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Abstract

Optimal norepinephrine levels in the prefrontal cortex (PFC) increase delay-related firing and enhance working memory,
whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via a1
adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce
persistent firing, a cellular correlate of working memory, in cortical pyramidal neurons. Therefore, despite its importance in
stress and cognition, the exact role of norepinephrine in modulating PFC activity remains elusive. Using electrophysiology
and optogenetics, we report here that norepinephrine induces persistent firing in pyramidal neurons of the PFC
independent of recurrent fast synaptic excitation. This persistent excitatory effect involves presynaptic a1 adrenoceptors
facilitating glutamate release and subsequent activation of postsynaptic mGluR5 receptors, and is enhanced by
postsynaptic a2 adrenoceptors inhibiting HCN channel activity. Activation of a2 adrenoceptors or inhibition of HCN
channels also enhances cholinergic persistent responses in pyramidal neurons, providing a mechanism of crosstalk between
noradrenergic and cholinergic inputs. The present study describes a novel cellular basis for the noradrenergic control of
cortical information processing and supports a synergistic combination of intrinsic and network mechanisms for the
expression of mnemonic properties in pyramidal neurons.
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Introduction

The prefrontal cortex (PFC) plays a significant role in high order

brain functions such as working memory [1–3], a process that

refers to the ability to maintain relevant information in a

temporary buffer to guide behaviour. Dysfunction of PFC neural

networks occurs in many psychiatric disorders including attention

deficit hyperactivity disorder and post-traumatic stress disorder

(PTSD) which are associated with hypersensitivity to acute stress

and deficits in working memory. It has long been known that

working memory function is correlated with delay-related persis-

tent neuronal firing and increased fMRI signal in the PFC of

animals and human subjects performing working memory tasks

[4–9]. Persistent firing which outlasts the original stimulus can be

sustained via recurrent network excitation within microcircuits of

layer 2/3 pyramidal neurons of the PFC or from afferent inputs of

subcortical areas [3,10,11]. In vivo and in vitro experiments have

shown that persistent firing can also be observed following a slow

afterdepolarization in the presence of muscarinic or metabotropic

glutamate receptor activation [12–19] Several reports have

confirmed that pyramidal neurons exhibit intrinsic persistent

firing independent of ionotropic synaptic transmission [20–24].

Despite the known impact of stress and imbalanced monoamine

levels on PFC function, the mechanisms underlying the modula-

tion of intrinsic persistent firing by norepinephrine (NE) have not

been addressed.

The PFC receives dense noradrenergic innervation from the

locus coeruleus. Optimal levels of NE released during waking have

been shown to enhance neuronal activity in the PFC and improve

spatial working memory performance in rats and monkeys via the

activation of postsynaptic a2 adrenoceptors [1,25,26]. Activation

of the phospholipase C pathway by postsynaptic metabotropic Gq-

coupled receptors such as muscarinic receptors or mGluR5

induces long-lasting persistent neuronal firing in pyramidal

neurons of the entorhinal cortex [20,24] as well as the PFC

[22,27]. However, recent studies have reported that activation of

postsynaptic Gq-coupled a1 adrenoceptors and PKC inhibits

persistent activity of prefrontal pyramidal neurons and impairs

working memory performance in monkeys [28,29]. Therefore, in

order to clarify the exact role of a1 adrenoceptors and to

understand the mechanism of noradrenergic modulation on

prefrontal functions, the present study investigated the effect of

NE on pyramidal neurons at the single cell level using patch clamp

recording combined with optogenetic activation of noradrenergic

fibers in acute brain slices. We found that both exogenous NE and

endogenous NE released from the locus coeruleus induce

persistent firing in pyramidal neurons of the PFC. We provide

evidence that noradrenergic persistent responses are mainly

mediated by a synergy between presynaptic a1 adrenoceptor-

mediated enhancement of glutamate release and postsynaptic a2
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adrenoceptor-mediated inhibition of hyperpolarization-activated

cyclic nucleotide-gated (HCN) cation channels.

Materials and Methods

Electrophysiological Recording
All experimental procedures were approved by the McGill

University Animal Care Committee and were in compliance with

the guidelines of the Canadian Council on Animal Care. Acute

brain slices were obtained from adult Long-Evans rats (20–23 days

old) (Charles River Canada, Saint-Constant, Quebec, Canada) or

transgenic mice expressing ChR2 (see below) according to a

procedure described previously [22]. Animals were anesthetized

with a ketamine:xylazine cocktail (60:5 mg/kg) and transcardially

perfused with ice-cold choline chloride–based artificial cerebro-

spinal fluid (cutting solution) consisting of (in mM): 110 choline-Cl,

1.25 NaH2PO4, 25 NaHCO3, 7 MgCl2, 0.5 CaCl2, 2.5 KCl, 7

glucose, 3 pyruvic acid, and 1.3 ascorbic acid, bubbled with

carbogen (O2 95%, CO2 5%). Coronal rat or mouse brain slices

(300 mm) were prepared from the forebrain. Briefly, following

transcardial perfusion and decapitation, the rat brain was exposed

dorsally and was cut vertically between the cerebral cortex and

cerebellum. The brain, now devoid of the cerebellum and

brainstem, was quickly removed from the cranial cavity and

immersed in ice-cold cutting solution for 1–2 min. Coronal slices

containing the medial PFC including the rostral anterior cingulate

cortex and prelimbic cortex (Bregma 2.28 , 3.72 mm in rats,

according to Paxinos and Watson 1998; and Bregma 1.10 ,
1.98 mm in mice, Paxinos and Franklin 2001) were obtained using

a vibratome Leica VT1000S (Richmond Hill, Ontario) in the

same solution. Brain slices were transferred to a standard

extracellular solution (see below) to settle down at room

temperature for at least 1 h before recording.

Brain slices were placed in a recording chamber mounted on

the stage of an upright microscope Axioskop (Zeiss, Oberkochen,

Germany) equipped with a 63X water immersion objective and

differential contrast optics. A near-infrared charged-coupled

device camera (Sony XC-75) was used to visualize the neurons.

Brain slices were stabilized using a U-shaped stainless steel anchor

with LycraH threads at 1.5 mm spacing (Warner Instruments,

Hamden, CT). Pyramidal neurons located in layer 2/3 or outer

layer 5 with a typical pyramidal shape were chosen for

electrophysiological recording. Slice perfusion was driven by

gravity at a speed of 0.5–1 ml/min. The temperature of the

perfusion solution was maintained at 32–33uC using a TC-324B

temperature controller (Warner Instruments, Hamden, CT). Patch

pipettes (5–7 MV) were pulled on a Brown Flaming puller (Model

P-97, Sutter Instruments, Novato, CA) using borosilicate glass

electrodes. Tight seals (,5 GV) were obtained by applying

constant negative pressure on the patch pipette. Electrical signals

were amplified using an Axopatch 200B amplifier (Axon

Instruments, Molecular Devices, Sunnyvale, CA), low-pass-filtered

at 5 kHz, digitized at 10 kHz via a Digidata 1322A interface

(Axon Instruments) and stored on a Pentium computer using the

pClamp 9.2.1.8 software (Axon Instruments) for off-line analysis.

