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Abstract
Histologic assessment of cartilage degradation has traditionally involved semiquantitative
techniques, the most commonly utilized being the Mankin scale. Such assessments depend on
human observer subjectivity, and thus have drawn criticism on the basis of associated inter- and
intraobserver variability. We report a newly developed computational image analysis procedure
for fully automated and fully objective assessment of the Mankin scale. Image processing routines
were developed in a widely used programming environment (Matlab®) to analyze cartilage
degradation. One hundred and twenty-five histology images incorporating a wide range of
degradation features were analyzed by the algorithm and by seven observers experienced in
cartilage histologic assessment. Based on random effects linear statistical models, the computer
program performed well, showing a correlation of 0.88 between its Mankin scores and latent
(average of human observers’) image scores. Regarding the four subcomponents of the Mankin
scale, computer program correlations with observer scores were best for surface defect and
proteoglycan depletion, but less favorable for cellularity and tidemark invasion. While limitations
exist with image processing techniques, the new algorithm provides an objective and automated
method for analyzing cartilage histology sections, consistent with human observer grading.
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INTRODUCTION
Determining the severity of osteoarthritis (OA) is important in clinical care and in research.
Organ-level assessments in the clinical setting have traditionally relied on x-ray and
structural MRI,1,2 capabilities which recently have been augmented by the compositional
information feasible with specialty techniques such as dGEMRIC, T1-rho, and sodium
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imaging.3 Tissue level analysis in research settings usually takes advantage of more
definitive information available histologically. Histologic assessments of OA involve both
descriptive terminology4-6 and various categorical grading scales.7-9 The most widely used
of these, the Histological Histochemical Grading Scale (HHGS) of Mankin et al.8 and its
modified forms, grades cartilage structural damage, reduced cationic staining, abnormality
of cellularity, and presence of blood vessels in uncalcified cartilage (Table 1). Modifications
of the Mankin scale include accounting for the number of clefts present on the cartilage
surface, for reduction in cartilage cationic staining at different depth zones, for subchondral
plate thickness, and for changes in chondrocyte size.10-19

Recently, the International Cartilage Repair Society (ICRS)20 and the Osteoarthritis
Research Society International (OARSI)21 each introduced additional cartilage histology
scales. While potentially representing improvements due to incorporating features not
included in the Mankin scale, these newer scales as yet have seen limited use. As a practical
matter, the Mankin scale and its modifications remain the most widely used cartilage scoring
instruments,8,12,17 and therefore merit ongoing attention for improved implementation.

The Mankin scale is by no means above criticism. Implementations are dependent on human
observer judgment, thus drawing criticism regarding inter- and intraobserver variability.22,23

Also, conventional applications typically use only isolated samplings, and do not lend
themselves well to continuous spatial mappings. The latter is a substantial limitation in
situations where heterogeneity of cartilage pathology and/or of therapeutic response is an
important consideration,24 such as for studies involving localized defects or spread of focal
degeneration. The availability of automated computational imaging tools for Mankin
scorings might reduce these reproducibility and spatial limitations.

Image processing techniques have seen selective application to feature analysis in
osteochondral histology. Examples include measurements of surface roughness, cell density,
changes of cartilage thickness,25-27 and estimation of glycosaminoglycan content.9,28,29

However, such assessments have usually required considerable user interaction, and their
numerical outputs have been difficult to interpret outside of immediate context, thus limiting
utility for comparison with widely used grading scales.

We report a new computational image analysis procedure for fully automated and fully
objective implementation of the Mankin scale. Purpose-developed algorithm subroutines
were used to assign feature-based integer scores for cartilage structural damage (0–6),
proteoglycan content (0–4), cellularity (0–3), and tidemark integrity (0–1), the four
subcomponents of the overall 14-point score. The algorithm’s performance was validated
against Mankin scorings assigned manually by human observers well versed in cartilage
pathology.

