following information is provided (columns): individual

ID, sex of individual, individual’s rounded age at the endoscopy

time point of the biopsy, biopsy ID, biopsy age since baseline

endoscopy, biopsy level recorded from incisors, gastroesophageal

junction (GEJ) level recorded from incisors, squamocolumnar
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junction (SCJ) level recorded from incisors, years off-NSAID per

individual, years on-NSAIDs per individual, NSAID use recorded

at biopsy (N-non-user, C-current user, F-former user, NA-not

available), date of the SNP array assay per biopsy, total base pair

of SGA detected by category per biopsy (CNLOH-copy neutral

loss of heterozygosity, SD-single deletion, HD-homozygous

(double) deletion, GN-copy number gain, ALL-all categories of

SGA combined), total number of SGA events detected by category

per biopsy, and evidence that the biopsy is a mixture of . = 2

clones manually scored, all based on the SGA segmentation results

shown in Dataset S1.

(XLSX)

Table S2 Tree shape imbalance statistics for individu-
als a–k estimated for PAUP and BEAST trees calculated
from generating 500 random trees having the same
number of taxa under Yule and PDA null models [48]

using the R package ‘‘apTreeshape’’ [49]. Significant p-

values reject the null hypothesis that the observed tree shape is as

balanced as the 500 random tree shapes, where the test statistics

are the Colless and Sackin formulas [48] for calculating tree shape

imbalance.

(XLSX)

Table S3 Calling thresholds (lower and upper bounds
given in parentheses) used for identifying segments with
single copy loss, double copy loss, copy gain, and copy
neutral LOH.

(XLSX)

Table S4 Crypt density results. Age is the age of the

individual at the first endoscopy. L is the BE segment length

measured as the distance in centimeters from the GEJ to the OS

anatomical landmarks; A is an estimate of the total area of the BE

segment by assuming a circumference of 7.5 cm of the esophagus

(estimated from [50]); X is the number of levels that were biopsied

and had slides from which various numbers of biopsies were

evaluated for counting the number of crypts and the number of

branching crypts per slide; K is an estimate of the maximum crypt

count in BE segments extrapolated from the maximum number of

observed crypts in every scored level; Nt is an estimate of the total

crypt count in BE segments at baseline endoscopy; Ib is the

fraction of crypts that appear to be branching in a sample of

crypts; Tr is the estimated crypt doubling time in days (see Text

S1: Equation S1); Tinit is the estimated time from initiation of the

BE segment to baseline endoscopy in years, assuming a logistic

growth starting with 1 crypt that grows to a population of Nt crypts

at baseline, and assuming a carrying capacity of K crypts for the

BE segment (see Text S1: Equation S2); BEAST Tinit was bounded

to 1 year earlier than the Tinit to allow some flexibility in the

estimate of the exact initiation date during the BEAST MCMC

runs. (*) We did not have crypt count information for individual g,

so we estimated Tinit and BEAST Tinit by taking the average from

individuals c, h, i, and m since they had the same segment length

(5 cm) as individual g.

(XLSX)

Table S5 Technical replicate blood samples informa-
tion.
(XLSX)

Table S6 Results for detected SGA in blood-blood
sample (technical replicate) comparisons.
(XLS)

Text S1 Additional methods for modeling somatic
evolution in the crypt structured Barrett’s segment that
supplement BEAST phylogenetic analysis. This includes

equations for estimating crypt doubling time and the initiation

phase duration, as well as the substitution matrix (transition rate

matrix) and continuous time solutions for the probability of

transitions for the evolution of SGAs.

(DOC)

Text S2 Additional methods for calculating genetic
divergence between biopsies separated by space and
time.
(DOC)

Text S3 Alternative non-phylogeny-based methods for
analysis of SGA occurrences and regressions during on-
and off- NSAID periods.
(DOC)

Text S4 Alternative method and analysis of SGA events
dropping out of detection (or regressing) during on- and
off- NSAID periods.
(DOC)
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