In the present study, all cells were quiescent at rest and had a

resting membrane potential ranging from 260 to 280 mV

(median 273 mV). Cells with a resting membrane potential more

positive than –55 mV were discarded. In current clamp record-

ings, the holding current was around 0 pA and slightly adjusted to

obtain a membrane potential of –60 mV during drug testing.

Series resistance (in most cases ,20 MV) was not compensated.

Input resistance was assessed by injecting negative current pulses

(260 to 2150 pA, 500 ms) at 260 mV. After the whole cell patch

was formed, a depolarizing current pulse (,100–150 pA, duration

1 or 2 s) was applied before drug administration to induce

repetitive spiking during the pulse (control) and after application of

NE or carbachol (CCh) so that a long-lasting sustained repetitive

spiking, which outlasts the stimulation pulse (persistent firing), was

induced. This depolarization current pulse was sufficient to induce

persistent firing following drug administration and was kept

constant for every NE-responsive cell before and after drug testing.

The induced persistent firing could last for a significant period of

time (more than 10 min) after induction, but in almost all cases, it

was terminated by injecting a hyperpolarizing current 2 or 3

minutes after induction. The firing frequency is defined as the

average spiking frequency within 20 s after the depolarizing

current pulse. The plateau potential refers to the average

membrane potential during long lasting persistent firing or during

short (,20 s) sustained firing (ADP with superimposed action

potentials). The amplitude of plateau potentials reflects the

difference between the mean membrane potential (mV) measured

at baseline within one minute (before the pulse) and the mean

membrane potential measured during the steady-state phase of

persistent firing (excluding action potentials and afterhyperpolar-

izing potentials). In voltage clamp experiments for recording

excitatory postsynaptic currents, the membrane potential was held

at –70 mV (approximate reversal potential of inhibitory postsyn-

aptic currents) and series resistance was compensated (.70%). To

record the hyperpolarization-activated cation current (Ih), the

membrane voltage was held at –50 mV and followed by the

application of voltage steps (duration 2.5 s) ranging from –50 mV

to –110 mV, with increments of –10 mV, to neurons.

Optogenetics
Male tyrosine hydroxylase TH::IRES-Cre knock-in mice

(EM:00254; B6.129X1-Thtm1(cre)Te/Kieg; European Mouse

Mutant Archive) [30] were housed in a temperature- and

humidity-controlled (40–60%) room under a 12 h light/dark

cycle. Mice were given food and water ad libitum. Experimental

protocols were approved by McGill animal care committee and

meet the guidelines of the National Institutes of Health guide for

the Care and Use of Laboratory Animals. Cre-inducible recom-

binant adeno-associated viruses (AAV) [31,32,33,34] were used to

genetically target channelrhodopsin-2 (ChR2) expression to

noradrenergic neurons in the locus coeruleus as described

previously [33]. Double-floxed reverse EF-1a::ChR2(H134R)-

eYFP and EF-1a::eYFP cassettes were packaged in AAV vectors

and serotyped with AAV5 coat proteins to produce high-titer virus

preparations (261012 genome copies/ml; viral vector core facility

at the University of North Carolina). Eight- to 10-week-old male

TH::IRES-Cre mice were anesthetized using isoflurane. AAV

viruses were delivered stereotactically (from bregma: anterior-

posterior, –5.45 mm; lateral, 1.28 mm; and dorsal-ventral,

3.65 mm) as described previously [33]. One microliter of purified

double-floxed AAV:ChR2-eYFP or control AAV:eYFP virus was

injected bilaterally slightly laterally to the locus coeruleus area.

The location of the viral injection as well as ChR2(H134R)-eYFP

expression were verified by examining eYFP fluorescence in the

locus coeruleus in brainstem slices. All mice were singly housed

after surgery and recovered for at least 3 weeks before

electrophysiological experiments. Activation of ChR2 channels

was evoked by light pulses (10 ms pulse width) delivered at 3 Hz

for 5–10 min with a TTL-driven 473 nm blue laser (Laserglow

Technologies, Ontario, Canada). Tonic firing of 3 Hz in

noradrenergic neurons of the locus coeruleus is correlated with

active wakefulness in the rat and primate [35,36]. It appears that

high-frequency, non-physiological stimulation (.5 Hz) causes

Noradrenergic Persistent Activity in PFC
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behavioral arrest and a decrease in cortical NE release as assessed

by microdialysis, suggesting depletion of NE in noradrenergic

terminals. Furthermore, 3 Hz of optical stimulation causes

effective sleep-to-wake transitioning and an increase in total

wakefulness in behavioral rats [33]. Therefore, we chose to deliver

3 Hz optical stimulation and simultaneously monitor excitatory

postsynaptic events in acute brain slices [33,36].

Drugs and Solutions
All drugs were purchased from Sigma (Oakville, Ontario,

Canada) except 6-methyl-2-(phenylethynyl)pyridine (MPEP), CGP

54626, 4-[1-Hydroxy-2-[(1-methylethyl) amino]ethyl]-1,2-benze-

nediol hydrochloride (isoproterenol) and ZD7288 which were

purchased from Tocris (Tocris Bioscience, Ellisville, MO),

propranolol from EMD biosciences and TTX from Alomone

Labs (Jerusalem, Israel). Carbachol, clonidine, (S)-3,5-dihydrox-

yphenylglycine hydrate (DHPG), isoproterenol, norepinephrine,

phenylephrine, prazosin, yohimbine, propranolol, TTX and

ZD7288 were dissolved in water whereas MPEP and CGP

54626 were dissolved in dimethyl sulfoxide (DMSO). All drugs

were freshly diluted from stock to the desired concentrations

before the experiments; the final concentration of DMSO did not

exceed 0.1%. In rats, the standard extracellular solution in current

clamp experiments contained (in mM): 125 NaCl, 2.5 KCl, 1.6

CaCl2, 2 MgCl2, 25 NaHCO3, 1.25 NaH2PO4, 3 pyruvic acid, 1.3

ascorbic acid, 10 glucose, 2 kynurenic acid and 0.1 picrotoxin.

Kynurenic acid and picrotoxin were used to block ionotropic

synaptic transmission mediated by NMDA, non-NMDA (AMPA

and kainate) and GABAA receptors, respectively. pH was

maintained at 7.4 by constant bubbling with carbogen (95% O2,

5% CO2). The intracellular solution in current clamp recordings

contained (in mM): 120 Kgluconate, 20 KCl, 2 MgCl2,0.2 EGTA,

10 HEPES, 7 di-tris phosphocreatine, 4 Na2-ATP and 0.3 Tris-

GTP. pH was adjusted to 7.3 with KOH. The extracellular

solution used in voltage clamp recordings of spontaneous

excitatory postsynaptic currents (sEPSCs) in rats was the same as

in current clamp recordings except that kynurenic acid was

omitted. BaCl2 (0.2 mM) was added to the extracellular solution in

voltage clamp experiments to record the hyperpolarization-

activated current (Ih). The intracellular solution used in voltage

clamp recordings is the same as the one used in current clamp

recordings. In optogenetic experiments in mice, the extracellular

solution for both voltage and current clamp recording contained

(in mM): 124 NaCl, 3 KCl, 1.6 CaCl2, 1.8 MgSO4, 26 NaHCO3,

1.25 NaH2PO4, 10 glucose, 0.1 picrotoxin pH 7.4. The intracel-

lular solution used is the same as in rats.