MATERIALS AND METHODS
Human osteochondral samples were collected from two cadavers and (with IRB approval)
from 18 patients undergoing total joint arthroplasty. The samples consisted of 12 femoral
heads, 5 femoral condyles, and 7 tibial plateaus, all sectioned at weight-bearing locations.
Osteochondral specimens were fixed in neutral-buffered 10% formalin, and then decalcified
in 5% formic acid. Decalcified specimens were embedded in paraffin, and sectioned to 5 μm
thickness. The sections were stained with hematoxylin, safranin-O, and fast green. All
cartilage sections were stained simultaneously by the same technician to maximize
consistency.

High magnification digital images were captured at 743,028 pixels/mm2 resolution, using a
QICAM (QImaging, Surrey, Canada) 12-bit camera mounted on an Olympus BX60
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microscope with 4x objective coupled with a stepper-motor-driven stage (Prior Scientific,
Rockland, MD). Individual high resolution image fields were concatenated using Image Pro
(Media Cybernetics, Silver Spring, MD) to produce (stitched) full cartilage-thickness
osteochondral images. These raw data were captured in the form of RGB (red, green, blue)
image files, with pixels encoded in terms of integer intensities (0–255) for each of the three
independent color channels. While conveniently implemented in scanner electronics and
thus widely used for digital image encoding, the RGB color scheme is not well suited for
direct correspondence to human color perception, except in special cases of purely red,
purely green, or purely blue images. Since an important goal of the image analysis program
was to automate a grading scale designed for use by human observers, the osteochondral
images were converted to HSB (hue-saturation-brightness) encodement (Fig. 1), which
directly corresponds to human color perception.30 In HSB, hue (0–360°) quantifiably
represents color as perceived visually. HSB holds two important attractions for Mankin
scorings: it allows identification of safranin-O positive pixels, based on hues within the
range of 288° (to 360°/0°) to 72°, corresponding to red-ocher values, and the saturation
value (0–255) corresponds to intensity of coloration, thereby directly quantifying safranin-O
staining intensity.

Four purpose-composed independent computational processor routines were coded in
Matlab 7.02 (Natick, MA) to generate Mankin scores based on summation of the four
component subscores (structure, proteoglycan content, cellularity, and tidemark integrity).

To assign quantitative structural defect scores based on depth of cartilage surface defects
(clefts), the nominal topology of the OA-induced “jagged” surface was first approximated
by datum quadratic curve fits. Cleft/defect depths were then calculated based on the local
distance between this (datum) nominal surface and the actual surface. Cleft/defect depths in
turn were normalized to nominal cartilage thickness, defined as the distance between the
nominal surface quadratic curves and quadratic curves similarly fit to the nominal
osteochondral junction. These relative defect depths were then stratified into pre-defined
ranges corresponding to the respective Mankin structural damage categories (Fig. 2, Table
2). The structural damage ranges were assigned based on illustrative histology sections with
different structural defects and on idealized thicknesses of different depth zones relative to
(uncalcified and calcified) cartilage thickness.31,32 The superficial zone was taken to
comprise the top 15%, the transitional and radial zones each accounted for the next 30% and
20%, respectively, and calcified cartilage accounted for the remaining 35%. Pannus
formation, common in rheumatoid arthritis but not normally a feature of OA, was not
observed in any of our samples.

The characteristic decrease in proteoglycan (PG) content in OA results in reduced intensity
of cartilage staining by safranin-O, a cationic dye that binds specifically and
stoichiometrically to sulfated glycosaminoglycans.33 To assign Mankin subscores for PG
loss analogous to those assigned by human observers, the algorithm utilized the saturation
component of the HSB color scale in the range of near-red hues (288° to 360°/ 0° to 72°)
most closely corresponding to PG coloration. PG loss was determined based on a metric
termed the section proteoglycan value (SPGV):

(1)

