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Methamphetamine abuse and dependence
(MA) arises as one consequence of successive
courses of heavy use and chronic relapse that
characterize addiction to this drug. Although
methamphetamine appears to be no more
addictive than other drugs such as cocaine and
heroin, MA has been related to a broad range
of risks and associated outcomes, including
assault, suicide and homicide, hyperthermia,
cardiovascular problems, dental problems,
burns, sexually transmitted diseases, affective
psychoses, schizophrenic disorders, and de-
pression.1 Rates of MA have increased sub-
stantially in Western and Midwestern states of
the United States, Mexico, Oceania, and coun-
tries in West and Central Europe over the past
30 years.2 Within the United States, rates of
MA are spatially heterogeneous, varying sub-
stantially from one geographic region to an-
other and reflecting local demand and histori-
cal trends in production and distribution
through national and international drug car-
tels.3 Increases in MA rates in Pacific and
Southwestern states in the 1980s were fol-
lowed by dramatic increases in Midwestern
and Southern states in the 1990s and early
2000s.

Within California, a state that has been the
focus of considerable research on MA, restric-
tions on sales of chemical precursors used to
make methamphetamine transiently reduced
arrests4 and hospitalizations related to MA.5

However, each restriction was followed by
adaptation of drug production and distribution
systems and resumed growth.6 Methamphet-
amine is unique in that sales of specific chem-
ical precursors required for production, par-
ticularly ephedrine and pseudoephedrine, can
be controlled through legislation and enforce-
ment. Major federal laws restricting precursor
chemicals took effect in August 1989 (Chem-
ical Diversion and Trafficking Act, restricting
bulk sales of ephedrine in powder form),
August 1995 (Domestic Chemical Diversion
Control Act, restricting sales of some ephedrine

products), October 1996 and 1997 (Compre-
hensive Methamphetamine Control Act, fur-
ther restricting sales of ephedrine products
immediately and pseudoephedrine products 1
year later), and April 2006 (Combat Metham-
phetamine Epidemic Act, adding restrictions on
over-the-counter sales of related pseudoephe-
drine and ephedrine products).7

The evident rapid growth and continued
spread of MA and related problems have led
some researchers to identify methamphet-
amine use and abuse as the latest “drug
epidemic” in the United States, a label that
refers to either the magnitude or perceived
significance of MA as a social problem, not to
the analysis of MA as a contagious epidemic per
se.8 Analyzed as a contagious disease epidemic,
susceptible populations would begin to use
methamphetamine through exposure to other
users or other vectors of transmission (e.g., an
active drug market). Early growth of the epi-
demic would be exponential in form, focused in
particular at-risk subpopulations, and would
exhibit signs of contagious spread.9

Although overall growth in incidence rates
of a contagious disease can be assessed with
highly aggregated population data, detailed
assessments of growth associated with popula-
tion subgroups and spatial patterns of conta-
gious spread require consistently collected and
geographically well-resolved space-time data.
Spatial units must be small relative to the
velocity of disease spread and periods of
observation must be small relative to change
in incidence rates. US drug abuse monitoring
systems are designed to provide consistent
estimates of incidence and prevalence rates,
but these data are either unresolved at state
and local levels (e.g., National Survey of Drug
Use and Health10) or resolved to a handful of
communities across the nation (e.g., the Drug
Abuse Warning Network11). On the other hand,
publically available hospital discharge data
from states in the United States may provide
a consistently collected, relatively well-resolved
source of diagnostic information that can be
used to assess the incidence and prevalence of
MA. These data are collected and available at
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the zip code level in California and provide an
indication of spatially heterogeneous growth in
MA across the state over time.

METHODS

We characterized the general historical pat-
tern of MA growth from 1983 to 2008
through descriptive analyses of aggregate data
for the state. In addition, we undertook an
analysis of MA discharges for all zip codes
across the state from 1995 through 2008. The
spatial resolution of zip codes is better than that
of cities or counties, but it comes at the cost
of working with units that differ greatly in size
(e.g., 1 zip code is larger than the state of Rhode
Island) and change shape over time.12 Postal
codes for US addresses are frequently rede-
fined to improve the efficiency of local mail
delivery. As a result, 18% of California zip
codes were misaligned in the 1995 through
2008 period (i.e., their number, size, and
boundaries changed from year to year). We
used a hierarchical Bayesian Poisson space-
time analysis to relate MA discharges to

population and environmental characteristics;
the analysis provided an assessment of spatial
correlation caused by contagion as a Gaussian
conditional autoregressive (CAR) process.13,14

We used a statistical approach that enabled
estimation of year-specific CAR effects with
differently dimensioned adjacency matrices
and incorporated measures of the impacts
of misalignment based on population demo-
graphics.15 These measures indexed change in
population characteristics attributable to re-
definition of zip code areas.