Data Analysis
Electrophysiological data were analyzed using Clampfit 9.2.1.8

(Axon Instruments) and Origin 6.0 (Microcal Software, North

Hampton, MA). Values are expressed as means 6 SEM. Synaptic

event (sEPSCs) data collected in 120 s episodes from voltage clamp

recordings before and after drug administration or light stimula-

tion were analyzed using the Mini Analysis Program (Synaptosoft

Inc NJ USA). The threshold for event detection was set at 10 pA.

Cumulative probability curves were compared using the Kolmo-

gorov-Smirnov two-sample test. Two-sample paired t-tests were

used to compare mean values obtained before and after drug

administration in the same neurons. Two-sample independent t-

tests were used for comparison between 2 independent groups.

One-way analysis of variance with Bonferroni correction was used

for comparison of multiple independent groups. Differences were

considered statistically significant when p,0.05.

Results

Norepinephrine Induces Persistent Firing in the PFC via
a1 Adrenoceptors

Some neurotransmitters and neuromodulators have been shown

to induce the generation of persistent firing in cortical pyramidal

neurons via Gq-coupled metabotropic receptors (e.g., muscarinic

M1, mGluR5) [14–19,22], but the exact role of norepinephrine

(NE) on the firing activity of the PFC is not clearly defined. We

observed that application of NE (10 mM) induced long-lasting

persistent neuronal firing following a depolarizing current pulse

injection in , 40% (57 out of 142) of the pyramidal neurons in

superficial layers (layer 2/3 and outer layer 5) of the PFC

(Figure 1A,B,D) in the presence of kynurenic acid and picrotoxin.

We never observed persistent activity before application of NE (0

out of 142). Interestingly, application of the muscarinic receptor

agonist carbachol (CCh) (10 mM) effectively induced persistent

firing in all neurons tested including those that did not respond to

NE (Figure 1C,D; n = 9), indicating that the cellular components

required for persistent activity are present in these neurons non-

responsive to NE. The NE response, characterized by a sustained

plateau potential, does not desensitize within 1 hr of perfusion

since persistent firing of approximately the same amplitude can be

further induced multiple times after termination by hyperpolar-

ization in the continuous presence of NE. Therefore, same cell

controls were used in all experiments (before and after drug pairs)

and, except when indicated otherwise, only neurons with induced

long-lasting persistent firing were used for drug testing and

analysis.

Application of the a1 adrenoceptor antagonist prazosin (2 mM)

completely blocked the response evoked by NE (Figure 1E,G;

n = 6). Furthermore, application of the selective a1 adrenoceptor

agonist phenylephrine (PE, 10 mM) also induced long-lasting

persistent firing in pyramidal neurons of the PFC (Figure 1F,G;

n = 10, 35% cells tested), confirming the involvement of a1

adrenoceptors in the NE-evoked persistent response.

a2 Adrenoceptor Activation Facilitates NE-induced
Persistent Firing

To test the contribution of a2 adrenoceptor activation in NE-

evoked persistent firing, we applied the a2 antagonist yohimbine

in the perfusion medium. Yohimbine (10 mM) partially inhibited

persistent firing evoked by NE (10 mM) (Figure 2A). Both the firing

frequency and the amplitude of the plateau potentials were

significantly decreased by yohimbine (frequency from 5.560.7 Hz

to 0.660.4 Hz, p,0.01, n = 6; amplitude from 11.760.9 mV to

3.561.5 mV, p,0.01, n = 6; Figure 2B). Interestingly, application

of the a2 agonist clonidine (10 mM) did not induce persistent firing

in pyramidal neurons (n = 10; not shown), suggesting that a2

adrenoceptor activation facilitates NE-induced persistent firing but

does not initiate it.

Application of the pan-b adrenoceptor blocker propranolol

(10 mM) did not have significant effects on the NE-induced

persistent firing (frequency 3.560.4 Hz to 2.860.5 Hz, p.0.05,

n = 9; amplitude from 14.061.4 mV to 8.860.8 mV, p.0.05,

n = 9; Figure 2C,D) and the b adrenoceptor agonist isoproterenol

(10 mM) did not induce persistent firing (n = 8, not shown). We

conclude that, despite the fact that a2 adrenoceptors contribute to

the modulation of persistent firing, neither a2 nor b adrenoceptors

play an important role in the initiation of persistent neuronal firing

in superficial pyramidal neurons of the PFC. Early reports

suggested that b adrenoceptor activation has no significant effect

on the working memory function of the PFC [37,38]. More recent

works described that activation of b1 adrenoceptors impairs

Noradrenergic Persistent Activity in PFC
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working memory [39], whereas activation of b2 adrenoceptors has

beneficial effects [40]. Because we did not observe any significant

effects of pan-b adrenoceptor blockade on noradrenergic persis-

tent firing, we did not investigate further the effects of different b
adrenoceptor subtypes.

a1 Adrenoceptor-Mediated Persistent Activity Depends
on mGluR5 Activation

As a neuromodulator, NE could have either direct postsynaptic

effects on pyramidal neurons by binding to postsynaptic

adrenoceptors on the dendrites and/or soma of the cells or

indirect effects through modulation of presynaptic neurotransmit-

ter release. We have previously reported that glutamatergic

persistent firing in the PFC is mediated by the metabotropic

receptor mGluR5 [22], but not ionotropic glutamate receptors.