SPGV-based Mankin subscores for PG loss were then calculated based on thresholds (Table
3) from a pilot study (Supplementary Material: Appendix A) in which safranin-O staining of
cartilage specimens was measured for varying levels of hyaluronidase-induced PG
depletion.
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Cellularity subscoring computations utilized (hematoxylin-stained-dark) nuclei identified by
means of thresholding25,34,35 and edge detection.36 A Sobel transform (i.e., spatial gradient
mapping) of the HSB brightness image was used to detect nuclear boundaries. These
segmented (dark) objects were filtered based on size, where objects larger than 1.19×103

μm2 or smaller than 47.8 μm2 (equivalent circular diameters of 39.0 μm and 7.8 μm,
respectively) were removed. Shape per se was not considered in this object identification.
Comparisons between manually selected and auto-segmented nuclei counts of hematoxylin-
stained cartilage samples showed 85% to 90% concordance, indicating the algorithm’s
consistent detection of the stained nuclei. Cell density scorings were then computed, based
on departures in local cell density from corresponding values37,38 for normal cartilage (Fig.
3 and Table 4). Cellular cloning was detected by distance-based hierarchical tree clustering.
Cells located nearest to one another were provisionally clustered (grouped) based on their
(Euclidean) physical distances from one another.39 To implement this discriminant, ever-
larger groups of cells were successively clustered together until the average separation
distance of all members in the clusters exceeded a threshold of 100 μm, 5–10 times the
typical cell radius.

The presence versus absence of blood vessels penetrating the tidemark was determined by
first auto-segmenting the tidemark-facing base of the red-stained PG region. Next, size
filtering was used to exclude any matrix discontinuity whose area was less than 837 μm2

(cell-sized) or greater than 1.20×105μm2 (marrow space-sized). Probabilistic shape
detection was then employed on remaining tidemark gaps to identify blood vessels based on
goodness of fit of least–squares-error ellipses fitted to these boundary discontinuity
features.40 Further technical details of the image analysis procedures are reported
elsewhere.41

For purposes of algorithm validation, scores generated computationally were compared to
scores independently assigned by seven experienced human observers, each scoring 25
image fields. Each scored image field involved an osteochondral section whose surface arc
length was comparable to its cartilage thickness. Three observers scored the same set of
image fields (to assess interobserver variability); the other four scored entirely different sets
of image fields. Intraobserver variability was quantified by having each observer
(unknowingly) repeat five randomly selected image fields during their scoring session.

A key consideration was how well the computer scores predicted the latent (true) image
scores, where the latent score was defined as the average observer score, taken across the
population of observers. These latent scores are in general different from any of the
individual observer scores. The individual observer scores can be thought of as the latent
scores plus reader measurement “error.” Two random effects models were fitted. Model #1
portioned the variability of the observer scores into variance components attributable either
to latent image variability or to reader measurement error. Model #2 was similar, but also
included the computer score as an independent variable. The two models were used to
measure the prediction ability of the computer scores in terms of the proportion of variance
in the latent image scores explained by the computer scores and of the correlation between
the computer and latent scores. (Detailed statistical considerations are set forth in
Supplementary Material: Appendix B.) Prior to performing their scorings, each observer was
asked to review a series of example images of the pertinent abnormality features
(Supplementary Material: Appendix C).

RESULTS
Good between- and within-observer agreement was found, based on the parameter estimates
for Model #1. Scores assigned to the same image by different observers had a 0.851
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correlation, indicating strong agreement between observers. Re-scorings of the same image
by the same observer had a 0.967 correlation, showing very high within-observer agreement.
The variability due to observer measurement error was small compared to the variability due
to image differences, resulting in high correlation (0.922) between latent and individual
observer scores.

The scores generated by the computer program showed very strong agreement with those
assigned by the observers (Fig. 4), with Model #2’s regression line having a slope of 0.970
(SE = 0.061). The regression line intercept deviated from zero by 0.790 (SE = 0.449),
indicating that the algorithm tended to assign slightly more favorable scores than did the
human observers. This difference was also reflected in a slightly lower mean computer score
(5.30) compared to the mean for observer-assigned scores (5.89). As expected, the standard
deviation of the observer scores (0.397), estimated using Model #1, was somewhat higher
than that of the computer scores (0.268).

