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Abstract
Metabolites, the chemical entities that are transformed during metabolism, provide a functional
readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of
metabolites can now be quantitatively measured from minimal amounts of biological material,
which has thereby enabled systems-level analyses. By performing global metabolite profiling, also
known as untargeted metabolomics, new discoveries linking cellular pathways to biological
mechanism are being revealed and shaping our understanding of cell biology, physiology, and
medicine.

Metabolites are small molecules that are chemically transformed during metabolism and, as
such, they provide a functional readout of cellular state. Unlike genes and proteins, whose
function is subject to epigenetic regulation and post-translational modifications respectively,
metabolites serve as direct signatures of biochemical activity and they are therefore easier to
correlate with phenotype. In this context, metabolite profiling, or metabolomics, has become
a powerful approach that has been widely adopted for clinical diagnostics.

The metabolome, typically defined as the collection of small molecules produced by cells,
offers a window to interrogate how mechanistic biochemistry relates to cellular phenotype.
With developments in mass spectrometry, it is now possible to rapidly measure thousands of
metabolites simultaneously from only minimal amounts of sample1. In particular, recent
innovations in instrumentation, bioinformatic tools, and software enable the comprehensive
analysis of cellular metabolites without bias. In many instances, these metabolites can be
spatially localized within biological specimens with imaging mass spectrometry2, 3.

The application of these technologies has revealed system-wide alterations of unexpected
metabolic pathways in response to phenotypic perturbations. Moreover, many of the
molecules detected are currently not included in databases and metabolite repositories,
indicating the extent to which our picture of cellular metabolism is incomplete4, 5.
Nonetheless, the field of metabolomics has made remarkable progress within the last decade
and implemented new tools that have offered mechanistic insights by allowing for the
correlation of biochemical changes with phenotype.
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In this Innovation article we first define, and differentiate between the targeted and
untargeted approaches to metabolomics. We then highlight the value of untargeted
metabolomics in particular and outline a guide to performing such studies. Finally, selected
applications of untargeted metabolomics are described and their potential in cell biology is
discussed.

Designing a metabolomic experiment
The first step in performing metabolomics is to determine the number of metabolites to be
measured. In some instances, it may be of interest to examine a defined set of metabolites by
using a targeted approach. In other cases, an untargeted or global approach may be taken in
which as many metabolites as possible are measured and compared between samples
without bias. Ultimately, the number and chemical composition of metabolites to be studied
is a defining attribute of any metabolomic experiment that and shapes experimental design
with respect to sample preparation and choice of instrumentation.

Targeted metabolomics
This approach refers to a method in which a specified list of metabolites is measured,
typically focusing on one or more related pathways of interest6. Targeted metabolomic
approaches are commonly driven by a specific biochemical question or hypothesis that
motivates the investigation of a particular pathway. This approach can be effective for
pharmacokinetic studies of drug metabolism as well as for measuring the influence of
therapeutics or genetic modifications on a specific enzyme7. Developments in mass
spectrometry (MS) and nuclear magnetic resonance (NMR) offer distinct advantages for
performing targeted metabolomic studies because of their specificity and quantitative
reproducibility, however, there are many analytical tools available for measuring
metabolites that could in principle be considered such as ultraviolet-visible spectroscopy and
flame ionization. Although the term “metabolomics” was only recently coined, examples of
targeted studies of metabolites date back to the earliest of scientific inquiries8–12. Therefore,
there is a wealth of literature investigating optimal protocols for the sample preparation and
analysis of specific classes of metabolites that has been discussed extensively
elsewhere13–17.

