
Angiotensin-converting enzyme inhibition reduces food intake,
weight gain and improves glucose tolerance in melanocortin-4
receptor deficient female rats

Joram D. Mul, Randy J. Seeley, Stephen C. Woods, and Denovan P. Begg
Metabolic Diseases Institute, University of Cincinnati, USA

Abstract
Functional loss of melanocortin-4 receptor (MC4R) activity leads to hyperphagia and an obese,
glucose intolerant phenotype. We have previously established that inhibition of angiotensin-
converting enzyme (ACE) reduces food intake, body weight and glucose homeostasis in diet-
induced obesity. The current study assessed the effect of ACE inhibitor treatment in MC4R-
deficient female rats on body weight, adiposity and glucose tolerance. Rats homozygous (HOM)
for a loss of function Mc4r mutation had an obese phenotype relative to their wildtype (WT)
littermates. Inhibition of ACE for 8 weeks produced reductions in body weight gain in both HOM
and WT rats, however, food intake was only reduced in HOM rats. Weight loss following ACE
inhibitor treatment was specific to fat mass while lean mass was unaffected. HOM rats were
severely glucose intolerant and insensitive to exogenous insulin injection, and treatment with an
ACE inhibitor improved both glucose tolerance and insulin sensitivity in HOM rats although not
fully to the level of WT rats. The current study indicates that HOM rats are sensitive to the
anorectic effects of ACE inhibition, unlike their WT littermates. This resulted in a more rapid
reduction in body weight gain and a more substantial loss of adipose mass in HOM animals,
relative to WT animals, treated with an ACE inhibitor. Overall, these data demonstrate that MC4R
signaling is not required for weight loss following treatment with an ACE inhibitor.
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Introduction
The melanocortin-4 receptor (MC4R) is an important regulator of energy homeostasis [1–3]
and functional loss of MC4R activity produces an obese phenotype in both animal models
[4, 5] and humans [6, 7]. The obesity resulting from loss of MC4R function is associated
with increased food intake, decreased energy expenditure, increased body weight and
adipose tissue mass, and glucose intolerance/insulin resistance in both male and female
animals [1, 4–6, 8]. MC4Rs are a part of the well-described peptide-signaling system that
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helps regulate energy balance. In particular, leptin and insulin act at their receptors in the
arcuate nucleus of the hypothalamus (ARC) stimulating proopiomelanocortin (POMC)
neurons that release α-melanocyte-stimulating hormone (αMSH), which in turn stimulates
melanocortin receptors in several hypothalamic and other brain areas to reduce food intake
and increase energy expenditure [9]. Leptin and insulin also act in the ARC to reduce
activity of agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons [10]. Both AgRP
and NPY are anabolic peptides. AgRP is an endogenous antagonist of MC4R and NPY is an
agonist at Y1 and Y5 receptors, and both peptides cause increased food intake and body fat/
weight [11].

The renin-angiotensin system (RAS) has recently been recognized as an important factor in
the regulation of energy balance and glucose homeostasis [12–15]. Angiotensin-converting
enzyme (ACE) inhibition [16–18], angiotensin receptor blockade [19–21], and genetic
ablation of the RAS [22–24] each results in a phenotype of reduced body weight and
improved glucose tolerance. Conversely, increased expression of components of the RAS
can lead to increased adiposity and impaired glucose tolerance and insulin sensitivity [25–
27]. The metabolic effects of the RAS appear to be independent of energy balance circuits
relying on melanocortin or NPY/AgRP signaling [28]. The current study asked whether
ACE inhibition reduces body weight in MC4R-deficient rats. Given that ACE inhibition acts
independently of melanocortin and NPY/AgRP signaling, it was hypothesized that ACE
inhibition would reduce body weight, adiposity and improve glucose tolerance in MC4R
deficient rats.

