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Abstract

Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-
dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci.
Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain
samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal
meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of
acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused
permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists
MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse
astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin
plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from
astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of
synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of
glutamate in the brain, inducing excitotoxic damage.
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Introduction

Streptococcus pneumoniae (pneumococcal) meningitis is the most

common form of bacterial meningitis [1]. The patient survival

rate is 75%; however, half of the patients suffer from long-term

disabilities [2]. This disease is associated with significant but

not massive neuronal death, predominantly in the hippocampus

[3].

Pneumolysin (PLY) is a critical pneumococcal pathogenic factor

that belongs to the cholesterol-dependent cytolysin (CDC) group.

This 54-kD protein contains four domains and targets plasma-

lemmal cholesterol through its fourth domain [4]. Upon binding,

PLY oligomerizes into pre-pore rings of 30–50 monomers.

Subsequently, domain 3 of each monomer refolds and penetrates

the membrane, transforming the pre-pore to a pore [5]. Multiple

cellular toxic effects (e.g., small GTPase activation and microtu-

bule stabilization), although pore-dependent, occur at sub-lytic

and non-lytic concentrations, which is indicative of a more

complex interaction between the toxin and cells [6–8]. To obtain

tools to study the cellular effects of pore formation by PLY, the

delta6 mutant form of PLY has been created [9], which lacks the

amino acids alanine 146 and arginine 147. This mutation makes

the refolding of domain 3, and thus pore formation, impossible [9].

PLY is critical for the clinical course of experimental pneumo-

coccal meningitis [10,11], and PLY-deficient S. pneumoniae bacteria

initiate a substantially milder disease course. PLY is persistent in

the cerebrospinal fluid (CSF), which correlates with a poorer

prognosis in human patients [12]. However, the mechanism of this

PLY dependence remains largely unclear. There is some

experimental evidence from a rabbit model, however, that argues

against the role of PLY in meningitis [13], raising the question of

the specificity of different animal models.

In bacterial meningitis, pathogenic bacteria multiply in the CSF

and are abundant adjacent to the white matter (along the ventricles)

and the neocortex. The neocortex is a highly specialized and

complex brain structure comprised of up to six layers. Its major

component is pyramidal neurons (,80% of all cortical neurons are

pyramidal), whose somata are positioned predominantly in layers
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III, V and VI, send projections throughout the cortex and receive

projections from other neurons from other brain areas. Particularly

complex and dense synaptic connections are established in the

superficial layers I–II. Positioned within the neocortex among the

pyramidal neurons, multiple interneurons (typically spiny stellate

and basket cells) establish shorter connections with neighboring

neurons. Generally, the pyramidal neurons are described as

glutamatergic, with some exceptions (for review see [14]).

Synapses are complex structures, consisting of a pre- and post-

synapse and the surrounding cells (such as astrocytes) [15].

Astrocytes wrap around the synaptic cleft and parts of the pre-

and/or post-synapse, thereby allowing them to rapidly remove

released neurotransmitters [16]. The morphological structures that

host the active post-synapses along the dendrites are the dendritic

spines [17]. The dendritic spines are dynamic; not all of them host

synapses, but all synapses of pyramidal neurons are positioned on

spines [18]. Long-term potentiation or depression are associated

with spine growth or shrinkage [19]. The permanent loss and

alteration of dendritic spines correlate with decreased synaptic

numbers and cognitive impairment in multiple neurological

disorders [20,21].

Our aim was to study changes in neocortical synapses as a result

of Streptococcus pneumoniae meningitis and the role of the major

pneumococcal neurotoxin PLY in producing these effects.

Results

To address the question of synaptic damage resulting from

meningitis, we used four experimental approaches: i) human

frontal neocortical brain samples from autopsy cases; ii) a

pneumococcal meningitis mouse model (3–5 month-old C57Bl/6

mice); iii) an acute mouse brain slice model (postnatal day 12–14

C57Bl/6 mice); and iv) a primary mouse astrocyte culture system.

Reduction of synapses in human forebrain postmortem
samples from meningitis patients

Human frontal neocortical brain samples obtained from

autopsy cases following death from S. pneumoniae meningitis and

from control cases following a rapid death from non-neurological

causes (the exact descriptions of the patient groups are presented

in Table 1 and Table 2) were stained with anti-synapsin I (a pre-

synaptic marker protein [22]) and anti-PSD95 (post-synaptic

density 95; a post-synaptic protein, specific for glutamatergic

synapses [23]) antibodies. In the superficial neocortical layers I–II,

pre- and post-synaptic immunostaining levels were significantly

reduced in the meningitis-infected samples (Fig. 1A–D). The total

cell density and the number of dying cells (measured by TUNEL

staining for apoptotic cells) were identical between the groups

within the area of analysis (Fig. 1E). The presence of TUNEL-

positive cells in both groups may be due to the post-mortem delay

until sample collection. In all slices, the analyzed cortical areas

excluded necrotic regions, which were present in some patient

samples. Thus, S. pneumoniae meningitis induced a reduction in

synaptic density that was independent of cell death.