Not to diminish their significance, targeted approaches have undoubtedly played an
important role in the development of the field of metabolomics. In particular, advances have
been made in using triple quadrupole (QqQ) MS to perform selected reaction monitoring
experiments such that routine methods are now available to analyze most of the metabolites
in central carbon metabolism as well as amino acids and nucleotides at their naturally
occurring physiological concentrations18–20. These developments provide a highly sensitive
and robust method to measure a significant number of biologically important metabolites
with relatively high throughput. Additionally, QqQ MS methods are quantitatively reliable
and therefore offer opportunities to achieve absolute quantitation of low-concentration
metabolites that are difficult to detect with less sensitive methods such as NMR (Fig. 2).
(Fig. 2) By applying QqQ MS-based methods to human plasma, targeted lists of metabolites
can be screened as potential metabolic signatures for disease. For example, targeted
screening recently revealed citric acid metabolites and a small group of essential amino
acids as metabolic signatures of myocardial ischemia and diabetes respectively.21, 22 In
another diabetes-related study, targeted metabolomic methods were used to investigate
patient response to glucose challenge.23 Here, the levels of specific plasma metabolites were
measured after glucose ingestion to determine insulin response in patients.
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Untargeted metabolomics
Untargeted metabolomic methods are global in scope and have the aim to simultaneously
measure as many metabolites as possible from biological samples without bias. Although
untargeted metabolomics can be performed by using either NMR or MS technologies, liquid
chromatography followed by MS (LC/MS) enables the detection of the most metabolites and
has therefore been the technique of choice for global metabolite profiling efforts24–27. By
using LC/MS-based metabolomic methods, thousands of peaks can be routinely detected
from biological samples14, 28, 29. Each of these peaks are referred to as metabolite features
and correspond to a detected ion with a unique mass-to-charge ratio and a unique retention
time (it should be noted that some metabolites may produce more than one feature).

In contrast to targeted metabolomic results, untargeted metabolomic datasets are
exceedingly complex with file sizes on the order of gigabytes per sample for some new
high-resolution MS instruments. Manual inspection of the thousands of peaks detected is
impractical and complicated by experimental drifts in instrumentation. In LC/MS
experiments, for example, there are deviations in retention time from sample to sample as a
consequence of column degradation, sample carryover, small fluctuations in room
temperature and mobile phase pH, and so on. Although these challenges initially presented
significant obstacles for interpreting untargeted profiling data, major progress has been
made in the last decade such that the ability to measure dysregulated features in global
metabolomic datasets has now become routine with the introduction of metabolomic
software such as MathDAMP, MetAlign, MZMine, and XCMS1, 30–34. These
accomplishments have already had an impact in revealing not only that an astounding
number of metabolites remain uncharacterized with respect to their structure and function,
but also that many of these uncharacterized metabolites change as a function of health and
disease4. It is in this area that untargeted metabolomics has great potential to provide
insights into fundamental biological processes. The remainder of this article will focus on
the untargeted metabolomic approach.

Impetus for untargeted metabolomics
In 1941, G. Beadle and E. L. Tatum proposed the one gene–one enzyme hypothesis. This
hypothesis was based on their experimental results showing that X-ray-induced mutant
strains of the fungus Neurospora crassa were unable to carry out specific biochemical
reactions35, 36. By systematically adding individual compounds to minimal N. crassa media
and screening for those that rescued the growth of mutant strains, Beadle and Tatum
identified metabolites whose biosynthesis had been affected by genetic mutation. In doing so
they were the first to directly connect genotype to phenotype at the molecular level. From
their results they purported that a single gene serves as the primary control of a single
function, in this case a specific chemical reaction.

In many ways, modern day metabolomic experiments seek to similarly connect genotype
and phenotype by metabolite screening. The experimental screening methods used today,
however, are much advanced and allow us to study many more compounds simultaneously.
Additionally, contemporary metabolic profiling experiments have the advantage of being
complemented by genomic sequencing and proteomic screening37–40. From the combination
of these global analyses, the field of systems biology has emerged and shown us that the
effects of a single nonlethal gene mutation can be dauntingly large41. Indeed, single gene
mutations can affect a significant number of metabolic pathways, thereby complicating the
hypothesis that a single gene controls a single function (Figure 1). Moreover, mutations in
some unique genes have unexpected phenotypic effects. As an example, consider the daf-2
gene which encodes an insulin-like receptor in the nematode worm Caenorhabditis elegans.
Mutations in daf-2 cause C. elegans to live more than twice as long as its wild type
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counterpart and result in alterations in the abundance of at least 86 identified proteins42, 43.
Or, as another example, consider genes that encode for enzymes of the phosphatidyl-inositol
3-kinase family. The protein products of these genes function in cell growth, proliferation,
differentiation, motility, signal transduction, and mutations in these genes are thought to
have an oncogenic role in some cancers44.