Variance component estimates are presented in Table 5. A pronounced reduction in image
variance (σ2

I = 2.86 for Model #2, vs. 11.34 for Model #1) was found when the computer
score was included as an independent variable. Since the variance estimates for Model #2
depended on the value of the computer score, it is not surprising that the latent image
variance was much less for Model #2 than for Model #1, because the computer scores would
be expected to be predictive of the latent image scores. Based on this reduction in image
variance (R2 = 0.773), the correlation between computer and latent image scores was
estimated to be 0.881. This compares favorably to the 0.922 correlation between observer
and latent image scores. On the other hand, the other three variance components, which
comprise reader measurement error, were similar for both models. This is reasonable, since
the computer scores would not be expected to be predictive of reader measurement error.

Computer-generated versus observer-assigned subscores for structural damage and for
proteoglycan depletion demonstrated excellent and good agreement, respectively, with
slopes of 0.835 (R2 = 0.87) and 0.697 (R2 = 0.63). However, much less agreement occurred
between the computer and the human observers for cellularity (slope = 0.215, R2 = 0.07),
and little to no agreement for tidemark integrity (slope = −0.016, R2 = 0.06). Although
together constituting only 4 points of the overall 14-point scale, the high levels of human
observer variability in both these categories effectively precluded the possibly of close
computer agreement with the observer scores.

DISCUSSION
Automated, objective, image analysis-based implementation of Mankin scoring proved
technically feasible and yielded results reasonably consistent with the latent scores
(surrogate gold standard) assigned by human observers. This development therefore
represents a step toward eliminating the observer variability recognized as compromising
this widely used grading system. In principle, similarly conceived approaches could be
applied for modified versions of the original Mankin classification and/or for the recently
introduced OARSI and ICRS scales, even though the ICRS scale formally grades
regeneration/repair rather than degeneration per se.

Integer scores for the four subcomponents of the Mankin scale required thresholding of
continuous variables measured computationally (e.g., relative defect depth and proteoglycan
saturation). The specific threshold levels used (Tables 2, 3, and 4) were necessarily
determined empirically, based on habitual Mankin scoring practice for human hip and knee
cartilage. These particular threshold values might need to be altered for other anatomic sites
and/or species.
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Recognition of histological artifact is one area in which computational feature detection is
disadvantaged relative to human observation. Toward minimizing such confounding effects,
the present dataset consisted of slides all prepared by a single highly experienced histologist,
with all staining being done in a single batch. This “best case scenario” does not necessarily
favor the computer program relative to the human observers (or vice versa), but it does
reduce variance and therefore enhance correlation, compared to less well controlled settings
characteristic of customary histologic practice. Nevertheless, to obtain maximally
meaningful quantitative results (e.g., matrix staining intensity assessments), the importance
of consistency of histological technique (e.g., uniform section thicknesses) cannot be
overemphasized.

The reasonable overall correlation between the image analysis scores and the human
observer scores arose primarily from the good agreements in the structural damage and
proteoglycan subscales, which between them account for 10 of the 14 total points of the
Mankin scale. Agreement for the two lesser-weighted subcomponents (cellularity and
tidemark integrity) was less encouraging. Formulating algorithmic logic to quantify
cellularity and tidemark violation was more complex than for detecting structural damage or
PG depletion. However, the excessive underlying variance of the human observer scores for
cellularity and for tidemark violation unavoidably precluded good agreement with the
algorithm’s results, regardless of computational logic acuity. For these two subscales, the
limitations of subjective assessment are especially evident, highlighting the value of
objective determinations. The high observer variance for cellularity may have arisen in part
from the non-monotonic nature of cellularity scorings, where cell densities higher than
normal cartilage are scored as one, while cell densities lower than normal cartilage are
scored as three. This differs conceptually from the HHGS structural defect and proteoglycan
concentration scorings, which increase monotonically with the associated visual attribute
(surface cleft depth or reduced cationic staining intensity, respectively.)