Thus, we tested whether the NE effect was linked to mGluR-

evoked responses. Indeed, application of the selective mGluR5

antagonist MPEP (50 mM) suppressed NE-induced persistent

activity (Figure 3A). Both the firing frequency and the amplitude

of plateau potentials were reduced to a minimum, strongly

indicating an indirect effect of NE via release of glutamate and

activation of metabotropic glutamate receptors (frequency from

5.861.3 Hz to 0.960.5 Hz, p,0.01, n = 6; amplitude from

12.060.9 mV to 1.960.8 mV, p,0.01, n = 6; Figure 3A,C). In

agreement, the PE-induced and a1 adrenoceptor-mediated

persistent firing was also blocked by MPEP in pyramidal neurons

of the PFC (frequency from 7.260.4 Hz to 0.960.1 Hz, p,0.01,

Figure 1. NE induces persistent firing in pyramidal neurons of prefrontal cortex via activation of a1 adrenoceptors. (A) Left: Schematic
diagram of a coronal section of rat brain showing the recorded area (dots) in the prefrontal cortex including the rostral anterior cingulate cortex (ACC)
and prelimbic cortex (PrL). Adapted from Paxinos and Watson (1998). Right: Typical video image of a brain slice showing the recording site (with a
patch electrode) at layer 2/3 of the ACC subdivision of the prefrontal cortex. (B) Sample trace of NE (10 mM)-induced plateau potential and persistent
firing following a depolarizing current pulse in a pyramidal neuron. (C) In another group of neurons, NE failed to induce neuronal responses (non-
responsive cell, left panel). However, application of carbachol (CCh 10 mM) evoked persistent firing in the same neurons after NE washout (right
panel). (D) Quantification of frequency and amplitude of plateau potential of the NE (10 mM, n= 7) and CCh (10 mM, n= 9) effects. (E) NE-evoked
persistent firing (NE) is blocked by the selective a1 adrenoceptor antagonist prazosin (2 mM, NE+Praz, n = 6). (F) The selective a1 adrenoceptor agonist
phenylephrine (PE, 10 mM, n= 10) also induced NE-like persistent firing in pyramidal neurons of the prefrontal cortex. (G) Quantification of frequency
and amplitude of plateau potential of the prazosin and phenylephrine effects shown in E and F. Values are mean 6 SEM. *** p,0.001. The dashed
line in panel B, C, E and F represents the membrane potential at 260 mV. The short horizontal bar (2 s) underneath the recording trace represents
the current pulse stimulation. The description on dashed line and short horizontal bar also applies to Figures 2, 3, 5, 6, 7 and 8.
doi:10.1371/journal.pone.0066122.g001
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n = 5; amplitude from 10.561.8 mV to 2.561.0 mV, p,0.01,

n = 5; Figure 3B,C). In contrast, within the same cells, the CCh-

induced persistent firing was not affected by MPEP (n = 4;

Figure 3D).

Noradrenergic Persistent Response is Linked to
Presynaptic Glutamate Release

To investigate a possible presynaptic site of action of NE on

axons or axon terminals in a1 adrenoceptor-mediated persistent

firing, we recorded glutamatergic excitatory synaptic events using

voltage clamp in superficial pyramidal neurons of the PFC in the

presence of the GABA blocker picrotoxin but with ionotropic

glutamatergic transmission intact. Bath application of NE (10–

100 mM) resulted in significant changes in the frequency and

amplitude of the spontaneous excitatory postsynaptic currents

(sEPSCs) (n = 12; shown at 10 min after NE, Figure 4A). NE

shifted the cumulative probability distribution curve of inter-event

intervals to the left while the curve of the amplitude was shifted to

the right, indicative of increases in frequency and amplitude,

respectively (Figure 4B,C). The average inter-event interval at

10 min was reduced from 2.460.4 s to 0.960.2 s (p,0.001,

n = 12; Figure 4D). The average amplitude of the sEPSCs was

increased from 30.662.9 pA to 35.962.9 pA (n = 12, p,0.001;

Figure 4E), indicating an involvement of postsynaptic adrenocep-

tors. Addition of the ionotropic glutamate receptor antagonist

kynurenic acid (1 mM) suppressed the NE effect (not shown,

n = 4), indicating that it is mediated by glutamate release and the

activation of ionotropic glutamate receptors. Furthermore, the NE

effect was also suppressed by application of the a1 adrenoceptor

antagonist prazosin (2 mM) (Figure 4A; n = 4). The inter-event

interval and amplitude of sEPSCs were almost fully reversed to

control levels after 10–15 min in the presence of prazosin

(Figure 4B–E). NE might increase the frequency of sEPSCs by

affecting the input resistance. We monitored the input resistance

during the experiments and noticed that some neurons showed an

increase in input resistance after NE application while others

showed slight decreases or no change. We nonetheless observed a

consistent increase in the measured frequency of sEPSCs. Thus, to

confirm a presynaptic effect of NE, we averaged the EPSCs with

large amplitudes (, 50–100 pA), which are supposed to be

generated near the soma, and the EPSCs with smaller amplitudes

(20–25 pA), which are supposed to come from remote dendritic

locations, from 3 neurons that displayed no significant changes in

input resistance. The falling phases of the EPSCs were fitted with a

single exponential function. We observed no significant difference

in the time to decay (peak to end) between the large and smaller

average EPSCs in all three neurons (p = 0.0887, p = 0.2688, and

p = 0.5928, respectively) indicating that, in these neurons, input

resistance is not the reason why smaller EPSCs are detected. Thus,

the detection of more sEPSCs is due to an increase in the

Figure 2. a2 adrenoceptors contribute to NE-induced persis-
tent firing. (A) NE-induced persistent firing was partially suppressed by
the selective a2 adrenoceptor antagonist yohimbine (Yohim, 10 mM;
n = 6). (C) NE-induced persistent firing was not affected by the
badrenoceptor antagonist propranolol (Prop, 10 mM; n= 9). (B) and
(D) Quantitative effects of yohimbine and propranolol on firing
frequency and amplitude of plateau potentials. Values are mean 6
SEM. ** p,0.01.
doi:10.1371/journal.pone.0066122.g002

Figure 3. NE-evoked and a1 adrenoceptor-mediated persistent activity depends on mGluR5 activation. (A) and (B) NE- and the selective
a1 adrenoceptor agonist phenylephrine (PE)-induced persistent firing were both blocked by the selective mGluR5 receptor antagonist MPEP (50 mM,
n= 6 and n= 5, respectively). (C) Quantitative results of the frequency and the amplitude of plateau potentials from neurons exemplified in A and B.
Values are mean 6 SEM. ** p,0.01. (D) MPEP failed to block CCh-induced persistent firing (n = 4).
doi:10.1371/journal.pone.0066122.g003

Noradrenergic Persistent Activity in PFC
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frequency of sEPSCs. To further confirm a presynaptic effect of

NE and to check for a possible contribution of postsynaptic a1

receptor on persistent firing, we recorded miniature EPSCs

(mEPSCs) with TTX (1 mM) in the perfusion solution. We found

that the a1 adrenoceptor agonist phenylephrine (10 mM) increased

the frequency of mEPSCs consistently in 5 cells (control:

1.6560.4 Hz, phenylephrine: 2.1260.4 Hz, p = 0.0166, n = 5,

data not shown). There was a positive trend but no significant

effect of phenylephrine on the amplitude of mEPSCs (control:

13.6160.9 pA, phenylephrine: 15.8962.4 pA, p = 0.2240, n = 5,

data not shown). Interestingly we did not observe any significant

changes in both frequency and amplitude of mEPSCs in 2 cells

after phenylephrine application, confirming the existence of a

population of pyramidal neurons non-responsive to NE or

phenylephrine. Therefore, our findings support a TTX-insensitive

presynaptic site of action of NE through a1 adrenoceptors in a

subpopulation of superficial pyramidal neurons of the PFC.

