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Abstract
Objective—To elucidate when and how cross-sectional estimators of HIV incidence rates based
on a sensitive and less-sensitive diagnostic test should be adjusted.

Methods—Evaluate the statistical properties of unadjusted and adjusted cross-sectional
estimators of HIV incidence, including the adjusted estimators considered by McDougal et al, for
the 2 settings where (a) all infected subjects eventually become reactive to the less-sensitive test,
and (b) a subset of infected subjects indefinitely remain non-reactive to the less-sensitive test.
Derive the maximum likelihood estimator of incidence for the latter setting, and use analytical
results and simulation studies to compare the performance of the various estimators.

Results—When every infected subject would eventually become reactive to the less-sensitive
test, the McDougal adjusted estimator is uniformly less precise than the unadjusted estimator and
more susceptible to bias. When a subset of the infected population would indefinitely remain non-
reactive to the less-sensitive test, the McDougal adjusted estimator is less precise than the
maximum likelihood estimator, which coincides with an estimator developed by McWalter and
Welte using a mathematical modeling approach. When the assumed model is incorrect, the
unadjusted estimator overestimates incidence whereas the maximum likelihood estimator can be
biased in either direction.

Conclusion—The standard unadjusted cross-sectional estimator of HIV incidence should be
used when all infected individuals would eventually become reactive to the less-sensitive test.
When a subset of individuals would indefinitely remain non-reactive to the less-sensitive test, the
maximum likelihood estimator for this setting should be used. Characterizing the proportion of
individuals who would indefinitely remain non-reactive is crucial for accurate estimation of HIV
incidence.
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Introduction
Reliable estimates of HIV incidence rates are critical for tracking the epidemic and planning
prevention studies. Several recent prevention studies have led to equivocal results because
biased estimates of incidence were used in their planning1. Cross-sectional methods for
estimating HIV incidence rates, using a sensitive (e.g., ELISA) combined with a less-
sensitive (e.g., Vironostika de-tuned ELISA or BED capture enzyme immunoassay)
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diagnostic test, offer important advantages to traditional longitudinal follow-up studies in
terms of cost, time, and attrition.2 However, as several reports have cautioned, the reliability
of cross-sectional methods is in doubt, in part because of inconsistencies between estimates
they have produced and those obtained by traditional longitudinal cohort studies.3,4 These
concerns have led some investigators to propose adjustments to the standard estimator.5,6,7,8

Recently, Brookmeyer has questioned the need for adjusted estimators by arguing that ‘false
negatives’ and ‘false positives’ cancel out, thus leading to no essential change.9 This raises
fundamental questions of when adjustment of the standard estimator is needed and how such
adjustments should be made.

One purpose of this paper is to shed light on the choice of incidence estimators by providing
intuition behind the McDougal adjustments and demonstrating that, even in the idealized
situation when the sensitivity and specificity of the less sensitive test are fully known, these
estimators are less precise than the unadjusted estimator in settings where all infected
subjects eventually become reactive to the less-sensitive test. A second purpose of the paper
is to determine the statistical properties of adjusted estimators of HIV incidence rate when a
subset of infected subject would never become reactive to the less-sensitive test. We derive
the maximum likelihood estimator of HIV incidence based on a statistical model for this
setting. The resulting estimator coincides with one developed by McWalter and Welte7

using a mathematical modeling approach. We demonstrate that the precision of the
maximum likelihood estimator is always greater than that of the adjusted estimators
considered by McDougal et al, and we develop a variance expression for this estimator.
Finally, we determine and illustrate the biases of the unadjusted and adjusted incidence
estimators when incorrect assumptions are made about a subpopulation of infected subjects
who indefinitely remain non-reactive to the less-sensitive test.

Methods
We use longitudinal natural history statistical models of HIV seroconversion and subsequent
reactivity to a less-sensitive diagnostic test to determine the statistical properties of
unadjusted and adjusted incidence estimators based on a cross-sectional sample. The method
of maximum likelihood estimation is used to derive the optimal cross-sectional estimator of
HIV incidence for settings where a subset of the infected persons indefinitely remain non-
reactive to the less-sensitive test. The bias and precision of the various incidence estimators
are assessed and compared using analytic methods, and are illustrated using simulation
studies.