Methods
Animals

Female littermate offspring (n = 36) resulting from mating of rats heterozygous for a
nonfunctional mutation in Mc4r (Mc4rK314X) and that had been outcrossed for at least 7
generations [5]. Genotyping was performed by KBiosciences (Hoddesdon, UK) using the
KASPar SNP Genotyping system, as we have previously described [29]. Wildtype (Mc4r+/+

[WT]) and homozygous (Mc4r−/− [HOM]) animals were weaned at postnatal day 21 and
group-housed (2–3 per cage) until 8 weeks of age, after which they were housed
individually. Rats were maintained at the Metabolic Diseases Institute of the University of
Cincinnati on a 12/12-h light/dark cycle at 25 ± 2°C in an AAALAC-accredited facility. All
rats had ad libitum access to water and a pelleted high-fat diet (HFD; D03082706, 4.54 kcal/
g AFE, 15% calories protein, 46% calories carbohydrate, and 40% calories fat, Open Source
Diets, New Brunswick, NJ) starting at 10 weeks of age. Rats had access to enrichment in
their home-cages (red rat retreat; Bioserve, MD, USA). The University of Cincinnati
Institutional Animal Care and Use Committee approved all procedures for animal use.

Groups and treatment
At 10 weeks of age, half the animals of each genotype were continued on normal water
(WT, n=9; HOM, n=9) and the other half were provided with drinking water containing the
ACE inhibitor captopril (Sigma-Aldrich, St. Louis, MO) at a dose of 0.2 mg/mL (WT+, n=9;
HOM+, n=9). Rats were maintained on this regimen for 8 weeks.

Food intake and body weight
Food intake and body weight of rats were measured daily for the first 21 days of the
experiment (only weekly data depicted). Subsequently, body weight and food intake were
measured weekly for the remainder of the 8-week experiment.
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Food intake following fasting
Following 5 weeks of control or ACE-inhibitor treatment, animals were fasted for 24 h at
the beginning of the dark phase. Food intake was assessed on a baseline day and after re-
feeding at the 1-, 2-, 4- and 24-h time-points.

Body composition
Body composition (fat and lean mass) was assessed using nuclear magnetic resonance
(NMR) technology (Echo NMR, Waco, TX) in conscious rats. This was performed prior to
the commencement of ACE-inhibitor treatment and again at the completion of the
experiment.

Intraperitoneal glucose- and insulin-tolerance tests
Glucose-tolerance was assessed after 6 weeks of treatment. Following a 14-h fast, rats were
given an intraperitoneal (i.p.) injection of 50% dextrose (1 g/kg). Blood glucose was
assessed at baseline, 30, 60, 90 and 120 min (Accuchek; Roche Diagnostics, Indianapolis,
IN). For an insulin tolerance test performed a week later, fed-state animals were given an i.p.
injection of human insulin (Humalin R, 0.5 U/kg). Blood glucose was assessed at baseline,
15, 30 and 60 min.

Statistical Analyses
All data are displayed as mean ± S.E.M. Data were analyzed using Statistica 7 (StatSoft,
Tulsa, OK, USA). Data were analyzed using two-way (genotype x drug) analysis of variance
(ANOVA), or three-way with repeated-measures where appropriate. All ANOVAs were
followed by Fisher’s least significant differences (LSD) post hoc test if significant overall
interactions were observed. The null hypothesis was rejected at the 0.05 level.

Results
Body weight

Deficiency of MC4R signaling produced an obese phenotype in female rats compared with
their WT controls; body weight immediately prior to the commencement of the experiment
was ~60% higher in HOM (334.2 +/− 5.89) relative to WT (209.4 +/− 6.6) rats (see Figure
1A; p<0.05). ACE inhibition reduced body weight in HOM+ rats relative to HOM rats by
Week 2 of treatment (p<0.05), and this persisted throughout the experiment (see Figure 1C).
The parallel difference in body weight between WT+ and WT rats occurred later than in
HOM rats, with a body weight reduction observed only after 8 weeks (see Figure 1B;
p<0.05). Over the course of the experiment body weight gain was significantly greater in
HOM rats than in all other groups (p<0.05), HOM+ rats gained more weight than both WT
groups (p<0.05), and WT rats gained more weight than WT+ animals (see Figure 1D;
p<0.05).