To verify if activation of noradrenergic fibers originating from

the locus coeruleus could induce similar effects as exogenous NE

application in brain slices, we used an optogenetic approach. We

expressed ChR2-eYFP in noradrenergic neurons and their fibers

that project to the PFC by transducing the locus coeruleus of

(TH)::IRES-Cre knock-in mice with Cre-inducible adeno-associ-

ated virus as previously shown [33]. Three weeks post-injection, a

strong eYFP fluorescence was observed in the cell bodies of the

locus coeruleus neurons in brainstem slices (Figure 5A). A high

density of fluorescent axonal fibers and varicosities was also clearly

visible in prefrontal brain slices, indicating the expression of ChR2

(Figure 5A). Activation of the ChR2-expressing noradrenergic

fibers in acute brain slices of the PFC upon 3 Hz optical

stimulation (see ‘‘Materials and Methods’’) significantly enhanced

excitatory postsynaptic activity in superficial pyramidal neurons in

the absence of kynurenic acid in the perfusate (Figure 5B; n = 10).

The cumulative probability distribution curve of inter-event

intervals at 10 min was shifted to the left upon optical stimulation

with a mean inter-event interval reduced from 1.960.1 s to

0.960.1 s (p,0.001, n = 10, Figure 5C, 5E). This increase in

frequency of sEPSCs was suppressed by the selective a1 antagonist

prazosin (2,10 mM, Figure 5B–D; n = 4). The amplitude of

sEPSCs was also affected by optical stimulation as shown by the

right-shifted cumulative probability curve and the increase in the

mean amplitude of sEPSCs from 20.260.4 pA to 27.060.5 pA

(p,0.001, n = 10, Figure 5B,E,F). This increase in sEPSC

amplitude was significantly suppressed by prazosin (2,10 mM,

n = 4, Figure 5B,E,F), confirming a postsynaptic role for a1

adrenoceptors. Therefore, release of endogenous NE evoked by

optogenetic stimulation of prefrontal noradrenergic fibers could

effectively increase the frequency of glutamate release via the

activation of a1 adrenoceptors. However, no significant changes in

postsynaptic activities were observed in eYFP control mice (n = 2)

or eYFP-ChR2 mice without blue light stimulation (n = 5, not

shown). To further test if release of endogenous NE can contribute

to persistent activity, we recorded the activity of pyramidal

neurons in current clamp under optical stimulation. We observed

typical afterdepolarizations 5 min after optical stimulation (n = 5,

not shown). When the pyramidal neurons were primed with

threshold concentration (2 mM) of the group I metabotropic

receptor agonist DHPG, optically-evoked NE release triggered

long-lasting persistent firing (n = 3, Figure 5G).

NE-evoked Persistent Firing is Modulated by a2
Adrenoceptor-linked HCN Channels

Another question we pondered was why NE failed to evoke

persistent firing in a population of pyramidal neurons in superficial

layers of the PFC. It has been reported that presynaptic GABAA

receptors mediate presynaptic inhibition of glutamate release from

primary muscle afferents in the spinal cord, but have a facilitatory

effect on neurotransmitter release in the brainstem, cerebellum

and hippocampus [41,42,43]. It is possible that presynaptic

GABAA modulation of glutamate release affects persistent firing.

Therefore we performed further experiments to test if NE-induced

persistent firing is sensitive to blockade of fast GABAergic

transmission. We found that NE induces persistent firing in

pyramidal neurons in the absence of picrotoxin (n = 3, data not

shown), as observed in the presence of picrotoxin, suggesting that

GABAA modulation of glutamate release does not play a major

role. The failure of NE to induce persistent firing in a population

of cells could also result from tonic GABAergic inhibition

mediated by GABAB receptors. To test this possibility, we added

the selective GABAB receptor antagonist CGP 54626 in the

perfusate. Application of CGP 54626 (10 mM) together with NE

did not unmask any excitatory effect in the NE non-responsive

cells (n = 4; not shown), excluding a major role for metabotropic

GABAergic modulation in the expression of NE-evoked persistent

responses in pyramidal neurons.

Previous reports have demonstrated that HCN channels are

expressed on dendritic spines of pyramidal neurons in the PFC

Figure 4. NE stimulates glutamate release in the prefrontal
cortex. (A) Sample traces showing that NE (10–100 mM; n= 12)
increases the frequency and amplitude of spontaneously occurring
EPSCs (sEPSCs) in pyramidal neurons (Vh=270 mV). Traces on the left
and right are on different time scales. Prazosin (2 mM, n= 4) blocked this
facilitatory effect. (B) and (C) Cumulative probability distribution curves
for inter-event interval (reciprocal of frequency) and for amplitude of
sEPSCs showing the NE-induced increase in frequency and amplitude of
sEPSCs. Prazosin significantly suppressed the NE effect. (D) and (E)
Quantitative effects of NE and NE+prazosin on inter-event intervals and
amplitude of sEPSCs. Values are mean 6 SEM. ** p,0.01; *** p,0.001.
doi:10.1371/journal.pone.0066122.g004
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Figure 5. Optogenetically-evoked NE release enhances persistent firing. (A) Micrographs of AAV-infected and fluorescent eYFP-positive,
ChR2-expressing noradrenergic neurons in the locus coeruleus (left) and their axonal fibers with varicosities in the medial prefrontal cortex of TH::Cre
transgenic mice (right). (B) Representative traces showing that blue light (473 nm, 3 Hz, 10 ms, .10 mW/mm2, n = 10) increased both the frequency
and amplitude of sEPSCs in pyramidal neurons (Vh=270 mV). Traces on the left and right are on different time scales. Prazosin (2,10 mM, n= 4)
blocked this excitatory effect. (C) and (E) Cumulative probability distribution curves for inter-event interval and amplitude of sEPSCs showing the
increase in the frequency and amplitude of sEPSCs. Prazosin significantly suppressed the ChR2-induced effects. (D) and (F), Quantitative effects of
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and that blockade of HCN channels via a2 adrenoceptor

activation enhances recurrent network interactions in ferret PFC

slices and increases delay-related firing for preferred directions in

behavioral monkeys [44]. To test if the intrinsic persistent firing of

rat medial PFC pyramidal neurons is modulated by HCN channel

activity, we examined the effect of the selective HCN channel

blocker ZD7288. Bath application of ZD7288 (30 mM) alone did

not induce persistent firing (n = 10, not shown). However,

treatment with ZD7288 enhanced the persistent response of a

population of pyramidal cells to NE (10 mM): both the average

firing frequency and the amplitude of plateau potentials of NE-

evoked responses were significantly increased (frequency from

0.660.3 Hz to 3.860.6 Hz, p,0.001, n = 12; amplitude from

2.560.6 mV to 11.261.1 mV, p,0.001, n = 12, Figure 6A,B).

Interestingly, besides the enhancement of persistent firing by

ZD7288 in 6 of the 12 cells tested, the other 6 non-responsive cells

showed strong persistent firing in response to NE following

addition of ZD7288 (Figure 6A). The fact that blockade of HCN

channels converted non-responsive neurons into neurons with

persistent firing indicates that differential adrenoceptor expression

and/or distinct intrinsic neuronal properties (e.g., HCN expression

levels) likely account for the different responses to NE [45].