As these examples highlight, one gene can influence a multitude of metabolic pathways and
thereby have a functional role in many cellular processes. Even knowledge of encoded
protein structure is often insufficient to infer function at the whole-organism level. Such
functions can have intricate regulatory mechanisms involving epigenetic control, post-
translational modifications, and feedback loops that enable context-dependent activation or
deactivation. Thus, investigations to detangle the role of any one specific gene benefit from
systems-level analyses. While these types of global studies were once limited to genes,
transcripts, and proteins, technological developments over the last decade now allow for the
untargeted profiling of metabolites and provide opportunities to comprehensively track
metabolic reactions directly for the first time.

Untargeted metabolomic workflow
Although untargeted metabolomic experiments are often hypothesis generating rather than
hypothesis driven, it is important to carefully construct an experimental design that
maximizes the number of metabolites detected and their quantitative reproducibility. With
the workflow that is described below, metabolite identification is a manual and time-
intensive process. Thus, the choice of sample type, preparation, chromatographic separation,
and analytical instrumentation should be considered and the choice that is most likely to
yield high-quality data used for analysis. Here we focus on an LC/MS-based workflow
because this technique enables the detection of the highest number of metabolites and
requires only minimal amounts of sample (for example, typically less than 25 mg of tissue,
around 1 million cells, or approximately 50 µL of biofluids such as plasma and urine).

Sample preparation and data acquisition
The first step in the untargeted metabolomic workflow is to isolate metabolites from
biological samples (Figure 3a). Several approaches involving sample homogenization and
protein precipitation have been utilized, which are described in detail elsewhere14, 15, 45, 46.
Prior to MS analysis, isolated metabolites are separated chromatographically by using
relatively short solvent gradients (on the order of minutes) that allow for high-throughput
analysis of large numbers of samples. Given the heterogeneous physiochemical landscape of
the metabolome, multiplexing extraction and separation methods maximizes the number of
metabolites detected47. For example, extracting the same cells with both organic and
aqueous solvents increases the number of hydrophobic and hydrophilic compounds
observed, respectively. Similarly, reversed-phase chromatography is better suited for the
separation of hydrophobic metabolites, whereas hydrophilic-interaction chromatography
generally separates hydrophilic compounds more effectively. Most frequently data is
collected on a quadruopole time-of-flight (QTOF) mass spectrometer or an Orbitrap mass
spectometer, but other time-of-flight and ion trap instruments can also be used28, 29, 48.
Given the challenge of predicting tandem MS (MS/MS) fragmentation patterns for most
metabolites, unlike in shotgun ‘omic approaches, untargeted metabolomic profiling data is
typically acquired in MS1 mode (that is, only the mass-to-charge ratio (m/z) of the intact
metabolite is measured) 49, 50.
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Data analysis
With recent developments in bioinformatic tools, identification of metabolite features that
are differentially altered between sample groups has become a relatively automated process.
Several metabolomic software programs that provide a method for peak picking, non-linear
retention time alignment, visualization, relative quantitation, and statistics are available1, 51.
The most widely used metabolomic software is XCMS, which is freely available online
where users can upload data, perform data processing, and browse results within a web-
based interface1 (https://xcmsonline.scripps.edu/).

Metabolite identification
It is important to note that the metabolomic software currently available does not output
metabolite identifications. Rather, it provides a table of features with p-values and fold
changes related to their difference in relative intensity between samples. To determine the
identity of a feature of interest, the accurate mass of the compound is first searched in
metabolite databases such as the Human Metabolome Database and METLIN52–54 (http://
www.hmdb.ca/ and http://metlin.scripps.edu/). A database match represents only a putative
metabolite assignment that must be confirmed by comparing the retention time and MS/MS
data of a model compound to that from the feature of interest in the research sample (Figure
3b). Currently, MS/MS data for features selected from the profiling results are obtained from
additional experiments and matching of MS/MS fragmentation patterns is performed
manually by inspection. These additional analyses are time intensive and represent the rate-
limiting step of the untargeted metabolomic workflow. Additionally, although metabolite
databases have grown considerably over the last decade, a substantial number of metabolite
features detected from biological samples do not return any matches. Identification of these
unknown features requires de novo characterization with traditional methods. Taken
together, it should be recognized that comprehensive identification of all metabolite features
detected by LC/MS is currently impractical for most samples analyzed.