Another attraction of computational scoring lies in its ability to process efficiently much
larger amounts of image data than tractable manually. Rather than traditional restriction to
spot samplings, the image analysis approach enables rapid scoring of many small sectors of
an articular surface. This opens the way for mapping continuous (or nearly so) spatial
distributions of abnormality, an important consideration for regional degeneration or focal
defects (Fig. 5).

In summary, computational image analysis implementation of Mankin scoring proved
technically feasible, yielding overall results reasonably consistent with human observer
scoring. Importantly, the computational approach avoids the historical limitation of human
observer variability. Additionally, this new approach lends itself to processing very large
amounts of image data rapidly, enabling continuous spatial mappings of degeneration/
abnormality.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) RGB color cube, with specific component values at each corner. (B) HSB color cone,
with specific colors at selected values on the continuous hue circle.
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Figure 2.
(A) Normal and (B) OA cartilage histology images with quadratic curves fit for the
smoothed cartilage surface (green line) and the osteochondral boundary (blue line).
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Figure 3.
Labeled nuclei in (A) normal and (B) hypocellular cartilage images with (C) zoomed-in
view of a small region of the HSB brightness image and (D) matching labeled nuclei.
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Figure 4.
Observer-assigned Mankin values versus computer-generated scores. Jitter has been added
to separate identical data points.
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Figure 5.
Mankin scores generated for cartilage with focal damage. The blue dotted datum line
parallels global approximation of the cartilage surface. The short black line segments delimit
the cartilage sectors over which local scores are computed, and these segments’ distances
from the datum line identify the local score magnitude.
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Table 1

Mankin Cartilage Histology Scale

Structure Score Proteoglycan Staining Score

Normal 0 Normal 0

Surface Irregularities 1 Slight Reduction 1

Pannus 2 Moderate Reduction 2

Cleft to Transitional Zone 3 Severe Reduction 3

Cleft to Radial Zone 4 No Dye Noted 4

Cleft to Calcified Zone 5 Cellularity

Complete disorganization 6 Normal 0

Tidemark Integrity Diffuse Hypercellularity 1

Intact 0 Cloning 2

Crossed by Blood Vessels 1 Hypocellularity 3
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Table 2

Mankin Structural Damage Scoring Criteria used in the Automated Program

Cartilage structure
Cleft depth

(% cartilage thickness) HHGS structural score

Normal Less than 5% 0

Surface irregularities 5% to 15% 1

Pannus Disregarded n/a for osteoarthritis

Cleft to transitional zone 15% to 45% 3

Cleft to radial zone 45% to 65% 4

Cleft to calcified zone above 65% 5

Eburnation No cartilage present 6
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Table 3

Surface Proteoglycan Value (SPGV) Ranges used for Mankin PG Depletion Scores

PG staining HHGS PG score SPGV range

Normal 0 > 0.45

Slight reduction 1 0.4 - 0.45

Moderate reduction 2 0.3 - 0.4

Severe reduction 3 0.15 - 0.3

No staining 4 < 0.15
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Table 4

Zone-Dependent Counts per Unit Area for Normal Cartilage (Mankin Cellularity score= 0)

Cartilage zone
(% cartilage thickness)

Normal range
(cells per mm2)

Superficial (15%) 126 to 298

Transitional (15 to 45%) 99 to 165

Middle (45 to 65%) 79 to 145

Deep (above 65%) 83 to 159
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Table 5

Variance Component Estimates

Variance Component Model 1 Model 2

Observer (σO) 0.3437 0.4200

Image (σI) 11.3350 2.8550

Observer * Image (σOI) 1.1975 1.1500

Intra-obsever (replication, σε) 0.4462 0.4501

Total 13.3224 4.8751
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