Recently, Huang and coll. [46] have shown that, with ZD7288

applied intracellularly through the patch pipette, bath application

of ZD7288 increases the frequency, but not the amplitude, of

mEPSCs compared to control (ZD7288 in pipette only). This

indicates that presynaptic HCN channels regulate glutamate

release and that the diffusion of ZD7288 from postsynaptic to

presynaptic sites of action is limited within the recording time

period (15–20 min). Therefore, we added the HCN channel

blocker ZD7288 (30 mM) in the recording pipette. Intracellularly

applied ZD7288 enhanced neuronal responses to a threshold dose

of NE (2.5 mM, n = 5, compared to control, a separate group of

neurons, n = 5; Figure 6C,D) to a similar extent as bath applied

ZD7288 (Figure 6A,B), indicating that the NE-evoked persistent

firing is mainly mediated by blockade of postsynaptic HCN

channels. Furthermore, we applied hyperpolarizing and depolar-

izing current pulses to superficial pyramidal neurons through the

recording electrode and measured membrane input resistance as

well as neuronal excitability (Figure 6E,F). Application of ZD7288

(30 mM) completely eliminated the current pulse-evoked depolar-

izing membrane potential sag typically caused by HCN channel-

mediated inward Ih currents (n = 7, Figure 6E right panel).

Moreover, ZD7288 increased the membrane input resistance

(from 136.7615.2 MV to 197.7616.5 MV, p,0.001, n = 7,

Figure 6E and Figure 6F left panel), as well as the cell

responsiveness (number of action potentials) to depolarizing

current pulses (from 1.860.4 spikes/500 ms to 3.260.7 spikes/

500 ms, p,0.01, n = 7, Figure 6E left panel, 6F right panel),

indicating that blockade of postsynaptic HCN channels mediates

the enhancement of cell excitability and NE-evoked persistent

firing.

It has been reported that activation of a2 adrenoceptors inhibits

HCN channels [47,48]. As shown above, neither the a2

adrenoceptor agonist clonidine nor the selective HCN channel

blocker ZD7288 induces persistent firing in pyramidal neurons,

indicating that inhibition of HCN channels alone by NE (via a2

adrenoceptors) is not sufficient; it requires other components (e.g.,

glutamate released via a1 adrenoceptors) to induce persistent

firing. To test the modulatory role of HCN channels on

metabotropic persistent firing, we used the group I mGluR agonist

DHPG to directly mimic a1 adrenoceptor-mediated release of

glutamate. A threshold dose of DHPG (2 mM) induced slight

responses in prefrontal pyramidal neurons in the absence of

ZD7288; however, when we applied ZD7288 in the bath

(Figure 7A) or in the pipette (Figure 7B, in a separate group of

neurons from control), DHPG (2 mM) induced strong persistent

firing (frequency from 0.160.3 Hz to 7.360.7 Hz, p,0.01,

amplitude from 3.560.9 mV to 22.563.5 mV, p,0.05, n = 3 in

blue light and the antagonistic effect of prazosin on inter-event intervals and amplitude of the sEPSCs. Values are mean 6 SEM. ** p,0.01; ***
p,0.001. (G) Enhancement of DHPG-evoked response by optically-induced NE release and recovery.
doi:10.1371/journal.pone.0066122.g005

Figure 6. Noradrenergic responses are modulated by postsyn-
aptic HCN channel activity. (A) A typical trace from a pyramidal
neuron showing minimal response to bath application of NE (10 mM)
(left panel). Co-application of NE and the selective HCN channel blocker
ZD7288 (30 mM) in the bath solution in the same neuron significantly
enhanced the NE-induced response (n = 12, right panel). (B) Quantita-
tive effects of bath ZD7288 on firing frequency and amplitude of
plateau potentials of NE-evoked response. (C) A threshold dose of NE
(2.5 mM) induced afterdepolarization and short sustained firing (Left,
without ZD7288, n = 5). In another group of neurons with ZD7288 in the
recording pipette, NE induced strong persistent firing (Right, ZD7288 in
pipette, n = 5). (D) Quantitative effects of intracellular ZD7288 on the
firing frequency and amplitude of plateau potentials. (E) Sample traces
of current step-evoked membrane potential responses before (control)
and after ZD7288 application showing an increase in voltage responses
(response to 40 pA current step shown in red) (left panel, n = 7). Current
step stimulation from -140 pA to a maximum of 40 pA with 20 pA
increments. Right: Membrane potential response to a -140 pA current
step in control and in the presence of ZD7288. Note that the
depolarizing membrane potential sag, a characteristic feature of HCN
channel activation, was completely suppressed by ZD7288. (F) Input
resistance (calculated at 2200 pA) and number of spikes during the
40 pA current pulse (500 ms) before and after ZD7288 administration
(n = 7). Values are mean 6 SEM. ** p,0.01; *** p,0.001.
doi:10.1371/journal.pone.0066122.g006
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bath; and frequency from 0.660.3 Hz to 4.660.7 Hz, p,0.0005,

amplitude from 2.260.7 mV to 14.160.6 mV, p,0.0001, n = 5

in pipette, respectively), indicating that blockade of postsynaptic

HCN channels indeed enhances glutamatergic persistent firing in

the pyramidal neurons of the PFC.

The involvement of a2 adrenoceptor activation and HCN

channel blockade in the enhancement of cell excitability and NE-

induced persistent firing was further confirmed when we tested the

effect of the a2 adrenoceptor agonist clonidine on HCN channel

activity. We found that clonidine (10,20 mM) suppressed

hyperpolarization-evoked inward currents (Figure 7C–F, n = 7),

indicating that the activation of a2 adrenoceptors inhibits Ih.

Next, we used DHPG to mimic the a1 adrenoceptor-mediated

release of glutamate and tested the effect of a2 adrenoceptor

activation on metabotropic persistent firing. We found that the

afterdepolarization or short persistent firing evoked by a threshold

concentration of DHPG (2 mM) was converted by clonidine

(10 mM) to bona fide long-lasting persistent firing (n = 5, frequency

from 4.460.8 Hz to 6.861.1 Hz, p,0.01; amplitude from

12.660.7 mV to 16.260.9 mV, p,0.05; Figure 7G,H), indicating

that both a1 and a2 adrenoceptors are required to synergistically

mediate a strong noradrenergic persistent activity.