Outcome Measure

We obtained annual zip code---level counts
of hospital discharges related to MA for the
years 1995 through 2008 from patient-level
records provided by the California Office of
Statewide Health Planning and Development.
These records identify all hospitalizations that
result in at least 1 overnight stay, and include
up to 24 diagnostic codes from the Interna-
tional Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM).16 We se-
lected discharges that included either a primary

or secondary diagnosis of amphetamine de-
pendence (code 304.4) or amphetamine abuse
(code 305.7).16 These diagnostic classifications
include other psychostimulants but are domi-
nated by MA. Among nationwide drug treat-
ment episodes listing stimulants as the primary
drug of abuse, methamphetamine’s share grew
from 75% in 1995 to 94% in 2008, whereas
the absolute number of treatment episodes for
nonmethamphetamine stimulants declined
slightly during this time.17 However, MA was
the primary diagnosis for only a minority of
hospital discharges in California (e.g., 1.8% in
2005). Secondary diagnoses were most com-
monly associated with psychoses, schizophre-
nia or depressive disorders (38.4%), cellulitis
and abscesses commonly associated with MA
(3.3%), other drug dependence (3.2%), and
congestive heart failure (2.7%). A total of
83.9% (SD = 8.71%) of hospitalizations rep-
resented cases that had not been admitted
earlier in each year, providing a good connec-
tion between annual incidence and prevalence
estimates. Excluding hospitalizations among
the homeless without zip codes (less than 4.8%
in any year) and zip codes masked to 3 digits
(< 2.9%), 97.8% of records with 5-digit zip
codes were geocoded to patients’ residential zip
codes in each year.

Fixed-Effect Explanatory Variables

With the restriction that measures must be
available at the zip code level over time, we
selected population-level fixed effects variables
to represent well-understood correlates of MA
from previous cross-sectional studies.2 The
set provided here constitutes all those available
for the state at the time of this study. We ob-
tained annual intercensus estimates of zip code
demographics from Sourcebook America.18,19

These included population proportions of
Whites and Hispanics (we examined propor-
tions of Blacks and Asians in preliminary
analyses, but they were unrelated to MA),
population density (quintiles calculated per
unit area and coded to reduce the influence
of outliers that arose in estimates for small
population sizes), median household income
(thousands of 2007 inflation-adjusted dollars),
and average household size. Environmental
and population measures included a zip code
indicator of connectedness to high-speed
roadway systems (presence of class 1 or 2
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Note. Fitted exponentials for 3 successive growth phases are as follows: MA = 0.749e0.230t, MA = 2.014e0.252t, MA =

3.824e0.165t; entire period: MA = 1.889e0.069t.

FIGURE 1—Methamphetamine abuse and dependence (MA) discharges in California, per

10 000 persons in 1983 through 2008.
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highways) and county-level measures of un-
employment20 as well as arrests for drug
manufacturing and “dangerous drug” sales or
distribution (arrest categories strongly domi-
nated by methamphetamine).21We included
rates of total hospitalization in each zip code
as a covariate to account for differences in
access to hospital care. Year-specific intercepts
represented temporal changes in statewide
MA hospitalizations. We also included covari-
ates representing the proportion of misaligned
population and its interaction with selected
demographic characteristics.

Hierarchical Bayesian Space-Time Model

We used a hierarchical Bayesian approach
to analyzing these space-time data that enabled
us to (1) address small-area effects (e.g., ex-
treme outliers estimated among small popula-
tions in sparsely settled zip codes), (2) estimate
the extent of spatial autocorrelation in MA
ostensibly related to spatial contagion (similar-
ity of rates between adjacent geographic units),
(3) include data from nested geographic units
(zip codes within counties), and (4) provide
posterior estimates of changing distributions

of MA over space and time (model-based
predicted values from the Bayesian analysis).
Hierarchical Bayesian models provide great
flexibility in estimating correlated effects be-
tween adjacent spatial units—that is, the ten-
dency of adjacent spatial areas to exhibit
similar rates of abuse over time, reflected in the
estimate of spatial autocorrelation. For this
purpose, we assumed that a CAR process
related rates of MA between adjacent places
and represented connections between places
by a binary connection matrix labeling adjacent
zip codes in each year (our measure of spatial
contagion). Thus, the CAR process assumes
that the priors for the distribution of autor-
egressive effects are Gaussian and that adja-
cent units are not statistically independent
(the Bayesian model thus providing a sta-
tistical correction for these correlated ef-
fects).22 In addition to the CAR random
effect, we included an additional random
effect to model residual overdispersion in
rates that was not spatially autocorrelated.23

