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Vertebrate genes are characterized by the presence of cis-regulatory elements

located at great distances from the genes they control. Alterations of these

elements have been implicated in human diseases and evolution, yet little is

known about how these elements interact with their surrounding sequences.

A recent survey of the mouse genome with a regulatory sensor showed

that the regulatory activities of these elements are not organized in a gene-

centric manner, but instead are broadly distributed along chromosomes,

forming large regulatory landscapes with distinct tissue-specific activities.

A large genome-wide collection of expression data from this regulatory

sensor revealed some basic principles of this complex genome regulatory archi-

tecture, including a substantial interplay between enhancers and other types of

activities to modulate gene expression. We discuss the implications of these

findings for our understanding of non-coding transcription, and of the possible

consequences of structural genomic variations in disease and evolution.
1. Introduction
An essential part of the control of gene expression is achieved at the trans-

criptional level. This level of regulation integrates the contribution of multiple

types of cis-acting genomic elements. Beyond the promoter region, which is in

close proximity to the transcriptional start site, the importance of elements located

at much farther distances is increasingly being recognized [1–3]. Growing num-

bers of human genetic conditions have been found to result from mutations,

deletions or other alterations of regulatory elements, mostly enhancers, that can

be located more than 1 Mb away from the gene they regulate [4–11]. Genome-

wide association studies, which analyse the genetic basis of phenotypic variation,

have also frequently identified genomic intervals devoid of protein-coding genes

as causal regions, further suggesting that variations or changes in gene regulatory

elements can have profound physiological effects [12].

For these reasons, defining the regulatory sequences that control gene activity

is becoming a key biomedical issue. Recent technological advances are providing

an increasing repertoire of methods to identify regulatory elements, particularly

enhancers. As illustrated recently by the ENCODE project, chromatin immuno-

precipitation (ChIP) for different transcription factors (TFs), chromatin-associated

marks and transcription-associated protein complexes enables the cataloguing of

sequences with characteristics of regulatory elements [13]. Strikingly, these efforts

revealed that in a given cell, a very large number of elements can regulate a given

gene. These findings were reinforced by data from chromatin conformation cap-

ture (3C) analyses, which showed that promoters and enhancers are engaged in

complex interlaced interactions [14,15], indicating that interactions may exten-

sively reshape the individual activities of gene regulatory elements in a non-

additive manner. It is therefore important to complement the approaches that

deconstruct the genome into its most basic constitutive elements (promoters,

enhancers, silencers, insulators), with more holistic approaches that address

how the activities of large arrays of cis-regulatory elements are integrated, to

ultimately give rise to gene-specific programmes.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2012.0358&domain=pdf&date_stamp=2013-05-06
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Here, we provide a brief review on the evidence that

emphasizes the role of remote cis-regulatory elements in gene

expression and disease. We describe the different methods

that can be used to identify and characterize these elements,

particularly enhancers. We present and discuss different find-

ings, which demonstrate that the activity of enhancers is not

purely determined by their sequence but can also be highly

dependent on the surrounding genomic regions. We summar-

ize our own observations obtained with genome regulatory

organization mapping with integrated transposons

(GROMIT), a strategy, which we developed to investigate the

regulatory activities present within the genome [16]. GROMIT

revealed the widespread presence of tissue-specific regulatory

activities throughout the genome: these activities are distributed

along large intervals, forming broad regulatory landscapes,

which extend far away from genes. Comparison of the activities

displayed within these regulatory landscapes with those deter-

mined for isolated single enhancer elements, demonstrated that

a substantial part of these latter, potential activities may be

silenced or repressed in one way or another. We discuss what

these findings tell us about the nature of the genome’s regulat-

ory architecture, as well as their implications for human disease

and for the evolution of gene expression.
2. Cis-regulatory elements, disease and
phenotypic variation

The importance of regulatory effects in disease and more

generally in shaping vertebrate phenotypic variation has

almost become a paradigm in modern genomics. Early on,

the observation that identical or overlapping clinical symp-

toms could be caused either by mutations in a gene or by

chromosomal rearrangements with breakpoints hundreds to

thousands of kilobases away from these genes, strongly

suggested the presence of remote influences in controlling

gene activities. Initially poorly characterized, these influences

were collectively defined under the catch-all notion of ‘position

effects’ (reviewed in Kleinjan & van Heyningen [17]). It is now

known that several of these conditions result from the disrup-

tion of a remote regulatory element [7,8,18,19], sometimes

present more than 1 Mb away from the gene it is controlling.