Addressing the challenges
Untargeted metabolomics has revealed that the number of endogenous metabolites in
biological systems is larger than anticipated and cannot be accounted for merely by
canonical biochemical pathways. That is, the masses of a significant fraction of compounds
detected in global analyses do not match any of the masses included in metabolite databases.
Therefore, given that the metabolome is not encoded in the genome like proteins and
transcripts, systems-level studies of metabolites are complicated by attempting to analyze an
undefined set of molecules. In response to this challenge, metabolite databases have
expanded rapidly over the last decade. Although database expansion has facilitated
untargeted studies, there are still many metabolites for which the chemical structure, cellular
function, biochemical pathway, and anatomical location remain uncharacterized. Here,
innovative technologies and experimental strategies that can be coupled with untargeted
profiling are driving progress in the field.

Improving metabolite databases
Over the last decade, the information catalogued in metabolite databases has evolved beyond
lists of one-dimensional data that is traditionally acquired by mass spectrometry- and NMR-
based screens. The Human Metabolome Database, for example, includes a “MetaboCard”
for each of its included metabolites (~8550).52, 53 In addition to having molecular weights
and experimental NMR spectra, the MetaboCards list information on each compound’s
biochemical pathway, concentration, anatomical location, metabolizing enzymes, and
related disorders when available. Currently, the Human Metabolome Database and METLIN
are among the most widely used metabolite databases publicly available.54–56 Similar to the
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Human Metabolome database, METLIN contains experimental data for a subset of the total
number of compounds included (~45000). In METLIN, MS/MS data is available for more
than 10000 metabolites. For each of these metabolites, MS/MS data were experimentally
generated from model compounds analyzed at four different collision energies in both
positive and negative mode. When used together with other publicly available tools, the
Human Metabolome and METLIN databases can facilitate both metabolite identification as
well as data interpretation.

Meta-analysis: prioritizing unknowns
Alterations in a single enzyme can lead to a cascade of metabolic perturbations that are
functionally unrelated to the phenotype of interest. Untargeted metabolomic profiling of a
particular disease or mutant can therefore reveal hundreds of alterations that are unlikely to
have mechanistic implications. Given the resources needed to identify both known and
unknown compounds, strategies to reduce lists of potentially interesting features prior to the
time commitment of identification are of great utility. One such strategy is meta-analysis, by
which untargeted profiling data from multiple studies are compared (Figure 1). By
comparing multiple models of a disease, for example, features that are not similarly altered
in each of the comparisons may be de-prioritized as being less likely to be related to the
shared phenotypic pathology. To automate the comparison of untargeted metabolomic data,
freely available software called metaXCMS has been recently developed57. As proof of
concept, metaXCMS was applied to investigate three pain models of different pathogenic
etiologies: inflammation, acute heat, and spontaneous arthritis58. While hundreds of
metabolite features were found to be altered in each model, only three were similarly
dysregulated among all the groups. One of the shared metabolites was identified as
histamine, a well-characterized mediator of pain that works by several mechanisms. The
application of similar data-reduction strategies to other biological systems may justify
aggressive analytical investigations of unknown features likely to be physiologically
relevant.

Imaging approaches to localize metabolites
One of the first steps in the untargeted metabolomic workflow applied to biological tissue is
metabolite isolation by sample homogenization. Thus, standard metabolic profiling
techniques do not permit high-resolution spatial localization of metabolites within samples.
Investigations of heterogeneous tissues such as the brain are therefore complicated by the
averaging of various cell types, each with a potentially unique metabolome. Given these
limitations, correlating a dysregulated metabolite with a specific region of tissue or cell type
can be challenging.