Figure 7. Glutamatergic persistent firing is enhanced by a2 adrenoceptor-mediated HCN channel inhibition. (A) and (B) Quantitative
effects of bath and in-pipette ZD7288 (30 mM) on responses of PFC pyramidal neurons to a threshold dose of DHPG (2 mM). (C), (D) and (E) Sample
traces showing clonidine-sensitive Ih currents (E) at different membrane voltages obtained by subtracting current responses to voltage steps after
bath application of clonidine (10 mM) (D) from pre-drug control (C). Hyperpolarization-evoked Ih currents were inhibited by clonidine. Ih current
responses were evoked by hyperpolarization voltage steps (duration 2.5 s) from 250 mV to –110 mV in 10 mV increments. (F) Steady state I-V
relationship of the Ih current in the absence (Control) and presence of clonidine. Instantaneous currents were subtracted. Ih was inhibited by
clonidine (10–20 mM) at different membrane voltages. (G) Representative traces showing that the response of prefrontal pyramidal neurons to
threshold doses of DHPG (2 mM, left panels) are enhanced by co-application of the a2 adrenoceptor agonist clonidine (10 mM, n= 5, right panel). (H)
Quantitative effects of clonidine on DHPG-induced firing frequency and amplitude of plateau potentials. Values in A, B, F and H are mean 6 SEM. *
p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pone.0066122.g007

Noradrenergic Persistent Activity in PFC

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e66122



NE Enhances Cholinergic Persistent Firing via a2
Adrenoceptors and HCN Channels

Activation of muscarinic cholinergic receptors induces persistent

firing in pyramidal neurons of the PFC [22]. Furthermore, this

report demonstrated that both the muscarinic cholinergic and the

mGluR5 receptors converge on the same downstream intracellular

signaling pathway that drives persistent firing [22]. Knowing that

presynaptic a1 adrenoceptor-mediated glutamate release leads to

mGluR5 responses that are additive to muscarinic responses, we

wanted to assess the contribution of a2 adrenoceptor-linked HCN

channels in the noradrenergic modulation of cholinergic persistent

firing. To this end, we first studied the response of pyramidal

neurons to co-application of CCh and NE. We found that a low

concentration of NE (2.5 mM) significantly enhanced the excit-

atory responses of pyramidal neurons to threshold doses of CCh

(0.5–2.5 mM) (n = 5, frequency from 0.960.2 Hz to 3.560.5 Hz,

p,0.01; amplitude from 3.560.6 mV to 12.661.5 mV, p,0.01;

Figure 8A,B).

To further pinpoint the mechanism of the noradrenergic

modulation of cholinergic persistent firing, we tested the effects

of a2 adrenoceptor activation or blockade of HCN channels on

muscarinic responses. Threshold doses of CCh alone only induced

short afterdepolarizations or short low frequency sustained

neuronal firing in response to depolarizing current pulse injections.

However, in the presence of clonidine (10 mM) or ZD7288

(30 mM), threshold doses of CCh evoked strong long-lasting

persistent firing (Figure 8C–F). The average firing frequency and

amplitude of plateau potentials were both dramatically increased
in both conditions (clonidine: n = 6, frequency from 0.260.1 Hz

to 3.660.7 Hz, p,0.01; amplitude from 3.860.3 mV to

13.961.0 mV, p,0.001. ZD7288: n = 6, frequency from

0.360.1 Hz to 3.360.4 Hz, p,0.01; amplitude from

3.260.7 mV to 11.661.1 mV, p,0.01) (Figure 8D and F,

respectively). We conclude that the facilitatory effects of NE on

the muscarinic persistent response can be mediated by the

activation of a2 adrenoceptors and subsequent inhibition of

HCN channels in pyramidal neurons of the PFC.

Discussion

NE-evoked Persistent Firing Depends on a1
Adrenoceptors

Immunohistochemical studies have documented dense norad-

renergic fibers in the superficial layers of the neocortex [49,50].

Autoradiographic ligand binding studies demonstrated that a1

adrenoceptor binding sites are abundant in superficial layers of the

neocortex [51,52]. Recent studies combining immunocytochem-

istry and electron microscopy have shown the expression of a1

adrenoceptors in axons or presynaptic terminals of excitatory

neurons in the visual cortex [53], striatum and midbrain [54]. In

the present study, we report that the NE-evoked persistent

responses are completely blocked by the a1 antagonist prazosin

while the selective a1 agonist phenylephrine induces persistent

firing. Furthermore, the excitatory postsynaptic activity evoked by

bath or endogenous NE was nearly completely abolished by

prazosin, indicating the involvement of a1 adrenoceptors. In situ

hybridization histochemistry has revealed significant a1 mRNA

signals in thalamic nuclei and layers 2–5 neurons of the cerebral

cortex [55,56]. These a1 adrenoceptor-expressing neurons in the

thalamus and the cerebral cortex projecting to layer 2/3 of the

PFC are the probable sites of action of NE.

Figure 8. NE enhances cholinergic persistent neuronal firing
via a2 adrenoceptor and HCN channel modulation. (A), (C) and
(E) Threshold doses of CCh (0.5–2.5 mM) induce afterdepolarization
potentials or short sustained firing (left panel). NE, clonidine and
ZD7288 significantly enhanced the muscarinic response in pyramidal
neurons of the prefrontal cortex (right panel). (B), (D) and (F)
Quantitative effects of NE (n = 5), clonidine (n = 6) or ZD7288 (n = 6)
on CCh-induced firing frequency and amplitude of plateau potentials.
Values are mean 6 SEM. ** p,0.01. *** p,0.001.
doi:10.1371/journal.pone.0066122.g008

Figure 9. Molecular components involved in NE-induced
persistent firing in superficial pyramidal neurons of prefrontal
cortex. NE released from noradrenergic varicosities in the prefrontal
cortex binds to pre- and postsynaptic a1 adrenoceptors. Activation of
presynaptic a1 adrenoceptors facilitates glutamate release. Glutamate
activates postsynaptic mGluR5 and induces persistent neuronal firing.
Postsynaptic a2 adrenoceptors and HCN channels colocalize on
dendritic spines [44]. Activation of postsynaptic a2 adrenoceptors by
NE inhibits cAMP signaling and blocks HCN channels thereby increasing
membrane input resistance, cell excitability and the efficacy of synaptic
transmission. Cholinergic inputs induce persistent neuronal firing driven
by M1 muscarinic receptors via TRPC channel-dependent mechanisms
[24]. a2 adrenoceptor-mediated inhibition of HCN channels underlies
NE-mediated modulation of cholinergic persistent firing. Ach: acetyl-
choline; Glu: glutamate.
doi:10.1371/journal.pone.0066122.g009
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Noradrenergic Persistent Firing Requires mGluR5
Activation

We provide several pieces of evidence to support the notion that

the NE effect is indirectly mediated by presynaptic glutamate

release: first, both NE- and the selective a1 agonist phenylephrine-

evoked persistent firing were blocked by the mGluR5 blocker

MPEP; second, both bath-applied NE and endogenous NE from

the locus coeruleus increased the frequency of the sEPSCs and

third, bath-applied phenylephrine increases the frequency of

mEPSCs (in the presence of TTX). The fact that persistent firing

induced by a high concentration of NE (100 mM, n = 3) is still

blocked by the mGluR5 blocker MPEP indicates that mGluR

activation is necessary for NE-induced persistent firing. Our results

are in agreement with previous reports showing that NE can

increase the frequency of EPSCs through a1 adrenoceptor

activation in the hypothalamus [57,58] and layer 5 of the PFC

[59]. The prazosin-sensitive increase in the amplitude of sEPSCs

induced by both bath NE and endogenous NE release indicates

the expression of functional postsynaptic a1 adrenoceptors. This

suggests that the persistent response to NE could involve additive

postsynaptic effects of a1 adrenoceptor and mGluR5 activation.

