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CTCF has it all. The transcription factor binds to tens of thousands of genomic

sites, some tissue-specific, others ultra-conserved. It can act as a transcriptional

activator, repressor and insulator, and it can pause transcription. CTCF binds

at chromatin domain boundaries, at enhancers and gene promoters, and

inside gene bodies. It can attract many other transcription factors to chroma-

tin, including tissue-specific transcriptional activators, repressors, cohesin and

RNA polymerase II, and it forms chromatin loops. Yet, or perhaps therefore,

CTCF’s exact function at a given genomic site is unpredictable. It appears to

be determined by the associated transcription factors, by the location of the

binding site relative to the transcriptional start site of a gene, and by the

site’s engagement in chromatin loops with other CTCF-binding sites, enhan-

cers or gene promoters. Here, we will discuss genome-wide features of

CTCF binding events, as well as locus-specific functions of this remarkable

transcription factor.
1. Introduction
CTCF is a ubiquitously expressed and an essential protein [1], and is, in many

ways, an exceptional transcription factor. It was first described as a transcrip-

tional repressor [2], but was also found to act as a transcriptional activator

[3,4]. Most strikingly, it harbours insulator activity: when positioned in between

an enhancer and gene promoter, it can block their communication and prevent

transcriptional activation [5–7]. Systematic chromatin immunoprecipitation

experiments combined with high-throughput sequencing (ChIP-seq) have

been performed to map CTCF binding events across the genome in many tis-

sues of different species [8–10]. They show that the genome is covered with a

myriad of CTCF binding sites. More than most other transcription factors

CTCF appears to bind to intergenic sequences, often at a distance from the tran-

scriptional start site (TSS) [11]. CTCF was one of the first proteins demonstrated to

mediate chromatin looping between its binding sites [12,13]. Further evidence

for its role in the organization of genome structure comes from observations

that it frequently binds to boundaries between chromosomal regions that

occupy distinct locations in the nucleus, to boundaries between regions with

different epigenetic signatures and/or different transcriptional activities, and to

boundaries between recently identified topological domains, which are spatially

defined chromosomal units within which sequences preferentially interact with

each other [14,15]. Here, we will discuss studies on CTCF and evaluate its function

in genome folding and gene expression.
2. CTCF at the b-globin and the H19 – Igf2 locus: a short history
Functions of the versatile DNA-binding protein CTCF were initially explored at

individual loci, in particular at the b-globin locus and the imprinted H19–Igf2

locus. The chicken b-globin locus carries a DNaseI hypersensitive site (50HS4)

at its 50 side that separates the locus from neighbouring heterochromatin and

this site was found capable of blocking enhancer activity [16]. CTCF was
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Figure 1. CTCF, chromatin loops and transcription regulation at selected gene loci. (a) Genes at the b-globin locus are under control of the locus control region
(LCR). CTCF-binding sites interact to create a chromatin hub with a loop encompassing the LCR and the b-globin genes. Upon erythroid differentiation, erythroid-
specific transcription factors and cohesin enable the formation of an active chromatin hub in which the LCR contacts the genes and enhances their expression.
(b) Imprinted expression of the H19 and Igf2 genes is mediated by methylation-dependent binding of CTCF at the imprinted control region (ICR). (i) On the paternal
allele, methylation of the ICR prevents CTCF binding and allows expression of the Igf2 gene mediated by contacts between the distal enhancer (E) and the Igf2
promoter. (ii) CTCF binding at the ICR blocks communication between the Igf2 gene and the distal enhancer resulting in expression of the H19 gene from the
maternal allele.
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subsequently demonstrated to be responsible for this insulator

activity of 50HS4 [5]. The human and mouse b-globin loci are

also located inside large chromosomal regions of inactive chro-

matin and are similarly flanked by CTCF-binding sites [17,18].