Results
3-State Model for HIV Seroconversion and Reactivity to Less Sensitive Test

Suppose that N subjects are randomly selected from an asymptomatic population, and each
is tested with an ELISA and, if positive, a less-sensitive antibody test. The most commonly-
used less-sensitive tests to date have been the 3A11-LS and Vironostika detuned ELISA
assays, and the BED capture enzyme immunoassay.2,10,11 Let N1, N2, and N3 denote the
resulting numbers of subjects found to be non-reactive to ELISA, reactive to ELISA but
non-reactive to the less-sensitive test, and reactive to the less-sensitive test, respectively, so
that N = N1 + N2 + N3.

Assume that the observations arise from the 3-state longitudinal model depicted in Figure 1.
State 1 denotes the pre-seroconversion period when an individual is either uninfected or
infected without yet having seroconverted. State 2 denotes the time interval following
seroconversion while an individual is non-reactive to the less-sensitive diagnostic test (for
example, with a normalized optical density (OD) value below a cutoff of 1.0 with the BED
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capture enzyme immunoassay), and is sometimes referred to as the “recent infection” state.
State 3 denotes the period beginning when the individual would test positive (reactive) with
the less-sensitive test, and has been referred to as the “non-recent infection” state.

Implicit in Figure 1 is the assumption that all infected individuals would eventually become
reactive to the less-sensitive test. The actual time spent in State 2, say L, varies from person
to person, and is assumed to be independent of time of seroconversion. Because of the inter-
person variability in L, use of “recent infection state” to describe State 2 is not meant in any
strict literal sense, such as “infected in the past 6 months”. We use μ = E(L), commonly
called the “mean window period”, to denote the mean population time in State 2. The
distribution of L, and thus the value of μ, will depend on the less-sensitive test being used.
For example, Janssen et al, Parekh et al, and Constantine et al report estimated mean
window periods of 129, 160, and 133 days for the 3A11-LS assay (using a OD cutoff of
0.75), the BED assay (using a 1.0 normalized OD cutoff), and Vironostika detuned ELISA
(using a SOD cutoff of 0.75), respectively.2,10,11

Unadjusted Incidence Estimators—Suppose that I denotes the population incidence
rate at the time of the cross-sectional sample, and consider the unadjusted cross-sectional
estimator

(1)

For the moment, we assume that μ is known. This estimator arises as a special case of the
snapshot estimator considered Kaplan and Brookmeyer (equation 10)12. It also arises as the
maximum likelihood estimator of I for 4-stage model considered by Balasubramanian and
Lagakos13 when the time between infection and serconversion is negligible and when the
incidence density is constant for a period of time preceding the cross-sectional sample.
Because (1) is the maximum likelihood estimator of I in this setting, it follows that as N
becomes large, it will converge to the true incidence rate and be the most efficient cross-
sectional estimator of incidence. The denominator of Î differs slightly from that in the
unadjusted estimator used by Brookmeyer and Quinn14 and Janssen et al1, who use N1 + N2
instead of N1. However, N1 is typically about 2 orders of magnitude larger than N2, in which
case the difference between these versions of the unadjusted estimator is negligible.

Adjusted Incidence Estimators—Adjusted versions of the estimator in (1) have been
proposed by several investigators.5,6,7,8 McDougal et al (equations 1 and 2) consider the
estimators

(2)

where

(3)

and
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(4)

where

(5)

Here sens, spec, spec1, and spec2 denote the specificity and sensitivity of the less-sensitive
test as regards identifying subjects as having seroconverted within the past μ days; that is, if
Y denotes the time between seroconversion and testing,

and

Based on longitudinal studies which give similar estimates for sens and spec1, Hargrove et
al6 recommend a simplified version of (4) obtained by setting sens=spec1. However,
Brookmeyer9 notes that for the model in Figure 1, sens=spec1 implies that spec2 = 1, which
contradicts Hargrove et al's use of a value of spec2 less than 1. Welte et al8 recommend
replacing the denominator in (4) by sens2, based on analysis of a mathematical model which
leads to sens − spec1 + spec2 = 1. We return to these estimators later in the paper.