Finally, since we used both zip code---level
and county-level data in these analyses, we
included county-level random effects. We

considered zip codes to be nested within
counties on the basis of centroid member-
ship. More than 80% of zip codes in any year
were wholly contained within county areas.
More than 98% of zip codes had 95% or
more of their populations wholly included
within county boundaries.

Spatial Misalignment Model

Standard Bayesian hierarchical models as-
sume that geographic units are defined consis-
tently across time. This is not the case for zip
codes. The statewide count of California zip
codes increased from 1605 in 1995 to 1693
in 2008, and approximately 4% of zip codes in
each year had boundary changes affecting at
least 1% of their population (as estimated with
year 2000 census block---level data). We used
a “spatial misalignment” variant of the standard
Bayesian hierarchical model that allows the use
of zip code data for longitudinal analysis de-
spite frequent changes in these geographic
units.15 This misalignment approach introduces
separate CAR random effects for each time
period, each with prior mean zero and a com-
mon standard deviation. The model also
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FIGURE 2—Methamphetamine abuse and dependence (MA) discharges in California by geographic distribution for selected years.
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allows for a separate random effect that is not

spatially autocorrelated and accounts for

overdispersion.24

Model Specification and Estimation

Given that the outcome measure was the
count of hospitalizations in a given zip code

in each year, we used a Poisson regression

model:

ð1Þ Y i;t j  li;t;Poisson Ei;t exp li;t
� �� �

;

where Yi,t represents the count of amphetamine-

related hospital discharges in zip code i during

year t and Ei,t denotes the expected number

of the hospitalizations under the assumption

that statewide discharges were distributed

across zip codes in direct proportion to pop-
ulation. Hence, exp(li,t) may be interpreted as
the relative rate of hospitalization among those
residing in spatial unit i in year t: regions
with exp(li,t) > 1 will have greater counts than
expected on the basis of their population,
and regions with exp(li,t) < 1 will have fewer
than expected. Following standard generalized
linear models, the log-relative rate, li,t, was
modeled linearly as

ð2Þ li;t ¼ a i þ X 0
i;tb þ hi;t þ ui;t þ g c :

This is a linear combination of fixed cova-
riate effects and random effects that may take
account of spatial or temporal correlation.
Vector ai is a set of year-specific intercepts that

control for statewide changes in amphetamine
hospitalization that are not explained by other
covariates. X9i,t is a matrix containing space-
and time-specific covariates and b is a vector of
fixed-effects estimates of the impacts of those
covariates. hi,t and ui,t denote the pair of
random effects capturing spatially unstructured
heterogeneity and CAR spatial dependence,
respectively. Finally, cc is a county-specific
random effect that accounts for hierarchical
effects related to the fact that the unemploy-
ment and arrest covariates were available only
for counties rather than at the zip code level.
We estimated the model usingWinBUGS 1.4.3
software.25 Uninformative or weakly informa-
tive priors were specified on all fixed and
random effects. We allowed the model to burn

TABLE 1—Bayesian Poisson Space-Time Regression of Incidence of Methamphetamine Abuse and Dependence: California, 1995–2008

Parameter Mean (SD) MC Error Median (95% Credible Interval) Relative Rate

Demographic characteristics

Average household size –0.3686 (0.0178) 0.0009 –0.3661 (–0.4067, –0.3382)a 0.6917

Household income · 1000 –0.0144 (0.0004) 0.0000 –0.0144 (–0.0151, –0.0136)a 0.9857

Proportion White 0.3129 (0.0433) 0.0021 0.3118 (0.2340, 0.3983)a 1.3674

Proportion Hispanic 0.8751 (0.0485) 0.0023 0.8750 (0.7839, 0.9725)a 2.3991

Population density quintile 2 0.0474 (0.0243) 0.0010 0.0475 (0.0007, 0.0958)a 1.0486

Population density quintile 3 0.0966 (0.0265) 0.0012 0.0960 (0.0468, 0.1513)a 1.1015

Population density quintile 4 0.0870 (0.0286) 0.0013 0.0860 (0.0326, 0.1460)a 1.0909