Food and water intake
Cumulative food intake was greater in HOM rats relative to WT rats irrespective of
treatment with the ACE inhibitor (p<0.05). There was a significant reduction in food intake
by HOM+ relative to HOM animals (p<0.05). Over the 8-week experimental period there
were no differences observed in cumulative food intake between WT and WT+ groups (see
Figure 2A). Mean daily water intake was greater in ACE inhibitor-treated animals than CON
animals regardless of genotype (see Figure 2B; p<0.05).
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Food intake following fasting
Following a 24-h fast, all animals ate more than at baseline (see Figures 2C and 2D;
p<0.05). No significant differences in food intake were observed based on ACE inhibitor
treatment or genotype after 2 or 4 h, but by 24 h after food return differences between
genotypes were observed (p<0.05); ACE inhibition reduced 24-h intake in HOM but not WT
animals (p<0.05).

Body composition
At the onset of the experiment there was significantly greater fat mass in HOM rats
compared with WT rats (see Figure 3A; p<0.05). Similarly, lean mass was elevated in HOM
rats compared with WT rats (see Figure 3B; p<0.05). After 8 weeks of ACE inhibitor
treatment fat mass was significantly reduced in both WT+ and HOM+ animals relative to the
respective CON groups (p<0.05). ACE inhibitor treatment did not affect lean mass in either
genotype.

Intraperitoneal glucose- and insulin-tolerance tests
There was no significant difference in fasting blood glucose among the groups. Glucose
tolerance was impaired in HOM rats relative to WT rats, with elevated blood glucose at all
time-points following glucose injection (p<0.05). ACE inhibition resulted in improved
glucose tolerance of HOM+ rats (p<0.05) but not in WT+ rats relative to WT controls (see
Figure 4A).

There was a small but significant elevation in fed-state blood glucose in HOM rats
compared with all other groups (see Figure 4B; p<0.05). The glucose lowering response to
IP insulin injection was markedly lower in HOM animals compared with all other groups at
15, 30 and 60 min (See Figure 4B; p<0.05). There was no significant difference between the
responses of HOM+, WT and WT+ rats at 15 min, but by 30 and 60 min, HOM+ animals
had elevated glucose relative to the WT and WT+ groups (p<0.05).

Discussion
ACE inhibition decreased weight gain in both WT and HOM rats; however, there was a
greater suppression of weight gain in HOM than in WT rats on the ACE inhibitor. The
increased efficacy of ACE inhibition on HOM rats may be explained by differential food
intake, given that no difference in food intake was observed between WT and WT+ animals
whereas there was a substantial decrease in food intake of HOM+ rats relative to that in the
HOM group. This occurred despite HOM+ rats receiving a lower dose of captopril relative
to body weight. Initial lean mass, fat mass and fat percentage differences reflected the
elevated body weight of HOM relative to WT rats. These data are consistent with previous
reports in male rats with functional ablation of the MC4R [5, 29] and in both male and
female MC4R−/− mice [4].

Acute food-intake (1 and 2-h) following 24-h deprivation was not affected by either
genotype or ACE inhibition. By 24 hours, however, intake reflected genotype with HOM
groups eating significantly more than WT groups; additionally, ACE inhibitor-treated rats
ate less in response to deprivation only at the 24-hour time point. These data may suggest
that the total daily intake is a better indication of basal intake rather than being a function of
the restriction. Similar restriction studies in captopril-treated male rats have also
demonstrated no effect of ACE inhibition on acute feeding [28].

Glucose tolerance was impaired in female MC4R-deficient rats relative to their wildtype
controls. Comparable results have previously been reported in male MC4R-deficient rats
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[29] and mice [4]. ACE inhibition improved the glucose tolerance and insulin sensitivity of
MC4R rats, and this was not observed in wildtype animals. Numerous prior studies have
demonstrated improved responses to a glucose load following ACE inhibition [13, 18, 28] or
genetic knockout of the RAS [22, 30]. Given that ACE inhibition did not alter glucose
tolerance in the WT animals in the current study, this may indicate sex differences in the
weight-loss response to ACE inhibition. However, it is possible that the differences
observed are more a function of differences in body weight and adiposity among groups, for
example the difference in body weight between WT animals and WT+ animals was small
and not significant until after the glucose tolerance and insulin sensitivity tests had been
performed.