Appendix 1 derives expressions for sens, spec, spec1, and spec2 in terms of HIV incidence
and prevalence at the time of the cross-sectional sample and the distribution of time in State
2, based on the 3-state model in Figure 1.

To gain insight into the adjusted estimators, imagine a hypothetical less-sensitive test that
becomes reactive exactly μ time units after every individual seroconverts. That is, the time,
L, in State 2 equals μ for every individual, and every subject found to be in State 2 is a
“recent infection” in the literal sense of having seroconverted within the past μ time units.
Suppose that N2L denotes the number of such subjects from the sample of N subjects. Then
from the same theory justifying (1), another valid estimator of the HIV incidence rate I
would be
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(6)

Furthermore, since N2L has the same binomial distribution as N2, the estimator in (6), while
giving different numerical results than the unadjusted estimator in (1) for a given data set,
has the same distribution and thus is equally precise. Of course, this estimator cannot be
used because no such hypothetical less-sensitive test exists. However, the adjusted
estimators (2) and (4) can be viewed as approximations of (6) based on replacing the
unobservable quantity N2L by N̂2L and Ñ2L, respectively. It is shown in Appendix 2 that for
the 3-state model in Figure 1, N̂2L and Ñ2L have the same expectation as N2 and that 1 and

2 are valid estimators of I; that is, will converge to I as N grows large. This result is
analogous to the finding by Brookmeyer, who shows that the “false positives” and “false
negatives” cancel out in the adjustment formula considered by McDougal et al, and forms
the basis for his conclusion that “The McDougal adjustment has no net effect”.9

One key point is that, because (2) and (4) are based on estimates of N2L, the variances of 1
and 2 are always larger than that of Î (Appendix 3). Another is that the estimators in (2) and
(4) cannot be computed in practice because sens, spec, spec1, and spec2 are not known
exactly. That is, the adjusted McDougal estimators of HIV incidence used in practice are
actually

(7)

and

(8)

where N̂2L and Ñ2L are analogous to (3) and (5), but with sens and spec replaced by
estimates. If sens, spec, spec1, and spec2 are estimated unbiasedly, (7) and (8) are valid
estimators of I. However, as a result of the need to estimate sens and spec, the estimators in
(7) and (8) always will have greater variance than those in (2) and (4); that is,

and

Thus, although these adjusted incidence estimators are valid when sens, spec1, and spec2 are
estimated unbiasedly, they always will be less precise than the unadjusted estimator Î for the
model in Figure 1. It follows that valid 95% confidence intervals for I based on these
estimators will be wider than the corresponding 95% confidence interval based on the
unadjusted estimator Î.
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To illustrate the precision of the various incidence estimators, we conducted a simulation
study based on several choices for the prevalence and incidence rates, a random sample of N
= 3000, and when an individual's time in State 2 has a Weibull distribution with mean μ = .
6, .5, .4 years, and standard deviation .6 years. For each of 2000 simulated samples, we
generated counts (N1, N2, N3) and computed Î using (1), 1 using (2), and 2 using (4). To
compute Î1, we estimated sens and spec by sampling from a truncated normal distributions
centered about the true values and with standard deviations of 2%, and used these estimates
in (7). Similarly, Î2 was computed by generating estimates of sens, spec1, and spec2, and
then using these in (8). Full results are available upon request. The result for a 10%
prevalence rate and mean window period of 0.5 years are summarized in Table 1. For each
of the 5 estimators, the average was close to the true underlying incidence rate of 2%,
reflecting their validity. Also consistent with the theoretical results, the variances of the
adjusted estimators were uniformly larger than that of the unadjusted estimator, and often
substantially greater. The poorer precision of the adjusted estimators is also reflected in the
expected widths of 95% symmetric confidence intervals of I shown in Table 1, computed as
±1.96SE, where SE denotes the standard error of the estimate. Different experimental
settings (prevalence, incidence, mean window period, precision of estimates of sens, spec,
spec1, and spec2) will lead to estimators with different standard errors, but in every case the
precision of the adjusted estimators will be poorer than that of the unadjusted estimator.
Moreover, unless the estimates of specificity and sensitivity are unbiased, as assumed in
Table 1, the adjusted estimators of incidence will in general be biased. McDougal et al have
cautioned on the challenges in obtaining good estimates of these quantities.5