NMR-based imaging technologies have been applied to spatially localize metabolites in
intact samples, but these methods have limited chemical specificity and sensitivity59–61. By
contrast, MS-based approaches relying on matrix-assisted laser desorption ionization
(MALDI) offer improved chemical specificity and sensitivity but they are limited in their
application to metabolites due to background interference caused by the matrix in the low-
mass region characteristic of metabolites62. As an alternative, a matrix-free technique called
nanostructure-initiator mass spectrometry (NIMS) has been developed for the analysis of
metabolites with high sensitivity and spatial resolution (Figure 4)63, 64. By using NIMS to
analyze 3 µm sections of brain tissue from mice with impaired cholesterol biosynthesis,
metabolic precursors of cholesterol were found to localize to the cerebellum and brainstem2.
These types of NIMS imaging applications coupled with histology will allow metabolite
localization patterns to be correlated with tissue pathology and drive developments in our
understanding of chemical physiology.
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Untargeted metabolomics applied
Given its sensitivity, high-throughput and minimal sample requirements, untargeted
metabolomics has wide applicability across a myriad of biological questions. Despite its
relatively recent emergence as a global profiling technology, untargeted metabolomics has
already increased our understanding of comprehensive cellular metabolism and been utilized
to address a number of biomedical issues. Among the biomedical applications in which
untargeted metabolomics has provided unique insight is in identifying altered metabolic
pathways in disease that represent novel drug targets, an evolving application referred to as
“therapeutic metabolomics”.65, 66 An example of this application is the discovery of
increased levels of the metabolite 2-hydroxyglutarate in cancer cells with isocitrate
dehydrogenase 1 mutations, which are a common feature of a major subset of primary
human brain cancers.67 These results suggest that inhibition of 2-hydroxyglutarate
production may be an effective therapeutic approach to slow or halt conversion of a low-
grade glioma into lethal secondary glioblastoma. In another example, levels of the
sphingolipid dimethylsphingosine were found to be increased in the spinal cords of rats
suffering from neuropathic pain.68 Increased levels of dimethylsphingosine were determined
to induce pain-like behavior in vivo and point to the inhibition of methyltransferase or
ceramidase as potential therapeutic approaches for treating chronic pain by blocking
dimethylsphingosine production.

Another area in which untargeted metabolomics has been successfully applied is in
characterizing gene and protein function. In addition to successfully identifying the function
of unknown genes and proteins, untargeted profiling has been applied to discover new
functions for known genes and proteins. By screening for metabolites that accumulate after
gene mutation or enzyme inhibition, unanticipated connections between the proteome and
metabolome have been established that were not accurately predicted from in vitro activity
measurements.69 As a demonstration of characterizing a yeast gene of unknown function
(YKL215C), untargeted methods were applied to organisms harboring a mutation in
YKL215C. Increased levels of 5-oxoproline were detected in these organisms, allowing the
assignment of YKL215C as an oxoprolinase.48 In an independent study, an untargeted
screen identified a previously unidentified activity for the yeast enzyme sedoheptulose-1,7-
bisphosphatase. The finding that sedoheptulose-1,7-biosphosphatase hydrolyzes
sedoheptulose-1,7-bisphosphate to sedoheptulose-7-phosphate identified a
thermodynamically driven route from trioses produced by glycolysis to the synthesis of
ribose.70 A similar type of enzyme-activity characterization was also accomplished for
Mycobacterium tuberculosis by incubating a purified recombinant enzyme with a
mycobacterial small molecule extract. The small molecule extract was analyzed by LC/MS
for altered substrate and product, leading the incompletely characterized protein Rv1248c to
be assigned as a 2-hydroxy-3-oxoadipate synthase71. As these examples highlight,
untargeted metabolomics not only has implications for therapeutic screening, but also for
providing chemical insight across a broad area of mechanistic cell biology.

Concluding remarks
While there has been a longstanding interest in metabolic profiling, only recently have
technologies emerged that enable the global analysis of metabolites at a systems level
comparable to its ‘omic predecessors. Unlike genomics, transcriptomics, and proteomics,
however, metabolomics provides a tool to measure biochemical activity directly by
monitoring the substrates and products transformed during cellular metabolism. Untargeted
profiling of these chemical transformations at a global level serves as a phenotypic readout
that can be used effectively in clinical diagnostics, to identify therapeutic targets of disease,
and to investigate the mechanisms of fundamental biological processes.
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Although untargeted metabolomics is still in its infancy, early studies have shown that the
complexity of comprehensive cellular metabolism exceeds that expected based on classical
biochemical pathways. In this sense, our understanding of metabolism is evolving much like
our notion of physics evolved in the early twentieth century with the emergence of
experimental results such as the photoelectric effect, which could not be explained by
Newtonian laws72, 73. Ultimately, the ideas that emerged from this disparity resulted in a
new set of principles for understanding physical phenomena known as quantum mechanics.
As metabolomic technologies continue to advance and facilitate the characterization of
unknown pathways, the potential of untargeted metabolomics to shape our understanding of
global metabolism is yet to be fully realized.
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Box 1: Glossary of Terms