New technologies, such as array-comparative genome hybrid-

ization and next-generation sequencing, enable mapping of

genomic structural variations in patients and in normal

populations with greater resolution (reviewed in Alkan

et al. [20]). This facilitates the identification and analysis of

cases with potential ‘position effects’, including hitherto

difficult-to-detect genomic changes. Indeed, thanks to these

developments, microduplications that encompass regulatory

elements have been revealed as a substantial cause of human

developmental malformations [21–25].

Beyond Mendelian diseases, genomic and genetic variations

affecting regulatory elements also contribute more broadly to

phenotypic diversity: a large fraction of variants associated

with disease susceptibility and small-effect quantitative traits

resides in intergenic regions [12,26,27]. Observations that

intra- and inter-species phenotypic variation is also commonly

due to changes in regulatory regions [28–31] further suggest

that modulation of gene function through regulatory innovation

or modulation can be a driving force of evolutionary changes.

Because of this important role of regulatory elements in

health, disease and evolution, extensive efforts have been
applied to identify such elements, and to understand how

they contribute to gene expression.
3. Identifying regulatory elements
Broadly, the regulatory elements described to date can be

grouped into (proximal) promoters, enhancers, repressors

and insulators [32] (figure 1a). Our ability to detect such

elements, either computationally or experimentally, has

improved markedly over the past decade or so, thanks to the

discovery of a number of characteristic features (recen-

tly reviewed by Hardison & Taylor [33]). For example,

the availability of whole genome sequences has enabled

the rapid identification of evolutionarily conserved non-

coding sequences, which frequently have regulatory functions

[34,35], although some elements, undergoing more rapid turn-

over, are not amenable to such screens [13,36]. Cis-regulatory

elements are bound by clustered TFs [37], and TF occupancy

is linked to diverse chromatin features that can be ascertained:

cis-regulatory elements often overlap nucleosome-depleted

regions, and are characterized by distinct histone composition,

histone modifications and by binding of specific proteins, such

as transcription cofactors and chromatin remodelling proteins

(figure 1a). Chromatin profiling has therefore become an effi-

cient method to allow genome-wide identification of such

sites [33]. Nucleosome-depleted regions can be detected by

nuclease hypersensitivity [38] or FAIRE [39], whereas regions

associated with specific histones, histone marks or proteins

can be identified by ChIP with appropriate antibodies. Such

methods, together with the decreasing cost of sequencing,

have recently led to detailed inventories of regulatory elements

[13,40–42]. It is noteworthy that the presence of specific marks

such as H3K27ac on distant enhancer elements can also help

distinguish elements that are active, from elements that may

only be in a poised state, thus providing ways to use biochemi-

cal profiles to infer biological activities [43,44]. In addition, the

development of methods, such as 3C and its derivatives (4C,

5C and HiC), which detect chromosomal regions that

physically interact with promoters, has also been useful to

identify regulatory elements, particularly distant ones [45,46].

However, it should be emphasized that these approaches

exploit indirect properties of enhancers and do not assess

them in an operational manner (i.e. whether an enhancer actu-

ally contributes to gene expression). Indeed, estimating the

proportion of TF binding events or chromatin marks that are

truly functional is therefore an important on-going debate in

the field, as is the definition of ‘biological function’ [47–49].