4-State Model Allowing for a Subpopulation that Indefinitely Remains Non-Reactive
Several investigators have noted that some infected individuals can repeatedly test negative
(non-reactive) on a less-sensitive diagnostic test long after they have seroconverted. For
example, Hargrove et al report a subject who repeatedly tested non-reactive on the BED
assay more than 800 days after seroconversion,6 and Novitsky et al note one subject who
repeatedly tested non-reactive on the Vironostika assay more than 695 days following
seroconversion.15 If such subjects would never become reactive to the less-sensitive test,
then the model depicted in Figure 1 no longer applies and the statistical justification for the
unadjusted estimator (1) no longer holds. That is, the unadjusted estimator in (1) may be
biased by overestimating the number of subjects in the recent infection state. This was a
motivation for the proposed adjusted incidence estimators; the need for adjustment here is
also noted by Brookmeyer.9

To investigate the properties of the adjusted estimators of HIV incidence in this setting, and
to provide a framework for developing an optimal estimator, we consider the expanded
model in Figure 2. Here a proportion, 1 − p, of the population would, following
seroconversion, never become reactive on the less-sensitive test. The remaining population,
in proportion p, would become reactive at some point following seroconversion. With this
expanded model, μ denotes the mean window period for the subpopulation of infected
individuals that would eventually become reactive with the less-sensitive test; that is, μ is
the conditional mean of L, given that an infected individual is in the subpopulation that will
eventually become reactive to the less sensitive test. When p = 1, the model in Figure 2
reduces to the model in Figure 1.

Suppose subpopulation membership is independent of the risk of infection and subsequent
HIV progression, and that the incidence density is constant for a period of time preceding
the cross-sectional sample. Then (Appendix 4) the maximum likelihood estimator of I for
the model in Figure 2 is
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(9)

provided the numerator is nonnegative, and zero otherwise. Note that this estimator reduces
to the unadjusted estimator in (1) when p = 1. The estimator in (9) also arises using a
mathematical modeling approach for estimating incidence developed by McWalter and
Welte.7 Recognition that the McWalter-Welte estimator is also the maximum likelihood
estimator of I for the model in Figure 2 ensures that, as the cross-sectional sample size
becomes large, it will converge to the true incidence rate and be the most efficient (smallest
variance) cross-sectional estimator for this setting.

In practice, p is not known exactly, and thus the estimator used in practice is (9) with p
replaced by an estimator, say p̂; that is,

(10)

provided the numerator is nonnegative, and zero otherwise. Estimates of the variance of (9)
and (10) are given in Appendix 4, and can be used to form confidence intervals for I.
Methods for estimating p are considered in the DISCUSSION.

When p < 1, it is easily verified from Appendix 1 that

for p < 1. Therefore, the assumption made by Hargrove et al that sens − spec1 = 0 cannot
hold for the model in Figure 2 with p < 1.

To illustrate the relative performance of the adjusted estimators of HIV incidence for the
model in Figure 2, we conducted a simulation study using the same settings as in the
previous simulation study, except that now a proportion 1 − p = 3%, 5%, or 7% of the
population never become reactive on the less-sensitive test. Full results are available upon
request. The results for a 10% prevalence and μ = 0.5 are summarized in Table 2. Consistent
with the theoretical results, the McDougal adjusted and maximum likelihood estimators are
essentially unbiased, with the McDougal adjusted estimators being less precise than
maximum likelihood estimator.

Robustness of Estimators to the Assumed Model
The previous sections indicate that the optimal incidence estimator depends on whether or
not all infected subjects become reactive to the less-sensitive test. Below we indicate how
both the adjusted and unadjusted estimators of incidence can be biased when the wrong
underlying model is assumed.

Suppose first that the unadjusted estimator is used, but that the correct model is that shown
in Figure 2, for some p < 1. This might occur when the longitudinal study used to
approximate μ and p had relatively few serconverters, all of whom subsequently became
reactive to the less-sensitive test, thus resulting in an accurate estimate of μ but an estimated
p of 1. For example, with p = .97 and 20 seroconverters, there is a 54% chance that none of
the recent infections are from the subpopulation that will indefinitely remain non-reactive to
the less-sensitive test.