Population density quintile 5 0.0531 (0.0315) 0.0015 0.0525 (–0.0089, 0.1194) 1.0545

Environmental characteristic: highway class 1 or 2 0.0479 (0.0117) 0.0005 0.0477 (0.0256, 0.0719)a 1.0490

County-level covariates

Dangerous drug arrests/100 0.4113 (0.1986) 0.0098 0.4180 (0.0139, 0.7863)a 1.5088

Meth manufacture arrests/100 –0.9595 (1.1170) 0.0526 –0.9479 (–3.2150, 1.2140) 0.3831

% unemployed –0.0200 (0.0076) 0.0004 –0.0195 (–0.0391, –0.0079)a 0.9802

Control covariate: total hospital discharges –0.0010 (0.0003) 0.0000 –0.0010 (–0.0016, –0.0003)a 0.9990

Misalignment and interactions

% population misaligned –0.0633 (0.0209) 0.0010 –0.0618 (–0.1050, –0.0281)a 0.9387

Average household size 0.0020 (0.0049) 0.0002 0.0022 (–0.0080, 0.0110) 1.0020

Household income · 1000 0.0002 (0.0001) 0.0000 0.0002 (0.0001, 0.0003)a 1.0002

Proportion White 0.0518 (0.0165) 0.0008 0.0514 (0.0211, 0.0842)a 1.0532

Proportion Hispanic 0.0219 (0.0165) 0.0007 0.0219 (–0.0103, 0.0538) 1.0221

Random effects

County 0.4159 (0.0216) 0.0007 0.4154 (0.3752, 0.4597)

Spatial 0.6130 (0.0132) 0.0006 0.6128 (0.5889, 0.6402)

Noise 0.2234 (0.0105) 0.0005 0.2235 (0.2032, 0.2441)

a = spatial/(spatial + noise) 0.8824 (0.0117) 0.0005 0.8830 (0.8579, 0.9034)a

Note. MC error = Monte Carlo error. Credible intervals are expressed as log relative rates. Relative rates estimated for the median are shown in the last column to the right. The model included zip
code–level and county-level covariates with separate random effects, with the conditional autoregressive process specified at the zip code level. a represents an approximation of the proportion.
error attributable to spatial dependence (see Methods). Year-specific fixed-effect intercepts are not shown.
aCredible interval has < 5% chance of including zero.
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in for 80 000 Markov Chain Monte Carlo
(MCMC) iterations, by which point all model
estimates had converged between 2 chains
with different initial values. We then sampled
posterior estimates over an additional 40 000
MCMC iterations to provide model results.

RESULTS

Figure 1 presents a plot of the growth of MA
from 1983 through 2008. The vertical lines
indicate years in which each precursor law
went into effect. Although some subjective
judgment as to the duration of impacts of each
law is required, a scalloped pattern of inter-
rupted exponential growth appeared over 3
intervals during this time. Growth was 26% per
year from 1983 through 1989, 29% per year
from 1991 through 1995, and 18% per year
from 1999 through 2005. During this time,
methamphetamine production for California
markets shifted away from illegal domestic
laboratories to importation through Mexican
cartels. Reductions in supply restrained but did
not stop growth.5 Figure 2 displays a spatially
smoothed map of rates of MA per 10 000
persons over zip codes for the years 1995,
2005 (the most recent peak), and 2008. The
1995 map reflects the largely rural distribution
of MA during early phases of growth, with a
characteristic “bloom” along the central coast

noted at that time. The rural character of MA
continues through the peak in 2005, with very
high rates in northern and southern areas of
the state and greater use in urban areas. Note,
however, that the bloom along the central coast
has declined. The most recent wave retreats
by 2008 and leaves behind somewhat greater
rates in different geographic areas, with the
coastal bloom increased once again.

Most of these general features of MA are
reflected in the results of the more detailed and
highly resolved Bayesian Poisson space-time
analysis for the period 1995 through 2008
provided in Table 1. The top portion of the
table presents fixed effects for demographic,
environmental, county, and control covariates,
showing the mean effect estimate (log relative
rate), its standard deviation, the Monte Carlo
error in estimate (an assessment of the com-
putational accuracy of the mean; a Monte Carlo
error less than 1/20th the standard deviation
is the usual criterion), the 95% credible in-
terval around the median, and transformed
relative rate at the median. The middle portion
of the table presents the same information
for misalignment measures. Those effects for
which the credible interval did not include zero
are marked by asterisks. Finally, the bottom
portion of the table presents variance compo-
nents for the model, the standard deviations of
random effects related to nesting of zip codes

within counties, spatial autoregression (repre-
sented by the CAR process), and residual error.
Alpha (a) is an index of the contribution of
spatial autoregression relative to all variance
components in the model; it may vary from
zero to 1, and the estimated value of 0.8830
indicates that some 88% of residual error is
related to the CAR process.