PLY-dependent reduction of synapses in the neocortex
of pneumococcal meningitis mice

Next, we focused on the role of individual key pathogenic

components of S. pneumoniae as synaptotoxic factors. We infected the

right frontal brain lobes of C57BL/6 animals with the PLY-

producing S. pneumoniae strain D39 and with PLY-deficient mutants

of the D39 strain. Thirty-six hours after infection, we sacrificed the

animals and stained paraffin brain slices in a manner similar to the

Author Summary

Bacterial meningitis is one of the most devastating brain
diseases. Among the bacteria that cause meningitis,
Streptococcus pneumoniae is the most common. Meningitis
predominantly affects children, especially in the Third
World, and most of them do not survive. Those that do
survive often suffer permanent brain damage and hearing
problems. The exact morphological substrates of brain
damage in Streptococcus pneumoniae meningitis remain
largely unknown. In our experiments, we found that the
brain cortex of patients with meningitis demonstrated a
loss of synapses (the contact points among neurons,
responsible for the processes of learning and memory),
and we identified the major pneumococcal neurotoxin
pneumolysin as a sufficient cause of this loss. The effect
was not direct but was mediated by the brain neurotrans-
mitter glutamate, which was released upon toxin binding
by one of the non-neuronal cell types of the brain – the
astrocytes. Pneumolysin initiated calcium influx in astro-
cytes and subsequent glutamate release. Glutamate
damaged the synapses via NMDA-receptors – a mecha-
nism similar to the damage occurring in brain ischemia.
Thus, we show that synaptic loss is present in pneumo-
coccal meningitis, and we identify the toxic bacterial
protein pneumolysin as the major factor in this process.
These findings alter our understanding of bacterial
meningitis and establish new therapeutic strategies for
this fatal disease.

Table 1. Clinical histories of the individual patients from the non-meningitis histology group.

Case Number Age, sex Underlying disease(s) Immediate cause of death

1 59, m COPD Pulmonary failure/shock

2 60, m None Chest and abdominal trauma

3 82, f Diarrhea, hypertension, aortic valve replacement,
cardiac failure

Aspiration

4 42, m Myocardial infarction, CAD Ventricular fibrillation

5 58, f Coronary heart disease, myocardial infarction Ventricular fibrillation

6 66, f Renal insufficiency, suspected pulmonary embolism Acute cardiac failure

No focal necroses were present in the frontal cortical and hippocampal sections of control cases. In the hippocampal formation of case 58, f hypoxic injury was noted on
HE stains.
ARDS: adult respiratory distress syndrome, CAD: coronary artery disease, COPD: chronic obstructive pulmonary disease.
doi:10.1371/journal.ppat.1003380.t001

NMDA-dependent Synaptic Loss by Pneumolysin
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human samples described above. There was a significant decrease in

pre-synaptic (synapsin I) and post-synaptic (PSD95) staining in layers

I–II of the frontal brain neocortex (Fig. 2A–C). There were virtually

no TUNEL-positive cells in any of the slices from either group; we

used DNAseI-treated slices as a positive control, showing 100%

positive nuclear staining (Fig. 2D). These experiments confirmed

that PLY deficiency strongly diminished synaptic loss in mouse

pneumococcal meningitis without an increase in cell death.

Selective synapto- and dendritotoxic effects of PLY in
acute mouse brain slices

To clarify whether PLY alone can cause the observed synaptic

changes, we studied the role of PLY at non-lytic, disease-relevant

concentrations in acute mouse brain slice cultures as described

previously [24]. We chose 12–14 day-old infant mice as the tissue

source because they can be sliced with minimum cytotoxicity (,5%)

and be maintained for up to 24 h in an oxygenized environment

Figure 1. Reduced synaptic density in human postmortem pneumococcal meningitis neocortical brain tissue samples. A. Schematic
representation of the analyzed neocortical regions. B, C. Decreased synapsin I (B) and the PSD95 (C) staining densities in layers I–II of the frontal
neocortex of human post-mortem samples from S. pneumoniae meningitis cases (S. pneumoniae) vs. post mortem samples of cases who experienced
rapid non-neurological death (Non-meningitis). D. Representative tissue samples (layer II) with anti-synapsin I immunohistochemistry. Scale bar:
10 mm. E. There was no difference in the number of TUNEL-positive nuclei in neocortical layers I–II between non-meningitis and meningitis samples.
All values represent the mean 6 SEM, and samples from 5 to 6 cases per group were analyzed.
doi:10.1371/journal.ppat.1003380.g001

Table 2. Clinical histories of the individual patients from the Streptococcus pneumoniae meningitis histology group.

Case Number Age, sex
Immediate cause
of death

Interval between onset of
symptoms and death (days) Other neuropathological abnormalities

1 56, f Shock 12 Severe brain edema, herniation, necrosis of
cortical and cerebellar neurons

2 81, f Respiratory arrest 8 Moderate brain edema

3 61, f Pulmonary embolia 6 Severe brain edema, herniation, diffuse
neuronal necrosis neurons

4 63, f Shock 91 Cortical microabscesses and focal necroses,
watershed infarctions