In vivo reporter assays provide a more functional

approach to test individual elements, by assessing their abil-

ity to drive gene expression. A frequently used reporter assay

consists of cloning a putative enhancer fragment upstream of

a reporter gene driven by a promoter. The promoter used is

often a small neutral promoter region, with minimal or no

activity by itself, but that responds accurately to the input

of the adjacent enhancer. Accordingly, the activity of the

enhancer is revealed by the expression pattern of the reporter

gene (figure 1b). The recent development of massively paral-

lel reporter assays [50,51] offers ways to test the activities of

thousands of elements simultaneously, and to dissect indi-

vidual enhancers by testing the influence of thousands of

random mutations on their activity. These high-throughput

approaches are opening important avenues, but are currently
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Figure 1. Regulatory elements and how to detect them. (a) Multiple regulatory elements are involved in the tissue-specific transcriptional regulation of genes
(arrows). These elements include promoters (ovals preceding genes), enhancers (ovals, with tissue-specific activity indicated by different colours) and insulators
(red double triangle). Enhancers can be located at great distance from their target gene. Different regulatory elements are marked by distinct chromatin signatures
and binding of proteins, which can be used to identify active elements in accessible tissues using biochemical methods. It is generally accepted that activation is
achieved through direct interactions between enhancers and target promoters, which can be detected by chromosome conformation capture (3C) techniques (the
stroke of the connecting arrows represents the frequency/strength of the interactions). TFs, transcription factors; DNaseI HSS, DNaseI hypersensitive site. (b) The
activity of individual regulatory modules can be tested in in vivo reporter assays. This is usually achieved by cloning the element upstream of a reporter gene,
by measuring the expression of this transgene integrated randomly into the genome (indicated by wavy black line). (c) In comparison, GROMIT uses a transposon
(white arrows), which carries regulatory sensor (LacZ gene, driven by minimal promoter) as cargo. Through random transposition, the reporter gene can be
distributed throughout the genome, showing integrated regulatory input from the multiple modules (indicated by arrows) acting on that position.
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largely restricted to cell lines. They can be applied to in vivo
conditions, with some limits: for example, in mice, hydrodyn-

amic tail vein injection of DNA constructs results in episomal

uptake of fragments, but primarily in the liver [50]. Thus,

despite these new technological developments, getting

detailed information about enhancer activity across multiple tis-

sues, developmental stages, in both the proper physiologic and

epigenetic contexts, may still be better achieved with enhancer-

reporter gene transgenes integrated in one-cell embryos.

Importantly, new improved vectors and integration systems

(transposons, lentiviruses, integrases [52–55]) may facilitate

and improve the efficiency of in vivo integrative transgenesis.

Already, systematic in vivo transgenic reporter assays have led

to collections of enhancer activities that provide direct and

important clues about the nature of tissue-specific regulatory

elements [56,57].

These transgenic assays have revealed that a great part of

the transcriptional activity of genes can be attributed to the

action of autonomous regulatory modules, each in charge

of a subset of the overall expression pattern. Their action is

often described as additive, and adjacent modules, active in

different tissues, do not interfere with each other [58]. How-

ever, in essence, these assays are reductionist, and test
relatively short pieces of DNA sequences in isolation, which

are usually randomly integrated into the genome, and there-

fore out of their natural genomic context. In several instances,

enhancer elements at the endogenous locus do not recapitu-

late the activity that they showed when tested in enhancer

assays [59–61]. The observed differences have been put

down to non-additive activity of regulatory elements in

their native region, or position effects owing to the genomic

context where the element is inserted.

It may be worth underlining that such ‘context-dependent’

functions have also been reported by other studies, and prob-

ably do not simply reflect technical artefacts of transgenic

assays. For example, sequence variation explains only a very

small fraction of the differential TF occupancy found in

human samples [62], suggesting that distant elements or ‘epi-

genetic’ factors could contribute to the activity of the same

element (see Voss et al. [63]). Detailed studies of some endo-

genous loci, including their functional dissection through

deletions and inversions, highlight the importance of regulat-

ory interactions, either through physical interactions as a

chromatin hub or regulatory archipelagos [64,65], or through

more complex types of ‘regulatory priming’ of an enhancer

by another element [66]. Consequently, it is imperative not
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only to catalogue regulatory elements, but also to establish how

regulation is achieved mechanistically. Importantly, in most

transgenic assays, the genomic element of interest is cloned

just next to the reporter promoter, whereas the biological

activity of remote enhancers results not only from their recruit-

ment of TFs, but also from their capacity to interact with

appropriate target gene(s) in the appropriate tissue or cell

type. Some of these aspects of enhancer function can be

addressed by testing their activity in the context of yeast or bac-

terial artificial chromosomes (BACs) [10,67]. Owing to their

large size, BACs are generally assumed to represent endogen-

ous regulatory landscapes more accurately, although large,

complex landscapes may still not be fully covered within an

individual clone.
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4. From enhancers to target genes
A vital step to comprehend how gene regulation is achieved

mechanistically lies in understanding how the interactions

between genes and surrounding regulatory elements are

controlled. However, the assignment of target genes to regulat-

ory elements can be ambiguous, because regulatory regions

can extend over hundreds of kilobases, and the gene most prox-

imal to an enhancer is not necessarily its target [10,11,68,69].