Wang and Lagakos Page 7

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2013 June 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It is shown in Appendix 6 that the unadjusted estimator (1) in this setting converges to

(11)

as N gets large, where 1 − φ is the HIV prevalence rate at the time of the cross-sectional
sample. The constraint that the prevalence in state 2 is less than the overall infection
prevalence implies that I < (1 − φ)/(φμ), which in turn ensures that this limit must always
exceeds the true incidence I. For example, when p = 95%, μ = 0.5 years, the prevalence is
10%, and the true incidence rate is 2%, 4%, and 10%, the unadjusted estimator will actually
converge to 3.01%, 4.91%, and 10.6%, respectively.

Next suppose that the estimator (9) is used with some values, say p0 and μ0, for p and μ, but
that in fact the model in Figure 1 holds. This might arise because the longitudinal study used
to approximate μ and p did not follow infected subjects for sufficient time, resulting in some
not yet becoming reactive to the less-sensitive test, and hence leading to underestimating μ
by μ0 and p (= 1) by p0 < 1. It is shown in Appendix 6 that the adjusted estimator in (9)
converges to

(12)

The adjusted estimator will thus be biased in this setting, and could either underestimate or
overestimate the true incidence I. To illustrate using an example suggested by a referee,
suppose that p = 1 and L has an exponential distribution with mean μ = 1, and that the
cohort study used to approximate p and μ only followed subjects for 3 years. This would, on
average, lead to p0 = .95 and μ0 = 0.95. With a prevalence of 10% (φ = 0.9) and true
incidence rates of 2%, 4%, and 8%, the adjusted incidence estimator (9) will converge to
1.60%, 3.82%, and 8.25%, respectively.

Discussion
When every infected individual would eventually become reactive to the less-sensitive test
(Figure 1), the unadjusted cross-sectional incidence estimator (equation 1) will always be
more precise than the adjusted incidence estimators, and does not require external estimates
of sensitivity and specificity parameters. On the other hand, when the less-sensitive test
would never become reactive in a subset of the population (Figure 2), the most efficient
estimation of incidence is given by the maximum likelihood estimator (9), which coincides
with the estimator developed by McWalter and Welte7 using mathematical models. This
estimator requires an external estimate of the size of this subpopulation, and the precision of
this external estimate needs to be accounted for to obtain valid confidence intervals for the
underlying incidence rate I.

When the assumptions about the underlying model (Figure 1 versus Figure 2) is wrong, both
the unadjusted and adjusted incidence estimators can be biased. Thus, a key issue is how to
determine which model reflects the practical setting under consideration. Since the model in
Figure 1 is the special case of the model in Figure 2 corresponding to p = 1, determining the
correct model can be viewed as accurately estimating p. Estimation of sens, spec, spec1, and
spec2 typically relies on external information from longitudinal studies that identify time of
seroconversion with reasonable accuracy; such studies are relatively hard to conduct. In
contrast, estimation of p can be achieved by an appropriate external cross-sectional sample
of subjects known to have been infected for longer than Lmax, the maximum possible time

Wang and Lagakos Page 8

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2013 June 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from seroconversion until reactivity with the less-sensitive test among infected subjects that
eventually become reactive (McWalter and Welte, unpublished manuscript). Although
stored samples from individuals who have been infected for long periods are abundant,
obtaining an appropriate external sample is challenging because the sample must
representative of the population from which the cross-sectional sample (N1, N2, N3) is
obtained and, as a referee pointed out, this requires knowledge of Lmax, which is not well
characterized for a variety of experimental settings. For the BED capture enzyme
immunoassay, Barnighausen et al16 examine the stability of estimates of 1 − p for possible
values of Lmax varying from 250 to 400 days, using nested samples of subjects obtained
from a surveillance study in South Africa. Their results show no evidence of a decreasing
rate of non-reactive subjects, suggesting that Lmax may be smaller than these candidate
values. An alternative approach is to initially estimate the proportion of non-reactive
subjects from a random sample known to be infected for more than a candidate value of
Lmax, say 1 year, and to then test samples from the non-reactive subjects at later times (say, .
5, 1, and 1.5 years later) to see if they remain non-reactive. Decreasing numbers of non-
reactive samples would be evidence that a larger assumed value of Lmax is needed. Another
approach is to test independent samples of subjects known to have been infected for
differing time periods (say, 1, 1.5, 2, and 2.5 years), and assess the stability of the
proportions who are non-reactive.