5 57, m Shock 6 Severe brain edema, hypoxic brain injury

6 54, m Brain death 1 Brain edema, herniation

Note: the synaptic/cell death analysis in our tissue samples involved non-necrotic tissue areas.
doi:10.1371/journal.ppat.1003380.t002
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without losing viability, while already demonstrating signs of

maturation (such as myelination) that resemble the normal tissue

environment in human meningitis. At 0.2 mg/ml, PLY did not cause

increased cell lysis compared with mock-treated slices (Fig. 3A). The

cortex neurons were stained with the fluorescent stain DiI (see the

Materials and Methods section) to visualize the neuronal bodies,

dendritic trees and dendritic spines. Morphologically, ,80% of the

stained neurons were pyramidal, and ,20% were non-pyramidal,

corresponding to the normal proportion of these cell types in the

neocortex. DiI stains only the dendritic tree of intact cells with non-

interrupted neurites, as it dissolves into the soma and diffuses

laterally throughout membrane lipids. Following a minimal PLY

exposure of 5 h, the dendrites of acute slices from infant mice

showed the formation of swellings (or varicosities; Fig. 3B–D) and a

loss of dendritic spines (we defined dendritic spines according to the

criteria in [25]; Fig. 3C, E). Similarly, the number of PSD95-positive

structures in layers I–II of the neocortex of the acute mouse brain

slices was diminished following 5 h of PLY exposure (Fig. 3F);

however, the density of the synapsin I-positive structures was not

affected (Fig. 3G). We observed no differences in the PSD95 and

synapsin I expression levels in neocortical protein extracts between

the mock and the PLY groups, which indicated that the loss of

PSD95 synaptic staining was not due to decreased protein

expression, but to elimination of post-synapses and protein

redistribution (Fig. 3H, I). In contrast to the pore-competent toxin,

the non-pore-forming delta6 mutant failed to cause any changes in

spine number or dendritic swellings (Fig. 3J), confirming a critical

role for the pore-forming properties, even at sub-lytic concentrations.

To determine whether the PLY effects were reversible, it was

important to clarify whether PLY bound tissue rapidly within a

short period of time or slowly and continuously within the whole

exposure time. Exposure of brain slices to PLY-GFP resulted in

nearly complete toxin binding and depletion of the toxin from the

medium within minutes (Fig. 4). This confirms that the dendritic

swellings, spine collapse and synaptic loss detected after a 5-h PLY

exposure were not short-term phenomena due to continuous

binding of new toxin fractions, but long-term changes following an

initial short toxic insult.

The observed PLY effects were NMDA dependent
The observed dendritic swellings closely resembled the effects of

excitotoxicity on neurons in both primary cultures and brain slices,

Figure 2. Reduced synaptic density in mouse pneumococcal meningitis neocortical brain tissue samples. A. Reduced synapsin staining
in layers I–II of the neocortex in animals with meningitis by PLY-producing bacteria vs. all other groups 36 h after injection. * p,0.05. (D39) indicates
the group of mice injected intracerebrally with the pneumolysin (PLY)-producing D39 S. pneumoniae strain; (PLY-) mice indicates those infected with
the PLY-deficient D39 strain. B. Reduced staining was observed for PSD95 in layers I–II of the frontal neocortex of mice injected with the PLY-
producing strain vs. the PLY-deficient D39 strain animals after 36 h. All values are presented as the mean 6 SEM. There were 5 animals in the mock
group and 10–13 in the meningitis group. C. Representative tissue sample images with anti-synapsin I immunohistochemistry of layers I–III with
magnification of equivalent areas of interest in layer I. Scale bar: 15 mm. D. Representative images of the TUNEL-FITC staining of equivalent areas in
layers I/II of the neocortex of mice infected with D39 and PLY-deficient pneumococcal strain, where no TUNEL-positive cells are present. All nuclei
were counterstained with propidium iodide (PI). TUNEL-negative control (enzyme missing) and TUNEL-positive control (pretreatment with DNAseI)
are presented for staining validation. Scale bar: 20 mm.
doi:10.1371/journal.ppat.1003380.g002

NMDA-dependent Synaptic Loss by Pneumolysin
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as observed by other laboratories [26]. Thus, we exposed acute

mouse brain slices to 10 mM non-competitive NMDA inhibitor

MK801 prior to the PLY challenge, and we observed a complete

block of dendritic swelling formation (Fig. 5A) and a recovery of

the number of dendritic spines in the neocortex (Fig. 5B).

Similarly, PSD95 staining recovered to level of the control group

(Fig. 5C). This effect was specific for NMDA receptors, as 50 mM

competitive NMDA inhibitor D-AP5 also abolished the develop-

ment of the PLY-induced dendritic and synaptic phenotype

(Fig. 5D; the prevention of dendritic swelling formation is

demonstrated as an example).

PLY initiated increases in glutamate in brain tissue and
around astrocytes in a calcium-dependent manner

The excessive activation of NMDA receptors by the endogenous

neocortical synapse mediator glutamate causes excitotoxicity [27].

We analyzed the occurrence of increased glutamate release using

glutamate electrochemical sensors (Fig. 6A) in acute mouse brain

Figure 3. Dendritic and synaptic changes caused by pneumolysin in acute brain slices. A. Equivalent cell lysis (LDH release) between slices
that were mock treated or treated with 0.2 mg/ml PLY for 8 h. B. A DiI-stained pyramidal neuron in the neocortex of an acute mouse slice
demonstrated a normal spine and dendrite morphology (mock) in contrast to a PLY-treated slice (0.2 mg/ml for 5 h), which showed a reduction in
spine number and multiple dendritic enlargements (swellings). Scale bars: 10 mm. C. Magnified dendritic fragments, demonstrating the dendrite
configuration and the morphology of the dendritic spines. Scale bars: 10 mm. D. Increased number of dendritic swellings after exposure to 0.2 mg/ml
PLY for 5 h. *** p,0.001. E. Decreased number of dendritic spines following 5 h of exposure to 0.2 mg/ml PLY. ** p,0.01. F. Reduced number of
PSD95-positive fluorescent puncta in the neocortices of slices treated with 0.2 mg/ml PLY for 5 h. * p,0.05. G. Unchanged number of synapsin I-
positive fluorescent puncta in the neocortices of slices treated with 0.2 mg/ml PLY for 5 h. H. Western blot analysis of the protein levels of synapsin I,
PSD95 and actin in acute mouse brain slices treated with 0.2 mg/ml PLY for 5 h or in mock-treated slices. I. Unchanged protein expression levels of
synapsin I and PSD95 in acute mouse brain slices (normalized to the corresponding levels of actin). J. The delta6 non-pore forming mutant of PLY did
not produce varicosity increase and dendritic spine loss. All values are presented as the mean 6 SEM; n = 6 slices from at least 3 independent
experiments.
doi:10.1371/journal.ppat.1003380.g003