We observed well-supported effects relating
populations with smaller households, lower
incomes, greater proportions of White and
Hispanic populations, and proximity to high-
way systems to greater rates of MA. Greater
rates of MA were also seen in areas with me-
dium population densities (neither extremely
rural nor urban), although credible intervals for
these effects substantially overlapped. Among
county-level covariates, greater dangerous
drug arrests and less unemployment were re-
lated to greater rates of MA. Effects related to
misalignment indicated that larger misaligned
populations were related to lower estimates of
MA, a general downward bias that affected
estimates in those zip code areas that were re-
defined to include different population groups.
However, larger misaligned proportions of
high-incomeWhite populations were related to
higher estimates of MA (Table 1), an upward
bias that affected estimates in those zip code
areas that were redefined to include larger
numbers of this subpopulation. Importantly,
the range of relative rates affected by the
impact of misalignment (specific to units and
years) was .093 to 16.68, a factor of 179.

The ratios of proportional change in MA
rates to proportional change in the exogenous
measures give a sense of the effect sizes
observed in the study (arc elasticities estimated
at the mean for all other measures). These
fall into 3 natural groups. Effects related to
income and household size indicated roughly
proportional change with regard to MA (0.8
and 1.0, respectively). Each 1% increase in
income was associated with 0.8% fewer MA
incidents, and each 1% increase in household
size was associated with 1.0% fewer MA in-
cidents. Effects related to proportions of
Whites and Hispanics were less elastic (0.2 in
each case), and effects related to unemploy-
ment (0.08), highway access (0.03), and all
population density quintiles (about 0.02) were
inelastic. These effects, however, must be
viewed against the background of very
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substantial differences in the ranges of these
measures across geographic areas.

When we controlled for effects related to all
covariates in the model, overall MA growth
averaged 17% per year from 1999 through
2008 (Figure 3). There was little growth in the
middle to late 1990s, a period that coincided
with the introduction of a series of precursor
laws. This was followed by a period of rapid
growth of 25% per year from 2001 through
2005, which came to an end in 2006 following
the enactment of the Combat Methamphet-
amine Epidemic Act in 2005. When we ex-
amined posteriors related to these effects
(Figure 4a), it was evident that some growth in

MA took place in urban cores, but it was also
substantial in suburban and rural areas outside
these settings. By 2008, substantial reductions
appeared in many areas, with high levels re-
maining in rural and exurban areas to the
northeast of San Francisco Bay and dense
suburban areas in the south San Francisco Bay
Area to the north of San Jose. Relative growth
from 1995 to 2008 is shown in Figure 4b,
with most substantial increases seen in suburban
areas on the San Francisco peninsula and in the
northern, largely suburban, areas of San Jose.

The patterns of growth indicated in these
figures suggest spatial contagion. This obser-
vation is supported by the substantial value

obtained for a indicated in Table 1. A further
examination of posteriors for the CAR effects
in the model across years shows spatial auto-
correlation, estimated by Moran’s I to be
positive and very substantial (Moran’s I =
0.7359; 95% credible interval = 0.7039,
0.7679). Moran’s I can conveniently be inter-
preted as a Pearson correlation coefficient,
suggesting that about 54% of the residual
variance in rates of MA in zip code areas
was correlated with those in surrounding
adjacent areas. Overlaid on these effects
were different patterns of growth associated
with demographic characteristics. A sampling
of these showed strong effects associated with
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Note. Bay area maps show pattern of positive spatial autocorrelation.

FIGURE 4—Posterior estimated growth of relative incidence rates of methamphetamine abuse and dependence, (a) geographic distribution for

selected years and (b) geographic distribution of overall change: San Francisco Bay Area, 1995–2008.
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income (greater MA in poor suburban and
rural areas; Figure 5), modest effects associated
with population density (greater MA in sub-
urban and exurban areas; Figure 5), and sub-
stantial effects associated with household size
(greater MA in areas with many single house-
holds like San Francisco; Figure 5) and racial/
ethnic composition (greater MA in areas with
large Hispanic or White populations; Figure 5).
In combination, these effects reflect those that
characterize human populations at high risk for
MA: predominant White and Hispanic low-
income populations living in suburban and
exurban areas. The major exception is MA in
central San Francisco, a locale where MA has
been prevalent since the 1970s.