One approach to predict target genes has been to search for

co-occurrence of marks specific for active enhancers and pro-

moters, thereby establishing enhancer–promoter units [42].

Alternatively, current views support the idea that most enhan-

cers are engaged in direct physical interactions with their target

gene promoters; these interactions can be detected by 3C or

its more high-throughput derivatives (4C, 5C, HiC) [46].

These methods allow the identification of regions physically

interacting with promoters [15], or—if combined with ChIP

for specific proteins (ChIA–PET)—the detections of inter-

actions between regions bound by those proteins [14,70].

Interestingly though, interactions between distal elements

and promoters are not exclusive: instead, promoters as well

as enhancers are frequently engaged in multiple interactions

[14,15]. Whether these interactions are functionally relevant

(e.g. to achieve co-regulation of genes), or simply a

consequence of other properties remains unclear. Physical

proximity of co-regulated genes located on different chromo-

somes has also been observed [71], but these situations most

probably represent co-localization to discrete subnuclear

domains (transcription factories [72]) optimized for coordina-

ted regulation, rather than trans-regulation through elements

on another chromosome. The small number of documented

cases where genes are controlled by regulatory elements loca-

lized on a different chromosome [73–75] most probably

represent exceptional—and sometimes debated—systems. Fur-

thermore, overall interchromosomal interactions have been

reported to be rather indiscriminate, with no evidence for

their being organized by few, specific regions, and the fre-

quency of interactions correlates strongly with the average

distance of a given locus from the edge of a chromosome terri-

tory [76,77]. Together, with the paucity of interchromosomal

interactions whose frequency reaches the levels of known dis-

tant promoter–enhancer pairs [15], this argues that for most

genes, the elements that contribute to their expression will be

found in cis, yet at distances that could frequently be above

hundreds of kilobases. Further evidence for the overwhelm-

ing importance of cis-regulation comes from genetic crosses
between different mouse strains, which has indicated that

potentially more than 90 per cent of gene expression differen-

ces can be attributed—either partially or completely—to

variants acting in cis [78].

In this context, different systems are known to contribute

to the specificity of these often distant enhancer–promoter cis
interactions, either through direct tethering in favour of target

genes [79], or through insulator sequences that block the ecto-

pic activation of other neighbouring genes [80]. Intriguingly,

at the same time, multiple observations suggest that enhan-

cers can act also promiscuously, resulting in activation of

neighbouring but biologically irrelevant genes. Such collat-

eral activity has been documented for Lnp, adjacent to the

Hoxd cluster [10], Nme4 associated with the a-globin locus

[81] and Igb in the pituitary [82].

These caveats in our current understanding stem in part from

the different approaches used to identify individual elements

and to assert their function with frequently indirect readouts.

This highlights the need for complementary and alterna-

tive approaches that may allow assessing regulatory activity

in vivo, and in the endogenous context to add to the accumulated

molecular information with more functional insights.
5. Charting regulatory landscapes with GROMIT
To bridge this gap in our understanding, we have recently devel-

oped a novel method, GROMIT, that enables us to chart the

organization and distribution of regulatory activities along

chromosomes, providing an integrated and non-gene-centric

view of cis-regulatory activity [16]. The basic principle of

GROMIT is to distribute a regulatory sensor throughout the

mouse genome, by harnessing the properties of the Sleeping
Beauty transposon [83,84]. The regulatory sensor consists of a

LacZ reporter gene, driven by a 50 bp long fragment of the

human b-globin promoter (figure 1c). This short promoter is

essentially neutral: it has no activity by itself, but is very sensitive

to endogenous regulatory information, without perturbing

endogenous gene expression [16]. Therefore, this system makes

it possible to determine the regulatory input acting on a given

genomic position, where the transposon in inserted. Because

the sensor is incorporated into the genome, it measures the

integrated regulatory activity of all elements (activating

and repressing) acting on that position. This distinguishes

GROMIT from reporter assays, which test individual elements

in isolation and at random positions. Importantly, the transposon

carrying this sensor gene can be remobilized efficiently in vivo, in

a cut-and-paste manner, to generate animals with new insertions.