NMDA-dependent Synaptic Loss by Pneumolysin
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slices following PLY exposure. The glutamate concentrations in

the cortex increased to ,3 mM above background levels within

minutes of a PLY challenge (Fig. 6A). The glutamate source could

be either the astrocytes or the synaptic structures. Considering the

remodeling effects of PLY on astrocytes [8] and the fact that

astrocytes are expected to be the primary structures in contact with

the toxin before it reaches the synapses, we tested the possibility

that sub-lytic PLY concentrations (concentrations inducing less

than 10% cell lysis in the cultures and no lysis in slices) could

induce glutamate release from cultured astrocytes. Primary mouse

astrocytes were exposed to 0.1 mg/ml PLY, and glutamate levels

were measured with an electrochemical sensor on the monolayer

surface. Following an initial glutamate peak (before the first signs

of permeabilization; Fig. 6B), glutamate levels increased further

together with the increase in permeabilization (Fig. 6B). Glutamate

release was completely blocked under calcium-free buffer condi-

tions, as the observed cell lysis was identical or even greater

compared with the cell lysis in 2 mM calcium conditions (Fig. 6B),

which we have described previously [24]. The calcium-free

experiments confirmed that permeabilization alone was not

sufficient to increase the glutamate levels around the astrocytes

and that calcium was required for this effect.

To verify that the cytosolic calcium increase by PLY was

completely eliminated under calcium-free buffer conditions, we

performed a Fura-2 analysis in astrocytes. Within 2–4 min of PLY

exposure, the astrocytes demonstrated an intracellular calcium

increase in medium containing 2 mM calcium (Fig. 6C; consistent

with the increased glutamate release) that was fully eliminated

under calcium-free buffer conditions (Fig. 6D). The uptake of

glutamate from acute slices, which could also be responsible for the

elevation in tissue glutamate, remained unaffected independent of

PLY treatment (Fig. 6E).

Discussion

In this study, we described for the first time the occurrence of

synaptic loss in the neocortex in human pneumococcal meningitis

autopsy cases and in an animal model of bacterial meningitis, and

we identified PLY as a critical factor in this process. We further

analyzed the cellular and molecular mechanisms of PLY-based

dendritic and synaptic damage, confirming the importance of its

pore-forming capacity, local glutamate release and the activation

of NMDA receptors. PLY was capable of inducing glutamate

release from astrocytes in a calcium-dependent manner, which we

speculate to be a major source of elevated brain glutamate in

pneumococcal meningitis and meningitis model systems.

The observed long-term cognitive decline in survivors of

pneumococcal meningitis implies the occurrence of synaptic

damage and loss as the reasons for cognitive abnormalities,

although it has never been proven. Synaptic loss is present in

multiple CNS diseases such as Alzheimer’s, Huntington’s, and

Creutzfeldt-Jacob [20,28,29]. Synaptic loss correlates better with

the level of cognitive decline than cell death and thus is suggested

to be a major factor for the cognitive deterioration in these diseases

[30]. Our findings demonstrate that synaptic loss is also present in

infectious brain diseases such as pneumococcal meningitis.

Furthermore, our data suggest a very compelling mechanism of

cognitive decline in meningitis, although other pathogenic factors

may also play a role.

Figure 4. Kinetics of toxin tissue binding. Measurement of the
fluorescence intensity of GFP-tagged PLY (PLY) in the medium following
incubation of brain slices (6 slices per well) challenged with either 0.5 or
2 mg/ml PLY-GFP. The initial toxin concentration in the medium was
high but rapidly (within minutes) decreased due to tissue binding. In
the enlarged diagram (upper right), a rescaled y-axis fragment of the
0.5 mg/ml PLY experiment is presented.
doi:10.1371/journal.ppat.1003380.g004

Figure 5. NMDA dependence of the dendritic changes caused
by pneumolysin. A. Inhibition of the formation of dendritic swellings
caused by treatment with 0.2 mg/ml PLY for 5 h by the application of
10 mM of the non-competitive NMDA-receptor inhibitor MK801. ***
p,0.001 vs. all. B. Preserved dendritic spine number following
treatment with 10 mM MK801 together with 0.2 mg/ml PLY for 5 h. *
p,0.05, ** p,0.01. C. Reversal of the PSD95 density loss by PLY when
incubated with 10 mM MK801. D. Complete inhibition of dendritic
swelling formation caused by treatment with 0.2 mg/ml PLY for 5 h
using a 50 mM of the competitive NMDA-receptor antagonist D-AP5. ***
p,0.001. All values represent the mean 6 SEM; n = 5–6 slices from at
least 3 independent experiments.
doi:10.1371/journal.ppat.1003380.g005

NMDA-dependent Synaptic Loss by Pneumolysin
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Experiments on neonatal rats with pneumococcal meningitis

have demonstrated the existence of a greater number of apoptotic

cells in the hippocampus and cortex that increases in a PLY-

dependent manner [10]. In contrast to the infant rat meningitis

model, mouse meningitis models (similar to ours) are characterized

by substantially lower levels of cortical cell death (if any) [31,32],

allowing for the precise analysis of dendritic and synaptic changes

during the pathogenesis of pneumococcal meningitis. Thus, the

observed selective synaptotoxic effect of PLY-producing D39

bacteria could be clearly separated from the loss of neuronal

bodies, which did not occur in our mouse experiments.