This increase in amplitude of sEPSCs may also be the result of

highly synchronized multivesicular glutamate release. Such

synchronized multivesicular release has also been observed with

other neuromodulators in various brain areas [60,61]. The NE-

induced glutamate release (recorded as kynurenic acid-sensitive

EPSCs) could originate from synaptic terminals of adjacent

neurons and/or from axon terminals of remote neurons making

synaptic contacts with adjacent neurons.

Activation of Group I mGluRs induces afterdepolarizations and

persistent firing in the PFC [19,22]. Interestingly, in the present

study, the endogenous NE released by activation of light-gated

ChR2 expressed in fibers from the locus coeruleus induced typical

afterdepolarizations and persistent firing in the presence of a

threshold amount of the group I mGluR agonist DHPG,

indicating that endogenous release of NE can effectively modulate

mGluR5 signalling via an enhancement of glutamate release. It is

conceivable that in awake conditions, moderate NE levels induce

persistent firing in the PFC through presynaptic release of

glutamate, thereby promoting working memory performances.

Accordingly, it has been shown that the decrease in group I

mGluR function in the PFC causes impaired working memory

performance [62,63]. Furthermore, blockade of mGluR5 by

systemic MPEP impaired working memory in the rat [64,65].

Therefore, normal working memory requires the coordinated

release of both NE and glutamate as well as the intact functional

mGluRs in the PFC [66].

HCN Channels Modulate Noradrenergic and Cholinergic
Persistent Firing

It has been reported that activation of a2 adrenoceptors inhibits

HCN channels and enhances delay-related prefrontal firing and

working memory performance [44,48,67]. In agreement, we

observed at the cellular level that NE-evoked responses are

enhanced by blockade of postsynaptic HCN channels. The

blockade of postsynaptic HCN channels increases input resistance

of superficial pyramidal neurons in the PFC and enhances NE-

evoked neuronal activity. Furthermore, we observed that a2

adrenoceptor activation modulates HCN channel-mediated Ih

current and the mGluR5-mediated afterdepolarization is en-

hanced by simultaneous blockade of HCN channels and co-

activation of a2 adrenoceptors. Therefore, the NE-mediated

persistent firing in the PFC requires both a1 and a2 adrenoceptor

activation. NE not only initiates persistent firing via a1

adrenoceptors and presynaptic glutamate release but also

enhances it via a2 adrenoceptors, HCN channel modulation and

increased postsynaptic excitability.

Activation of postsynaptic muscarinic receptors also induces

persistent firing in pyramidal neurons of the PFC and other

cortical areas [20,22,24,68]. Activation of muscarinic receptors

enhances synaptic summation in layer 5 pyramidal neurons of the

PFC via blockade of several K+ conductances [69,70]. Dendritic

excitability of prefrontal pyramidal neurons has been shown to

depend on the interaction between HCN, Kir2 and Kleak channels

[69]. Our results indicate that both activation of a2 adrenoceptors

and modulation of HCN channels can enhance CCh-evoked

muscarinic responses suggesting that HCN channels are involved

in the adrenergic modulation of cholinergic persistent firing. This

HCN channel-dependent mechanism reveals a novel mode of

crosstalk between cholinergic and adrenergic inputs in the PFC.

Role of a1 Adrenoceptors in Working Memory
In the present study, we observed an indirect excitatory effect of

NE on pyramidal neurons in the PFC through presynaptic a1

adrenoceptor-mediated glutamate release and postsynaptic

mGluR5 activation. It has been proposed that high levels of NE

inhibits prefrontal neuronal discharges and impairs working

memory performance via postsynaptic a1 adrenoceptor-mediated

PKC activation [29]. It is important to note that the a1

adrenoceptor-mediated excitatory effect in our study is mainly of

presynaptic origin, whereas the inhibitory effect of a1 adrenocep-

tors in the above-mentioned work has been shown to be

postsynaptic. There is increasing evidence for direct postsynaptic

excitatory effects of several Gq-coupled metabotropic receptors

(e.g., muscarinic, mGluR5, orexin receptor 1, 5-HT2A) on

pyramidal neuron firing in various cortical regions [20,22,71,72].

The Gq-coupled and PLC-linked persistent firing has been shown

to require a non-selective cation current mediated by TRPC4

and/or TRPC5-containing channels [24]. Why postsynaptic Gq-

coupled a1 adrenoceptors are not able to trigger plateau potentials

and persistent firing will remain to be determined. Their surface

density, subcellular localization or coupling to intracellular

effectors could be critical parameters for their contribution to

persistent responses. Why the activation of metabotropic receptors

and associated Gq-PLC signaling can lead to an enhancement of

neuronal firing whereas the activation of downstream PKC causes

inhibition [29] is also unknown. It is possible that a strong and

sustained activation of PKC desensitizes a1 adrenoceptors [73] or

suppresses the mechanism required for the induction of persistent

firing. Indeed, it has been reported that TRPC4/5 channels

mediating metabotropic persistent firing are desensitized by

diacylglycerol-induced activation of PKC [74,75]. Following co-

application of the muscarinic agonist CCh with 1-oleoyl-2-acetyl-

sn-glycerol, an analogue of the PKC activator diacylglycerol,

pyramidal cells gradually displayed an inhibition of the CCh-

evoked persistent firing in acute entorhinal brain slices (unpub-

lished data), indicating an inhibitory effect of PKC activation

through TRPC4/5 channel desensitization. Therefore, in certain

conditions, a direct inhibitory effect of postsynaptic a1 adreno-

ceptor activation could be caused by PKC-mediated desensitiza-

tion of adrenoceptors and/or TRPC channels.

At the behavioural level, activation of a1 adrenoceptors is

associated with attentional set shifting and cognitive flexibility in

rats [76,77], as well as with perseverative patterns of responses in

stressed rats performing working memory tasks [28,78]. There is a

large increase in monoamine [79,80] and glutamate [81] release in

the PFC during stress. Moreover, overstimulation of a1 adreno-
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ceptors was observed in patients with hypermnesia and anxiety-

related syndromes such as PTSD [82–84]. Blockade of a1

adrenoceptors with prazosin has been used as a therapeutic

strategy to reduce the reoccurrence of traumatic nightmares in

patients with PTSD and to decrease relapse in patients with

alcohol dependence [85–87]. Therefore, besides being involved in

normal cognition, a1 adrenoceptor-mediated persistent firing is

also likely associated with overexcitability and inappropriate

activity in stress-induced pathological conditions, underlying the

therapeutic effects of prazosin in the PFC.

In conclusion, we observed that NE, by acting on pre- and

postsynaptic a1 adrenoceptors as well as postsynaptic a2

adrenoceptors (Figure 9), evokes robust persistent activity in

pyramidal neurons in superficial layers of the PFC where the

microcircuits responsible for working memory reside [3,10]. This

synergistic combination of intrinsic and network properties

provides a novel mechanism for noradrenergic induction and

enhancement of persistent firing in prefrontal pyramidal neurons

in normal or hyperexcitable states.
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