DISCUSSION

This statistical model of the growth of MA
in California demonstrates that well-resolved
space-time data can be used to assess popula-
tion and environmental features associated
with abuse spread, to examine growth when
effects related to these characteristics are sta-
tistically controlled, and to assess spatial cor-
related growth over time. To accomplish this,
we also addressed some of the problems
associated with space-time misalignment
among zip code units and their effects on the
estimation of MA in the state. We found that
MA growth was greatest in suburban and
exurban areas with larger White and Hispanic

low-income populations, small household sizes,
access to highway systems, active drug markets,
and less unemployment at the county level.
Historical change in MA across the state ap-
pears to follow a pattern of interrupted expo-
nential growth, suggesting adaptation of the
methamphetamine market to each precursor
law. After 2008, growth in MA increased once
again in California, rising from 8.3 to 9.7 in-
cidents per 10 000 persons in 2009, then to
11.2 incidents per 10 000 persons in 2010.
Conservatively assuming a growth rate of
about 12% per year (the average from 1983
through 2008), we expect that incidents in-
creased to 12.5 cases per 10 000 persons in
2011. (An observed value of 12.1 cases per
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FIGURE 5—Posterior relative incidence rates of methamphetamine abuse and dependence for 4 model covariates, household income, population

density, household size, and race/ethnicity: San Francisco Bay Area, 2008.
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10 000 persons appeared during preparation
of this article.) As indicated in Figures 2 and
5, heterogeneity in relative rates for MA related
to these measures across areas of the state was
very substantial.

From these observations, we believe it is
reasonable to suggest that growth of MA may
be usefully treated as one outcome of a socially
contagious epidemic of use, as if an opportu-
nistic infection (an active drug market) was
spreading through populations at risk for abuse
(e.g., low-income suburban and exurban
groups) and increasing risks for related se-
quelae (e.g., comorbid health and psychiatric
disorders).26 This is a popular view among
disease modelers, but not one well supported
by statistical epidemiology.9 The current study
does provide additional statistical support for
this argument by demonstrating substantial
spatial autocorrelation in MA growth over time,
growth that is presumably associated with
market spread (e.g., along highway systems).
But the current approach only considers spatial
effects within years, leaving dynamic modeling
of cross-lagged space-time effects to future
work. Spatial statistical models in epidemiology
and biological geography now provide the
ability to assess velocities of the spread of
biological infections, identify boundaries to
spread, and provide statistical support for
mathematical infectious disease models.27,28

These methods may be applicable to the long-
term prevention of the spread of MA using a
mixture of prevention, enforcement, and treat-
ment resources.29

Illicit drug markets can be usefully studied
and modeled within an economic framework,
providing valuable insights into the impacts of
supply reductions and enforcement efforts on
drug demand and use.30,31 However, these
models are not well suited to estimating the
rate and direction of disease spread (equating
MA to a disease process), population charac-
teristics associated with spread, or spatial limits
to the spread of MA. For these purposes, spatial
epidemiological models of disease spread and
spatial ecological models for boundary analysis
provide useful tools. Although the representa-
tion of MA as a “disease” may be construed as
a metaphor for otherwise unobserved spatial
economic processes, the scientific question is
whether it is a practically useful metaphor for
analyses of the spread of drug-using behaviors.

Illicit drug markets are, indeed, economic
markets with their own unique dynamics,32 but
they also represent unique social processes
by which related problem behaviors spread
through human populations. We expect that
these complementary approaches have much
to provide the field.

Ultimately, the goal of this work is to suggest
efficient environmental controls that can con-
strain the rapid growth of MA in the future.33

Treatment, prevention, and enforcement ef-
forts are often brought to bear on drug markets
long after they have formed and the chronic
relapsing disease processes that characterize
addiction are well under way. Delays in iden-
tifying expanding drug epidemics limit the
ability of treatment, prevention, and enforce-
ment efforts to reduce or eliminate abuse and
may be a prime determinant of the failure of
these programs.34 Mated to formal population
models of a disease process, statistical disease
models can identify characteristics and loca-
tions of at-risk populations, provide opportu-
nities to inoculate at-risk groups, assess critical
population sizes required for the development
of a drug market, enable focused enforcement
efforts, and provide for the fair allocation of
treatment resources for populations most ex-
posed to MA. j
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