Bacterial meningitis is a disease with a complex pathogenesis.

Multiple additional factors (such as H2O2, CpG-DNA and others)

may act synergistically with PLY in the process of synaptic

damage. Thus, it was important to verify our findings regarding

synaptic loss in mice with meningitis in another, PLY-based

experimental setup. Therefore, we chose the acute mouse brain

slice paradigm. This system allowed us to confirm that PLY alone

was sufficient to cause synaptic loss and dendritic pathology.

The increased glutamate concentrations observed in the CSF of

human bacterial meningitis cases correlates with disease severity

[33,34]. Spranger et al. assumed that the major source of

glutamate in these CSF samples was the infiltrating monocyte

population, which releases glutamate in the acute phase of the

infection [34]. While the inflammatory background should be

relatively similar in different types of bacterial meningitis (also

assuming a similarity in the amounts of immune cell-derived

glutamate), the local glutamate increase in the cortex following

Figure 6. Increased glutamate release and calcium changes caused by pneumolysin. A. Representative sample of three experiments
demonstrating increased neocortical glutamate content (via electrochemical detection in an acute slice; a diagram of the electrode is presented)
following 0.2 mg/ml PLY exposure. B. Elevation of glutamate release on the surface of a monolayer of mouse astrocytes by a treatment with 0.1 mg/ml
PLY in buffer containing 2 mM extracellular calcium (Ca-rich) vs. unchanged glutamate levels in calcium-free buffer (Ca-free). A permeabilization
diagram (propidium iodide-positive cells) is presented above the glutamate release diagram. The values are presented as the means 6 SEM; n = 3–5
experiments. C. Increase in cytosolic calcium (Fura-2-loaded mouse astrocytes) following treatment with 0.1 mg/ml PLY and a 10 mM ionomycin
control at 800 s in 2 mM calcium-containing buffer (representative experiment). The experiments were repeated 5 times with identical results. D.
Unchanged cytosolic calcium concentration following an identical incubation as in C., but under calcium-free extracellular buffer conditions. E.
Preserved glutamate uptake in brain slices following 0.2 mg/ml PLY challenge for 4 h; n = 3 experiments.
doi:10.1371/journal.ppat.1003380.g006

NMDA-dependent Synaptic Loss by Pneumolysin
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PLY exposure, which we observed, could act synergistically with

the immune cell-derived glutamate. Brain tissue has very high

glutamate uptake capacity [35]. The increase in the extracellular

glutamate concentration within the cortices of our isolated slice

system could be due either to a decreased uptake or an increased

release. The experiments using glutamate-sensitive microsensors

demonstrated that glutamate uptake by astrocytes remained

unaffected following PLY exposure, while the release was

increased. A similar pathogenic mechanism with increased

glutamate release is involved in ischemic brain damage [36] and

other neurological conditions [37]. The neurotoxic effect of

glutamate, known as excitotoxicity, is widely studied in ischemic

brain damage, although the patterns of excitotoxicity may differ

depending on multiple additional factors such as the duration,

persistence and glutamate amounts. The exact pathogenic

mechanisms connecting the increased glutamate levels and the

over-activation of NMDA receptors, calcium influx and subse-

quent dendritic alterations have been discussed extensively in the

literature (for review see [27]) and fall beyond the scope of our

work. In some cases where mitochondrial function is preserved

and glutamate exposure is short, these swellings and dendritic

spine losses are reversible within tens of minutes and contribute to

better tissue adaptation and remodeling [38]. With an increased

duration and strength of glutamate exposure, these changes

become permanent and irreversible. The loss of glutamatergic

synapse-specific PSD95 by PLY in our acute mouse brain slice

system confirmed the permanent synaptic specificity of the PLY

toxic insult. The rapid sequestration of PLY from the medium

within minutes after slice exposure further confirms that the initial

insult is short, and the effects 5 h later are rather long-term effects.

Earlier studies that combined PSD95 staining and electrophysiol-

ogy have confirmed that the loss of PSD95 completely correlates

with the electrophysiological evidence for synapse elimination

[39]. The reduction of synapsin I density in the brain meningitis

samples (both mouse and human) but not in the PLY-treated acute

mouse brain slices was most likely due to the difference in the

analysis time points: 5 h for the acute slices and 36 h and more

after the disease onset for the meningitis brain samples.

Experimental evidence from other labs confirms that the reduction

of PSD95 staining precedes the elimination of pre-synaptic

markers and structures in excitotoxicity [39].