We have assumed that the cross-sectional sample was drawn from an apparently healthy
(asymptomatic) population. Biased incidence estimates can result from a sample drawn from
a more general population that includes persons with late-stage HIV infection because of
their increased risk of death13 and because some of these individuals may previously have
been reactive to the less-sensitive assay but became non-reactive with advancing HIV
infection. For such samples, valid estimates of incidence can be obtained when based only
on asymptomatic individuals13.

Use of antiretroviral treatments (ARTs) by individuals in the cross-sectional sample also can
bias incidence estimates because ARTs suppress assay SOD levels, and thus can make a
previously reactive individual non-reactive to the less-sensitive assay. Currently, ART
initiation occurs several years following seroconversion, typically more than Lmax time
units. In such settings, the unadjusted estimator based on the model in Figure 1 will remain
valid if all sampled individuals taking ARTs are regarded as being in State 3, regardless of
their reactivity to the less-sensitive test. However, appropriate modification of the adjusted
estimates of incidence based on the model in Figure 2 is more complicated because the
impact of ARTs on SOD levels might be different in the 2 subpopulations. ART use that
occurs relative soon following seroconversion and unrecognized ART use among the N
sampled subjects further complicates the estimation of incidence. More research in this area
is needed.

Throughout this paper we have assumed that the cross-sectional sample was a random
sample from the population of interest. The importance of a random sample cannot be
overemphasized, as use of a “convenience” or other non-random sample can distort results
in ways that are usually impossible to quantify. We also have assumed that the mean
window period μ is known. However, when using cross-sectional methods to estimate
incidence an estimate of μ must be used. When a biased estimate of μ is used, all estimators
of HIV incidence discussed in this paper would, in general, be biased. This underscores the
need for carefully conducted and analyzed longitudinal cohort studies to estimate μ for
different less-sensitive tests, as well as the identification of virologic, demographic, and
other factors that might affect μ.1,3,4,5,6 An alternative to the standard approach of using an
external estimator of μ is to employ an augmented cross-sectional design in which the subset
of subjects found to be in the recent-infection state are followed forward in time for
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reactivity to the less-sensitive test; Wang and Lagakos (unpublished manuscript)
demonstrate how this can be used to obtain internal estimators of the mean window period
and proportion, 1 − p, of the population that woulud never become reactive to the less-
sensitive test.
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Appendix
Appendices
In what follows, we make the assumptions used in Balasubramanian and Lagakos13 for the
model in Figure 1; namely, that time in State 2 is independent of time in State 1, and that the
density function, f(u), for HIV infection is constant, say f(u) = f, for a period Lmax prior to
the time, t, at which the cross-sectional sample is drawn. In this interval, f = φI, where 1 − φ
is the prevalence at time t. We let E + (E−) denote that the ELISA is reactive (non-reactive),
and let LS + (LS−) denote that the less-sensitive tests is reactive (non-reactive), and let G(x)
denote the cumulative distribution function of time in State 2.

Appendices Appendix 1:

Expressions for sens, spec, spec1, and spec2 for Model in Figure 1
For a individual found to be infected, let Y denote the elapsed time from seroconversion
until the time of the test. Let Lmax denote the upper limit of support for L. For any constants
a, b satisfying 0 ≤ a < b < Lmax,

Note that

and

Combining these,

(A.1)

Using similar arguments when b > Lmax, we get
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(A.2)

An expression for sens is obtained by setting a = 0 and B = μ in (A.1), yielding

(A.3)

and 1-spec is obtained by setting a = μ and b = ∞ in (A2), yielding

(A.4)

Using (A.1) with a = μ and b = 2μ gives 1-spec1, and using (A.2) with a = 2μ and b = ∞
gives 1-spec2. This yields