Imaging mass spectrometry; Nuclear magnetic resonance (NMR); triple quadrupole
(QqQ) MS; liquid chromatography (LC)/MS; MathDAMP, MetAlign, MZMine, XCMS:
bioinformatic software for analyzing untargeted LC/MS-based metabolomic data;
quadruopole time-of-flight (QTOF) mass spectrometer; Orbitrap mass spectometer; ion
trap; metaXCMS; matrix-assisted laser desorption ionization (MALDI); nanostructure-
initiator mass spectrometry (NIMS).
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Figure 1. The central dogma of biology and the ‘omic’ cascade
While genes and proteins are subject to regulatory epigenetic processes and post-
translational modifications respectively, metabolites represent downstream biochemical end
products that are closer to the phenotype. Alterations in a single gene (illustrated by blue
dots) or a single protein can lead to a cascade of metabolite alterations. In the theoretical
schematic shown, up- and down-regulated metabolites are shown in red and unaltered
metabolites are shown in grey. Untargeted metabolomics aims at comprehensively profiling
metabolites without bias to identify changes that correlate with cellular function or
phenotype. By performing meta-analysis, metabolic alterations shared between multiple
animal models or multiple genetic modifications may be identified as shown by the
superimposed Venn diagram.
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Figure 2. The untargeted and targeted workflow for LC/MS-based metabolomics
The untargeted metabolomic workflow (top). Metabolites are first isolated from tissues,
biofluids, or cell cultures and subsequently analyzed by LC/MS. After data acquisition, the
results are processed by using bioinformatic software such as XCMS to perform nonlinear
retention time alignment and identify metabolite features that are changing between the
groups of samples measured. Metabolite features of interest are searched in metabolite
databases on the basis of accurate mass to obtain putative identifications. Putative
identifications are then confirmed by comparison of MS/MS and retention time data to that
of standards. The untargeted workflow is global in scope and outputs data related to
comprehensive cellular metabolism. The targeted metabolomic workflow (bottom). First,
standard compounds for the metabolites of interest are obtained and used to setup selected
reaction monitoring methods. Here instrument voltages are established and concentration
curves are generated for absolute quantitation. After the targeted methods have been
established on the basis of standards, the metabolic extract is analyzed from the research
samples. The data output provides quantitation only of those metabolites for which standard
methods have been built.
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Figure 3. Metabolite characterization in the untargeted metabolomic workflow
In LC/MS-based untargeted metabolomics, metabolites are identified on the basis of
accurate mass, retention time, and MS/MS data. Experimental and standard data are shown
here for the metabolite A2E (A2-ethanolamine) as an example of the identification process.
The accurate mass as measured from the mass spectrometer (obs.) is less than 3 ppm
different than that theoretically expected (theo.) on the basis of the compound’s molecular
formula. This mass error is within the range expected from most modern mass
spectrometers. The retention time of the research sample (38.9 min, black) is then compared
to that of a standard (39.0, red). Finally, to confirm an assignment, a follow-up targeted MS/
MS analysis is performed. The MS/MS data from the research sample are shown in black
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and the MS/MS data from the standard are shown in red. As illustrated, all three
experimental data parameters are consistent with those obtained from the standard, thereby
supporting the identification of A2E in the research sample.
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Figure 4. Spatial localization of metabolites in tissue by mass spectrometry-based imaging
An example of a surface-based image of cholesterol from mouse brain by using
nanostructure-initiator mass spectrometry (NIMS, reference 2). NIMS is well suited for
metabolite imaging because it is highly sensitive and does not suffer from matrix
interference in the low-mass range. Sections of frozen tissue are first transferred to a NIMS
chip that is subsequently analyzed by using a laser-induced desorption/ionization approach
(bottom). By systematically rastering the laser across the tissue, a mass spectrum is
generated from each point. The mass spectral intensity of the metabolite of interest is plotted
spatially to generate images as shown for cholesterol here (top, m/z 493.26).
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