Both astrocytes and the glutamatergic presynaptic endings

function as glutamate stores. The capacity of astrocytes to release

glutamate from vesicular structures has previously been studied in

detail [40]. This release occurs predominantly in a calcium-

dependent manner, suggesting a possible mechanism utilized by

PLY to increase glutamate release in our system [41,42]. PLY is

known to produce an increase in intracellular calcium concentra-

tions [43]. In our experiments, we used lower, sub-lytic

concentrations of PLY compared with those applied previously

(we define ‘‘sub-lytic’’ as PLY concentrations producing less than

10% lysis in cell cultures and no lysis in the slice culture system)

and again observed a calcium increase in all tested cells. Under

calcium-free buffer conditions, the intracellular calcium levels

remained unchanged following PLY challenge. This result

confirmed that extracellular calcium is the principal source of

the cytosolic calcium increase following PLY challenge under

normal conditions [43]. The possibility of a secondary role for

intracellular calcium stores could not be excluded, but it was not

the initiating factor. In agreement with other studies of calcium

dependence of glutamate release, the prevention of the intracel-

lular calcium increase during the incubation of the astrocytes with

PLY in a calcium-free buffer fully inhibited the elevation of

extracellular glutamate. Thus, calcium influx by PLY was indeed

the key event initiating glutamate release. Our experiments with

astrocytes indicated their role as a primary glutamate source

following PLY challenge. Nevertheless, synapses may be another

source of PLY-induced glutamate release. However, considering

the structural organization of the synaptic units, their ensheathing

by astrocytes and the large surface area of astrocytes in the cortex,

it appears reasonable to expect that astrocytes are the primary

cellular component that encounter and are affected by PLY in the

neocortex. In the astrocyte/glutamate experiments, we demon-

strated the feasibility of a calcium-dependent glutamate release

mechanism upon PLY challenge. We did not attempt to dissect the

individual components of this mechanism, which can be even

more complicated. It should be considered that autocrine

mechanisms such as the triggering of ATP release and subsequent

P2-receptor activation may also play a role in enhancing

glutamate release [13].

An analysis of the calcium dependence of our findings in the

slice cultures under calcium-free conditions was not an option due

to the high calcium sensitivity of brain neurons in acute slices,

which leads to the paradoxical formation of dendritic swellings

under calcium-free conditions (not shown) and has also been

observed by other researchers [44].

PLY has the capacity to modulate astrocyte shape by inducing

actin remodeling [8,45]. In these earlier works, PLY produced

astrocyte shrinking and reorganization, increasing the penetration

of toxic factors into the tissue, but not reducing the number of vital

glial cells. There, despite the use of sub-lytic concentrations of

PLY, the protein still requires an intact pore-forming capacity to

remodel actin [45]. Similarly, we observed a pore-forming

capacity dependence of PLY effects in both the varicosity number

increase and spine loss phenotype experiments here, as the delta6

non-pore forming PLY protein was not able to alter the dendrites.

While the actin remodeling effects by PLY on astrocytes do not

require calcium [45], the release of glutamate, which is responsible

for the synaptic and dendritic changes in our system, does. It is

possible that calcium influx through the pores is responsible for the

increase. In a broader perspective, both pathogenic mechanisms

initiated by PLY, calcium-dependent and calcium-independent,

may contribute to the complex brain tissue response to PLY.

An important question in our experimental acute brain slice

system is the penetration capacity of PLY into the tissue. Earlier

works of Braun et al. [46] confirm that PLY can penetrate the

hippocampus. Our earlier experiments have also confirmed the

ability of PLY to produce astrocyte shape changes deep into the

cortical tissue, consistent with the areas of analysis here, as well as

the ability of whole bacteria (substantially larger than the PLY

molecule) and fluorescent dextran to penetrate deep into the

cortex, a process that is further enhanced by PLY [47].

Histopathological brain samples from patients with pneumococcal

meningitis also demonstrate the presence of intracortical micro-

abscesses, which further increase the depth of PLY delivery into

the cortical layers [48]. The breakdown of the blood-brain barrier,

occurring early in bacterial meningitis, surely further promotes the

delivery of toxic molecules into the brain parenchyma [49].

PLY is known to activate TLR4 and induce neuroimmunolog-

ical responses [50,51]. Detailed analyses by our group have

demonstrated that at the applied non-lytic concentrations, PLY

does not induce increased neuroinflammatory response within the

initial 6–8 h of exposure, when most of the neuropathological

effects of PLY occur [8]. Nevertheless, we cannot exclude that the

neuroinflammatory alterations are operational at later time points.

Our studies demonstrate a pathogenic cascade linking the

presence of PLY with glutamate release and the subsequent,

NMDA-dependent dendritic and synaptic pathology associated
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with pneumococcal meningitis. During the course of bacterial

meningitis, however, there is a plethora of complementary factors

at work including oxidative stress, brain ischemia, edema, immune

system-derived glutamate release, bacteria and bacterial products

and other toxic factors. Thus, the role of PLY as a critical pro-

inflammatory factor clearly contributes in a synergistic manner to

all of the other factors (in parallel to the glutamate cascade we

present here) to produce brain damage; however, we do not

exclude the role of other factors, especially in human patients. In a

broader context, the novel insight obtained herein regarding

bacterial meningitis as a synaptic disease should be considered in

future studies addressing the pathophysiology of meningitis.

Materials and Methods

Ethical statement
The animals used for tissue and cell culture preparation were

handled in accordance with the regulations of the German Law for

the Protection of the Animals, and the procedures were approved

by the Ethics Committee of the Government of Lower Saxony.

The human autopsy samples were obtained and used in

accordance with the current German legal regulations including

consent from the families of the deceased. Their use was approved

by the Ethics Committee of the University Hospital Göttingen,

Germany.