It has previously been suggested that an increase in angiotensin signaling in the brain may
be the cause of weight loss associated with ACE inhibitor treatment [13, 28], with central
angiotensin increasing energy expenditure and decreasing body weight [31]. However, this
central angiotensin hypothesis cannot completely explain the effects of RAS blockade on
adiposity given that whole body ACE [22], angiotensin type-1 [30] and angiotensin type-2
[32] receptor deletion also result in reduced body weight and adiposity despite presumably
no or reduced central signaling. Central angiotensin signaling increases CRH in the rat
hypothalamus [33], and this may account for the reduced food intake [30]. Given the
differences observed following ACE inhibition on food intake in WT and HOM animals, our
data may indicate that MC4R-deficient animals have increased sensitivity to the anorectic
effects of CRH; however, this remains to be established.

In this study estrus cycling was not monitored and this may be considered a limitation. ACE
inhibitors have no effect on estrus cycle [34]; however, MC4R deficiency results in
reproductive dysfunction in mice that is dependent on body weight [35]. It may be of
interest to examine whether ACE inhibition restores normal cyclicity in MC4R-deficient
animals in future experiments. It may also be of interest to examine sex differences of the
effects of ACE inhibition on body weight and food intake to assess interaction with gonadal
hormones.

In summary, the current study indicates that female rats with a loss of function mutation in
Mc4r are sensitive to the anorectic effects of ACE inhibition, unlike their wildtype
littermates. This leads to an earlier onset of body weight differences and a greater change in
body composition in HOM animals relative to WT animals treated with an ACE inhibitor.
Overall, the data demonstrate that MC4R signaling is not required for the weight loss
associated with ACE inhibitor treatment.
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Research Highlights

• ACE inhibition reduced weight gain in both MC4R deficient and wildtype rats

• Food intake following ACE inhibition was only reduced in MC4R deficient rats

• MC4R deficient rats were glucose intolerant this was improved by ACE
inhibition
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Figure 1. The effect of MC4R deficiency and ACE inhibition on body weight in female rats
MC4R deficiency produced an obese phenotype in female rats compared with their WT
littermates (A), 8-weeks of ACE inhibition reduced body weight in both WT (B) and HOM
(C) rats. Body weight gain was greater in HOM rats regardless of ACE inhibitor treatment
and was reduced in both genotypes by ACE inhibition (D). WT (wildtype), WT+ (WT+ACE
inhibitor), HOM (homozygous), HOM+ (homozygous+ACE inhibitor). * = difference from
WT control (p<0.05) + = difference between ACE inhibitor and control (p<0.05).
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Figure 2. The effect of MC4R deficiency and ACE inhibition on ingestive behaviors
Cumulative food intake was greater in HOM compared with WT groups and was reduced by
8-weeks of ACE inhibitor treatment only in HOM rats (A). Mean water intake was elevated
by ACE inhibition (B). Food intake following fasting was elevated in all groups, and this
effect was independent of genotype or treatment (C vs. D). WT (wildtype), WT+ (WT+ACE
inhibitor), HOM (homozygous), HOM+ (homozygous+ACE inhibitor). * = difference from
WT control (p<0.05) + = difference between ACE inhibitor and control (p<0.05).
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Figure 3. The effect of MC4R deficiency and ACE inhibition on body composition
Lean mass was greater in HOM than WT groups and was unaffected by 8-weeks of ACE
inhibition (A). Fat mass was greater in HOM than WT rats and was reduced by 8-weeks of
treatment with an ACE inhibitor (B). WT (wildtype), WT+ (WT+ACE inhibitor), HOM
(homozygous), HOM+ (homozygous+ACE inhibitor). * = difference from WT control
(p<0.05) + = difference between ACE inhibitor and control (p<0.05).
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Figure 4. The effect of MC4R deficiency and ACE inhibition glucose tolerance and insulin
sensitivity
Both glucose tolerance (A) and insulin sensitivity (B) were impaired in HOM rats, and this
was significantly improved by ACE inhibitor treatment, at 6- and 7-weeks respectively. WT
(wildtype), WT+ (WT+ACE inhibitor), HOM (homozygous), HOM+ (homozygous+ACE
inhibitor). * = difference from WT control (p<0.05) + = difference between ACE inhibitor
and control (p<0.05).
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