The insertion sites can be precisely mapped, and in contrast to

other systems show no integration bias towards particular

regions or genomic hallmarks [16]. This property allows the pro-

duction of a very large number of insertions, and the study of the

expression patterns at those positions (figure 2a). These insertions

collectively establish a map of how regulatory influences that

control gene expression are distributed.
6. Widespread distribution of tissue-specific inputs
Initial analysis of b-galactosidase stainings of more than 150

insertions, collected at stage E11.5 of embryonic development,

revealed that almost 60 per cent of tested locations showed

expression [16], regardless of their position relative to genes.

An expanded dataset confirmed this initial observation
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Figure 2. Regulatory activity captured by GROMIT and comparison with enhancer activity. (a) We generated a collection of random, genome-wide insertion sites
(left, each red arrow representing an insertion site), which we tested one by one for LacZ expression at E11.5 of embryonic development, revealing pervasive, tissue-
specific expression throughout the genome (right, a representative set of obtained expression patterns). A complete list of all insertions and the associated expression
patterns is available in the TRACER database (tracerdatabase.embl.de). (b) Comparison of the activity of GROMIT insertions (SB insertions) and the activities
documented in the VISTA enhancer browser (VISTA enhancers) [56]. The pie charts show how frequently insertions or enhancers displayed activity in a given
number of expression domains (indicated by colours). For the analysis, we removed all insertions from the GROMIT dataset that were clearly part of the same
regulatory landscapes (showing similar expression patterns and less than 200 kb apart), and only took into consideration VISTA enhancers from early screens
(IDs between 1 and 1290), to avoid bias introduced by tissue-specific p300-bound regions [85]. (c) Distribution of tissue-specific activities between GROMIT insertions
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in a given tissue.
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(figure 2a). The vast majority of insertions showed restricted,

tissue-specific expression patterns (figure 2a), with fewer than

5 per cent showing widespread expression. This propensity

towards tissue-specific expression from most genomic positions

highlighted that regulatory activities are distributed along

chromosomes, and not centred towards the vicinity of

specific regions such as gene promoters. Importantly, the

observed patterns frequently shared striking similarity with

the activities of neighbouring enhancers that had been charac-

terized previously or with flanking genes or other insertions.

Collectively, these results indicated that GROMIT captures

biologically relevant regulatory activities, including those

acting far from genes.

First, we took advantage of the VISTA enhancer browser

[56] to compare the autonomous activities of individual

enhancer elements defined by in vivo enhancer assays with
the patterns observed at endogenous genomic positions

using GROMIT. On a global level, the comparison showed

that the expression patterns captured by our regulatory

sensor were overall more complex, with more than 75 per

cent of insertions showing activity in more than one tissue,

whereas in the reporter assay, more than a half of the enhan-

cers showed reproducible expression in only a single tissue

(figure 2b). This broader specificity suggested that—in line

with our expectations—the GROMIT sensor generally cap-

tured the overlapping activity of more than one enhancer at

a given position. These findings were confirmed by case

studies of individual loci (two examples shown in figure 3,

others in [16,65]).

The relative distribution of tissue-specific activities obtained

by GROMIT insertions and VISTA enhancers was quite different

(figure 2c). For example, the set of enhancers analysed by VISTA

tracerdatabase.embl.de
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was strongly biased to drive expression in fore-, mid- and hind-

brain, whereas only 4 per cent of these enhancers were active in

the face. The expression of the regulatory sensor did not show a

similar preference for neural tissues, but exposed a frequent

regulatory potential for expression in facial tissues (18% of all

insertions, counting insertions clustered within 200 kb as one).