PLY preparation
Wild-type PLY was expressed in Escherichia coli BL-21 cells

(Stratagene, Cambridge, UK) and purified via metal affinity

chromatography as described previously [52]. The purified PLY

was tested for the presence of contaminating Gram-negative LPS

using the colorimetric LAL assay (KQCL-BioWhittaker, Lonza,

Basel, Switzerland). All purified proteins showed ,0.6 endotoxin

units/mg of protein. The initial stock of purified wild-type toxin

exhibited an activity of approximately 56104 hemolytic units/mg.

One hemolytic unit was defined as the minimum amount of toxin

needed to lyse 90% of 1.56108 human erythrocytes per ml within

1 hr at 37uC. A second toxin stock with a slightly lower lytic

activity was applied at corrected concentrations that were

equivalent to the activity of the first stock and are expressed as

the microgram equivalent throughout the text. The non-toxic

delta6 version of the plasmid was constructed using site-directed

mutagenesis (Quikchange SDMKit, Stratagene). The non-pore

forming delta6 mutant (deletion of the amino acids alanine 146

and arginine 147; diagram shown in Fig. 1B) was produced with

the following deletion primers: 59-GGTCAATAATGTCCCAAT

GCAGTATGAAAAAATAACGGCTC-39 and 59-GAGCCGT

TATTTTTTCATACTGCATTGGGACATTATTGACC-3.

The properties of this mutant were examined in detail

previously [9,45]; it binds comparably with the wild-type PLY

but cannot perform the transition to a pore (Fig. 1B).

Cell and slice cultures and culture treatments
Primary mouse astrocytes were prepared from the cortices of

newborn C57BL/6 mice (postnatal day 3–5) as mixed cultures

with microglia in Dulbecco’s modified Eagle’s medium (high

glutamate; Gibco, Invitrogen GmbH, Karlsruhe, Germany). The

growth medium was supplemented with 10% fetal calf serum

(FCS; PAN Biotech GmbH, Aidenbach, Germany) and 1%

penicillin/streptomycin (Gibco). Fourteen days after seeding in 75-

cm2 cell culture flasks (Sarstedt AG & Co KG, Nuembrecht,

Germany), the cells were reseeded.

The cells were treated with pneumolysin (PLY) in serum-free

medium depending on the experiment. In the glutamate

measurement and Fura-2 experiments, the cells were exposed to

the toxin in a buffer containing 135 mM NaCl, 2.5 mM MgCl2,

4 mM KCl, and 5 mM Hepes (all from Carl Roth GmbH+Co.

KG, Karlsruhe, Germany), pH 7.3, with or without 2 mM CaCl2.

Acute brain slices were prepared from infant (postnatal day 12–

14) C57Bl/6 mice via decapitation and vibratome sectioning

(Vibroslice NVSL, World Precision Instruments, Berlin, Germany)

in artificial CSF continuously oxygenized with carbogen gas (95%

O2, 5% CO2) at 4uC. The slices were allowed to adapt in

carbogenated BME (GibcoBRL) with 1% penicillin/streptavidin

and 1% glucose at 37uC for 1 h before being challenged with PLY

in the 5% CO2-buffered medium (pH = 7.3). In these acute slices,

cell lysis never exceeded 5% within 12 h.

Mouse meningitis model
The model was performed exactly as described previously [53].

Briefly, 3 to 5 month-old anesthetized (ketamine [100 mg/kg of

body weight] and xylazine [10 mg/kg]) C57BL/6 mice were

infected in the right frontal lobe with 25 ml of 0.9% NaCl

containing 104 CFU of the different bacterial strains. The mice

were followed up 36 h after infection, at which time, the mice were

sacrificed by decapitation, and blood was collected. The cerebel-

lum and the ventral half of the spleen were homogenized in 0.9%

saline (1/10 [wt/wt]) to determine bacterial titers. The bacterial

titer in cerebellar homogenates, although slightly higher in the

D39 strain meningitis samples, did not differ significantly between

the groups (not shown). The remaining brain tissue was fixed in

4% paraformaldehyde. For a more detailed assessment of

neuronal damage, tissue samples from mice infected with D39

wild-type and pneumolysin-deficient S. pneumoniae (n = 10 each)

were perfused with phosphate-buffered saline and 4% formalin

and then embedded in paraffin. One-micrometer-thick coronary

sections were further stained immunohistochemically and with

TUNEL.

Human pathological brain material
Neocortical brain samples from human autopsy cases were

embedded in paraffin and analyzed. The individuals included in

the control group (6 cases) all died from acute, non-neurological

causes. The average age of the control group was 61 (range, 42–

82), and this group included 3 males and 3 females. The meningitis

victims (6 cases) suffered from microbiologically confirmed S.

pneumoniae, which was the immediate cause of death. The average

age of the meningitis group was 62 (range, 53–81), and this group

included 4 females and 2 males. Detailed patient histories are

presented in Table 1 and Table 2.

Tissue staining
Acute mouse brain slices were fixed in 2% paraformaldehyde

(Carl Roth) in PBS (pH 7.3) for 30 min, permeabilized with 0.1%

Triton X-100 (Carl Roth), and processed either for immunohis-

tochemistry or for neuron-specific DiI staining [54]. Briefly,

crystals of the lipophilic DiI stain (Invitrogen) were positioned on

layers IV–VI of the cortex and allowed to diffuse along the

membranes of neurons with an intact neuritic tree, staining the

apical dendrites and branches of pyramidal neurons. As only

projecting branches with clear morphological characteristics were

followed, shorter branched cells positioned close to the crystal

(presumably not neurons) were avoided.