(A.5)

and

(A.6)

It is easily verified that the overall specificity is related to spec1 and spec2 by

where

Appendices Appendix 2:

Expectation and Convergence of Ñ2L and N ̂2L; Convergence of 1 and 2 for
Model in Figure 1

Substituting the expressions for sens and spec into (3), we have
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Rewrite (3) as

(A.7)

Dividing the numerator and denominator of (2) by N and letting N → ∞, the probability
limit of (2) is

(A.8)

Substituting the expressions for sens and spec into this limit to equal to I whenever spec< 1.
When spec= 1, the limit also equals I when sens= 1.

Similarly,

Dividing the numerator and denominator of (4) by N and letting N → ∞, it follows that the
probability limit of 2 is I.

Appendices Appendix 3:

Proof that Var( 1) > Var(Î) and Var( 2) > Var(Î) for Model in Figure 1
From (A.7),

where the last inequality holds because
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The same approach yield Var( 2) > Var(Î) by showing that

. This can be verified by substituting (A.3), (A.5), and (A.6)
into this expression and simplifying.

Appendices Appendix 4:

Maximum Likelihood Estimator of HIV Incidence Rate for Model in Figure 2
The likelihood function for (I, φ) based on (N1, N2, N3) can be written as:

(A.9)

From (A.9), the log of the likelihood is

from which one obtains the partial derivatives

Setting these to zero and solving gives maximum likelihood estimators:

The matrix of negative second derivatives of ℓ(φ, I) with φ and I replaced by their maximum
likelihood estimates, can be shown to have (1,1), (1,2), and (2,2) elements

, and

. Estimated variances for Î and φ̂ are obtained as the
diagonals of the inverse of this matrix. This gives

Regularity conditions for the asymptotic properties of the maximum likelihood estimator
hold.17

When p is estimated externally, note that (N1, N2, N3) ∼ Multinomial(N; φ, p2, p3) where
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We use the fact that

Therefore,

Appendices Appendix 5:

Limit of Adjusted Estimators for Model in Figure 2
Under the 4-state model in Figure 2, the probability limits of N2/N and N1/N are φIpμ + (1 −

p)(1 − φ) and φ respectively. Let sens*, spec*,  and  denote the algebraic
expressions for sens, spec, spec1, and spec2 under the model in Figure 1, given in (A.3), (A.
4), (A.5), and (A.6), respectively. It is easily verified that

Therefore,

where the last step follows from Appendix 2.

Also,
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where the last step follows from Appendix 2. Using similar arguments, the probability limit
of 2equals I.

Note that although McDougal et al5 allude to the assumption that Lmax is less than 2μ, the
McDougal adjusted formula 2 remains valid regardless of whether this assumption holds or
not. Also, under the setting where Lmax < 2μ, it can be verified that sens − spec1 = 1 − p and
spec2 = p. Using these relations, it is easily verified that 2 reduces to the unadjusted
estimator Î for the model in Figure 1, and to the maximum likelihood estimator p for the
model in Figure 2.

Appendices Appendix 6:

Limits of Unadjusted and Maximum Likelihood Estimators when Assumed
Model does not Hold

Under the 4-state model in Figure 2, the probability limits of N2/N and N1/N are φIpμ + (1 −
p)(1 − φ) and φ respectively. The probability limit of the unadjusted estimator is therefore

Now suppose the model in Figure 1 holds, and that the cohort study used to estimate p and μ
only follows subjects until time τ < Lmax, and incorrectly assumes that any infected person
that has not yet become reactive on the less-sensitive test will never become reactive. Let μ0
and p0 denote the expectations of the resulting (under) estimates of μ and p, respectively;
that is, μ0 = E(L|L <= τ), and p0 = G(τ). Then as the size of the cross-sectional sample
grows large, the adjusted estimator (9) converges in probability to
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Figure 1.
Three-State Model in which All Infected Persons Would Eventually Become Reactive to the
Less-Sensitive Test.
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Figure 2.
Four-State Model in which a Proportion, 1 − p, of Infected Persons Would Indefinitely
Remain Non-Reactive to the Less-Sensitive Test
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