Possibly, these differences may be purely of technical nature:

the VISTA dataset was compiled using an Hsp68 promoter frag-

ment [56], whereas GROMIT uses the b-globin minimal

promoter [16], and although enhancers, by their classical defi-

nition, should not show promoter preference, some exceptions

have been described [86]. Thus, promoter bias might add to

the different distribution of tissue-specific activities. But, these

discrepancies could also reflect biological phenomena. For

example, the VISTA enhancers used for the analysis were

picked from sequences with a high degree of evolutionary con-

servation. It is known that the degree of sequence conservation

can be quite variable for enhancers active in different tissues [36],

and therefore the different distributions may mirror the different

evolutionary constraints associated with regulatory elements
active in different tissues. The observed discrepancies could

also arise from tissue-specific differences in the regulatory archi-

tecture: if the distribution of particular enhancers differs (e.g. if

brain enhancers cluster together), or if their range of action is dis-

similar (e.g. brain enhancers have a shorter range of action), then

a similar shift would be observed. Further studies will be needed

to investigate these questions, but this comparison shows the

need of combining diverse approaches to get a more complete

picture of gene regulatory mechanisms.
7. From enhancers to regulatory landscapes
Frequently, adjacent insertions (or an insertion-endogenous gene

pair) shared extensive similarities in their expression patterns,

with several cases where insertions were several hundred kilo-

bases apart (examples in figure 3 and in [16]). The widespread

activities and large intervals exposed by these observations are

reminiscent of the previously described ‘regulatory landscapes’

(genomic domains where otherwise unrelated genes shared
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expression specificities) [10,11], and ‘genomic regulatory blocks’

(regions of conserved synteny between genes and non-coding

elements among evolutionary distant relatives) [87]. The data

obtained by GROMIT imply that their presence is a pervasive

feature, and is not restricted to few loci around key developmen-

tal regulatory genes. It is yet unclear, if one or few enhancers with

particular long-range properties define large regulatory land-

scapes, or if the conjugated action of multiple co-interacting

regulatory modules dispersed across a large interval determines

these co-expression territories, as suggested by recent work on

the Lnp–Hoxd interval [65].

Naturally, similar gene expression patterns by themselves

cannot be considered proof that a given enhancer is regulat-

ing reporter gene expression, or that the same enhancers

are regulating the endogenous and the reporter gene. Accord-

ingly, it will be exciting to subject tissues with insertions

obtained with GROMIT to other assays, such as chromosome

conformation capture, to determine whether the insertion

sites physically interact with their putative enhancers, and

whether the interaction profile of the endogenous gene and

the reporter gene is similar, given their often near-identical

expression pattern. Similarly, if the TFs binding a given

enhancer are known, ChIP and ChIA–PET will provide inter-

esting avenues to detect whether these proteins mediate

direct physical interactions and influence the genomic range

and distribution of enhancer activities.
8. From regulatory landscapes to gene
expression

As mentioned earlier, the expression patterns displayed

by the regulatory sensor often overlap with the expression

domains of a neighbouring gene, and in line with this, the

expression domains captured by GROMIT were generally

a composite of the individual activities of the multiple

enhancers that surround it (figure 3).

Yet, at a given genomic position, the reporter gene fre-

quently showed only a subset of the expression domains of

the endogenous gene (figure 3), as well as sometimes differ-

ences with an immediately adjacent enhancer. As mentioned

earlier, these discrepancies can be, in part, technical (promoter

bias, sensitivity of in situ probes, etc.). However, adjacent inser-

tions sometimes revealed different subsets of the expression

pattern of the flanking endogenous gene, showing that all

domains could be captured by our promoter, and the causes

for these differences are more intricate [16]. This implies that

the regulatory elements that control gene expression may

have distinct ranges of action, thereby defining different regu-

latory landscapes, and ultimately resulting in differential gene

expression at different positions within a locus. The obser-

vation that GROMIT insertions can report activity of an

enhancer across hundreds of kilobases underlines that

GROMIT is not ideal for precise identification of enhancer

location. However, it enables us to define the range of action

of enhancers, the extent of large regulatory landscapes, as

well as their boundaries. The distance separating two adjacent

insertions showing different expression patterns can some-

times be as short as a few tens of kilobases [16], hinting to

the position of possible regulatory insulator elements, which

can hardly be identified by direct means.