For the immunohistochemical experiments, microtome slices

from mouse and human brain samples embedded in paraffin were

deparaffinized and rehydrated, and the antigen was revealed using

target retrieval solution (Dako Deutschland GmbH, Hamburg,

Germany) at 95uC. The primary antibodies used were rabbit anti-
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MAP2 (1:200; Santa Cruz Biotechnology, Inc., Heidelberg,

Germany), mouse anti-synapsin I (1:500; Synaptic Systems

GmbH, Göttingen, Germany) and rabbit anti-PSD95 (Abcam,

Cambridge, UK), and the secondary antibodies were goat anti-

rabbit and goat anti-mouse antibodies tagged with FITC, Cy3 or

Cy5 (1:200; Dianova GmbH, Hamburg, Deutschland). The

sample nuclei were stained with DAPI (4,6-diamidino-2-pheny-

lindole dihydrochloride; Invitrogen; 1:1000 in PBS). All samples

were preserved with the ProLong antifade reagent (Invitrogen).

DNA fragmentation staining in the nuclei was detected using a

DeadEnd Fluorometric TUNEL kit according to the manufactur-

er’s instructions (Promega GmbH, Mannheim, Germany), and

nuclear counter-staining was performed with propidium iodide

(Invitrogen). Briefly, deparaffinized slices were rehydrated, treated

with proteinase K (Promega) for 15 min and incubated with the

reaction enzyme mix. Control slices were treated with DNase I

(Qiagen) prior to labeling with terminal deoxynucleotidyl trans-

ferase to yield 100%-positive staining (positive control), and slices

with no terminal deoxynucleotidyl transferase added served as a

negative control and showed no staining.

All samples were analyzed either on an Olympus Cell M

imaging fluorescent system (Olympus Europe, Hamburg, Ger-

many) using a 206dry objective or a 606oil immersion objective

or on a Leica SP5 laser-scanning microscope (Leica Microsystems

Heidelberg GmbH, Mannheim, Germany) using a 636 oil

immersion objective and with a zoom of up to 8x. Image

processing and analyses were performed using ImageJ software

(version 1.43 for Windows, National Institutes of Health,

Bethesda, Maryland, U.S.A.).

Calcium imaging
We utilized staining with Fura-2 AM (Invitrogen) preloaded for

30 min in primary astrocytes at a concentration of 5 mM in

imaging buffer, followed by washing for 30 min before proceeding

with imaging on an IonOptix microscopy system with a 636 oil

immersion objective and analysis with IonWizzard software (all

from IonOptix Limited, Dublin, Ireland).

Glutamate measurement
Glutamate measurements were performed in slices and in

cultures using glutamate oxidase-coated semipermeable micro-

electrodes (Sarissa Biomedical Limited, Coventry, United King-

dom), which detect glutamate based on an enzymatic transition

and changes in the electric properties of the electrodes. The values

obtained from a closely positioned identical reference electrode

(without enzyme) were subtracted from those of the glutamate

sensor to obtain the glutamate-specific signal; the electrodes were

standardized at the end of the experiment against a known

glutamate concentration. The slices, perfused with carbogen-

enriched BME medium, or astrocytic cultures, incubated in

imaging buffer, were analyzed in a tissue recording system

equipped with micromanipulators (Kerr Scientific Instruments,

Christchurch, New Zealand), and the signal was acquired with a

potentiostat (Pinnacle Technology, Lawrence, Kansas, U.S.A.)

and analyzed with Pal 8100 software (Pinnacle). The cultures were

maintained at a temperature of 37uC. The measurements in the

glutamate uptake experiments were performed in an identical

manner with the addition of glutamate to a final concentration of

200 mM and subsequent measurements of the glutamate levels,

which were normalized to background levels within 3 min.

Protein biochemistry analysis
In Western blot experiments, samples containing equal amounts

of proteins were electrophoresed on SDS-PAGE gradient gels (4–

12% acrylamide, Anamed, Germany). The separated proteins

were transferred via semi-dry blotting to PVDF Imobilion-P

transfer membranes (Millipore, Germany). The membranes were

blocked using 3–5% non-fat milk (Carl Roth) and were incubated

with an anti-PSD95 rabbit antibody (Abcam Inc., Cambridge, MA

USA; 1:400), anti-synapsin I mouse antibody (Synaptic System

GmbH, Göttingen, Germany; 1:500) and anti-actin rabbit

antibody (Cytoskeleton). Following incubation with a horseradish

peroxidase-conjugated rabbit anti-mouse antibody (Jackson Im-

muno Research, USA), the signals were detected using ECL Plus

Western Blotting Reagent (GE Healthcare, Munich, Germany)

and a Fluorchem Q machine (Alpha Innotech GmbH, Kasendorf,

Germany). Acute brain slices were mechanically homogenized by

repetitive freeze-thaw cycles in liquid nitrogen followed by

mechanical mixing, all in protease inhibitor mix (Roche Applied

Science, Mannheim, Germany).

Statistical analyses
Statistical analyses were performed using GraphPad Prism 4.02

for Windows (GraphPad Software Inc., La Jolla, CA, U.S.A.). The

statistical tests included Mann-Whitney U-tests (comparing 2

groups differing in one parameter) and one-way ANOVA with a

Bonferroni post-test (comparing 3 or more groups differing in one

parameter).
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