In addition, detailed side-by-side comparison of reporter

and endogenous gene expression, with the enhancer activities
obtained by transgenic assays, showed that a substantial

subset of autonomous enhancer activities were absent at the

intact locus, and accordingly failed to activate the endogen-

ous target gene or a nearby sensor. How this is achieved

remains unclear (figure 3c). It is possible that enhancer

activity per se is inhibited in certain tissues, for example by

direct repressors of enhancer activity, possibly by establishing

a repressive chromatin structure, which prevents binding of

TFs. Alternatively, the ability of an enhancer to activate a

gene or a sensor at a distance may be restricted by the chro-

mosomal conformation of the locus or the interaction profile

of that enhancer. Regardless of the mechanistic cause, how-

ever, these results imply that long-range regulatory activity

is not only prevalent throughout the genome, but that the

expression domains determined by enhancers are fine

tuned locally by their interplay with other factors involved

in gene regulation, resulting in a ‘latent’ potential that can

be revealed in another genomic context.

Intriguingly, with few insertions within large gene-deserts,

we observed expression of the reporter sensor, which was com-

pletely at odds with the activity of flanking endogenous protein-

coding genes, defining regulatory landscapes that do not seem

to include target genes. It is possible that these regulatory activi-

ties control the expression of un-annotated or non-coding genes,

such as microRNAs (miRNAs) or long non-coding RNAs

(lncRNAs) or even act in trans, towards a different chromosome

or at extremely long distance. However, it could also suggest

that gene-poor regions may be inhabited by a plethora of

elements with tissue-specific regulatory potential, without

attributed target genes and only latent biological functions.
9. Outlining the regulatory map of the genome
Taken together, the operational scan of regulatory potential

provided by GROMIT, and our prior knowledge of transcrip-

tional regulation revealed some novel principles of the global

regulatory architecture of the mouse genome (figure 4a).

First, we observed the pervasive presence of extended regulat-

ory landscapes. Within these landscapes, related expression

patterns were observed at multiple positions by both our regu-

latory sensor and the endogenous genes. A comparison with

known enhancers revealed that these expression patterns are

often the integrated output of multiple regulatory elements.

Importantly, an endogenous gene may be associated with

overlapping yet distinct landscapes, each one with different

tissue specificities and covering different intervals. The sub-

division of a single genomic locus into different regulatory

landscapes may arise from the relative positions and properties

of the regulatory elements that lie within it. In addition to the

range of action of individual enhancers, structural constraints

and higher-order three-dimensional organization of the

genome, including lamin-associated domains [90,91], CTCF-

loops [92] or topologically associated domains [93,94] may

also influence the formation of these landscapes. Thus, the

extended regulatory landscapes observed with GROMIT are

probably the functional consequence of chromatin and confor-

mational structures, as well as of the spatial range of enhancers

and of their extensive interactions, as described for the Hoxd
regulatory archipelago [65].

A future challenge will remain to precisely relate our oper-

ational view of regulatory elements and transcriptional output,

with the underlying mechanics of gene regulation, and define



retrotransposed gene

acquisition of expression domains
according to local ‘regulatory potentials’

chromosomal
rearrangement

ectopic expression

lncRNA

(a)

(b)

(c)

Figure 4. An integrated view of regulatory landscapes and their implications. (a) The activity of enhancers (ovals) is distributed throughout extended regions
(regulatory landscapes, indicated by bars in the same colour as the enhancer), rather than only activating specific promoters. Activities of different enhancers
can overlap, giving rise to complex expression patterns. Some enhancer activities are masked within their endogenous environment, giving rise to latent activities
(indicated by split blue-white oval). Distinct regulatory landscapes can be separated by insulator-like elements (red double triangle). Because regulatory activities are
not targeted towards genes, this results in the widespread presence of tissue-specific expression potential, captured with GROMIT insertions (indicated by schematic
of transposon). (b) The pervasive presence of regulatory activities within the regulatory landscapes can contribute to transcription of non-coding genes, such as long
non-coding RNAs (lncRNAs, indicated by black arrow), giving rise to their tissue-specific expression patterns (shown by transcript in the same colour as regulatory
landscape). Novel genes can easily acquire a specific expression, for example by retrotransposition into an existing regulatory landscape. Thus, a retrogene with no
activity by itself (white arrow) will gain expression as part of the regulatory landscape (red – blue arrow). (c) Chromosomal rearrangements can also lead to novel
expression patterns. As demonstrated by a schematic deletion of the region overlapping the red triangle, rearrangements can results in alterations of the regulatory
landscape, thereby putting genes within the range of action of remote regulatory elements. Such ‘position effects’ can contribute to disease [17,88] and to the
evolution of gene expression [89].
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the causal and functional relationships between regulatory and

structural domains. To obtain such an understanding will

require a multi-pronged approach, identifying single elements

and their intrinsic activity, generating high-resolution, high-

density data from systems such as GROMIT to determine the

integrated regulatory output, as well as from biochemical

assays to map epigenetic modifications and chromosomal inter-

actions. Such detailed studies will also identify what factors

contribute to limit the range of action of enhancers, and what

causes the local differences in their activity.
10. Further implications: from regulatory maps
to gene expression and phenotype

GROMIT exposed the fact that enhancer activities are not

exclusively and selectively targeted to gene promoters, but

distributed throughout the genome. This suggests that
similar to our regulatory sensor, any type of cryptic promoter

may acquire intergenic non-coding transcripts, the existence

of which has been widely documented [95]. In the light of

our findings, the tissue-specific expression of non-coding

transcripts could therefore be a trait that can arise simply

from their genomic location, and is not automatically a

strong indication of functionality. Consequently, the overlap

of expression between lncRNAs and their flanking protein-

coding genes may not necessarily indicate functional regu-

lation in cis of the latter by the first [96,97], but simply their

common location within the same regulatory landscape

(figure 4b). This is not to say that all non-coding RNAs are

simply transcriptional noise. But the widespread and pro-

miscuous distribution of tissue-specific regulatory activities

revealed by GROMIT indicate that expression specificity may

not be sufficient indication of functionality, and that additional

experimental evidence is necessary to determine the biological

relevance of non-coding transcripts [98].
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On the other hand, the prevalence of tissue-specific regulat-

ory activities within large intergenic domains also constitutes

opportunities for evolutionary tinkering: they provide activi-

ties that can facilitate the emergence of functional lncRNAs,

and explain how retrotransposed genes [99], and evolutiona-

rily young genes such as orphan genes [100] or protogenes

[101] can obtain specific expression domains (figure 4b).

Importantly, the local modulation of intrinsic regulatory

activities implies that structural changes in the genome, such

as deletions, duplications and inversion, could alter this

interplay, leading to alterations in the regulatory landscape,

through specific gain or loss of expression patterns (i.e. the

masking or unmasking of regulatory potential). Whereas

the juxtaposition of existing genes in a novel regulatory

environment could result in acquisition of new expression

patterns (figure 4c). This phenomenon could be the cause of sev-

eral pathological conditions, where genomic rearrangements

‘move’ genes in new regulatory environments, exposing them

to novel regulatory influences, either by ‘adopting’ regulatory

influences normally acting on a different gene [10,88,102], or

by unmasking ‘latent’ regulatory activities. The hereditary

mixed polyposis syndrome caused by a duplication upstream

of the GREMLIN gene [103] and pre-axial polydactyly caused

by duplication of the limb-enhancer region of SHH [24,25]

may illustrate this latter phenomenon well. More generally,
such a phenomenon provides a new framework for under-

standing the phenotypic impact of the widespread structural

variation found in the human population [104]. Thus, pheno-

types may not only arise directly from the deletion or

duplication of regulatory elements, but in part also from shifting

the boundaries of existing regulatory landscapes, leading

to modulation of gene expression in the vicinity of structural

variants, up to few megabases away. Importantly, this is in

line with experimental evidence of altered gene expression as

a consequence of genomic rearrangements, both in humans

and mice.

Thus, ultimately, an integrated map of the regulatory

organization of the genome, including the position of enhan-

cers, but also their range of action, their interactions, the

location of regulatory boundaries and latent regulatory poten-

tials will be instrumental to translate individual genomic

sequence information into phenotypic predictions.
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