These were suspected to form a barrier for incoming hetero-

chromatin, but their deletion did not lead to closing or

inactivation of the b-globin locus [12,19]. The application of

chromosome conformation capture (3C) technology enabled

the demonstration that the b-globin CTCF sites physically

interact with each other. They form large chromatin loops

encompassing the b-globin main regulatory element, the

locus control region (LCR), and its genes. These loops are ery-

throid-specific and are formed in erythroid progenitor cells,

prior to LCR-mediated high expression of the b-globin genes

(figure 1a; [12,20]). It was speculated that the CTCF loops

can facilitate subsequent spatial interactions between the

LCR and its target genes, but evidence for this is still lacking.

Another locus historically important for CTCF’s repu-

tation as an interesting transcription factor is the imprinted

H19/Igf2 locus. The locus contains a differentially methyl-

ated region that is known as the imprinting control region

(ICR), located in between the H19 and the Igf2 genes. The

ICR determines that H19 is active on the maternal allele

and that Igf2 is transcribed from the paternal allele [21,22].

CTCF entered the stage here when it was found to bind to

the ICR in a methylation-dependent manner: the binding of

CTCF to the unmethylated maternal ICR prevents shared

enhancers near the H19 gene from reaching across and acti-

vating Igf2. On the paternal allele, CTCF cannot exert its

insulator activity as DNA methylation prevents its binding

to the ICR (figure 1b; [6,23]). Again, chromatin loops are

formed and seem important for ICR functioning [24–26].
Allele-specific chromatin loops with both enhancers and pro-

moters are formed by the maternal, CTCF-bound ICR,

suggesting that such contacts may underlie CTCF-mediated

insulator activity [26]. Collectively, the early studies on

CTCF functioning at the b-globin and the H19–Igf2 locus

revealed that the protein can interfere with promoter–enhancer

communication. They also showed that CTCF can form chro-

matin loops between its binding sites, and perhaps also with

other regulatory sequences.
3. CTCF binds across the genome to chromatin
boundaries, enhancers and gene promoters

The systematic mapping of genome-wide binding sites by

ChIP revealed that CTCF binds to tens of thousands of geno-

mic sites [10,11,27]. Association to roughly one-third of these

sites is relatively conserved across different cell types [9]. An

inter-species comparison between CTCF binding profiles in

the liver of five mammalian organisms uncovered approxi-

mately 5000 sites that are ultra-conserved between the

species and tissues. These appear to be the high-affinity bind-

ing sites, suggesting that differences in affinity could be

related to the strength of conservation [8]. The activation of

retro-elements has produced species-specific expansions of

CTCF-binding sites, and this form of genome evolution is

still highly active in mammals [8]. Classification of CTCF

binding sites based on a consensus motif score lead to similar

conclusions: high occupancy sites appear to be conserved

across cell types, whereas low occupancy sites are more

tissue restricted [28].
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Figure 2. A versatile role for CTCF in chromatin biology. (a) Functional categories of CTCF binding sites across the genome, adopted from Chen et al. [36].
(b) (i) CTCF binding sites are found at boundaries that separate active and inactive domains. CTCF binding to (ii) enhancer-like sequences and (iv) gene promoters
can facilitate looping between these sequences. (iii) CTCF binding in between enhancers and gene promoters can block the interaction between an enhancer and its
target promoter.
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The CTCF consensus binding sequence contains CpG and

can, therefore, be subject to DNA methylation. CTCF is able

to bind to methylated DNA sequences in vitro [29], but prefer-

entially binds to unmethylated sequences, as seen also at

the H19–Igf2 locus. In fact, DNA methylation appears to

play a role in some of the tissue-specific binding events of

CTCF [9]. Moreover, CTCF can influence DNA methylation

by forming a complex with two enzymes related to DNA

methylation: poly(ADP-ribose) polymerase 1 (PARP1) and

the ubiquitously expressed DNA (cytosine-5)-methyltransfer-

ase 1 (DNMT1). CTCF activates PARP1, which then can add

ADP–ribose groups to DNMT1 to inactivate this enzyme,

with maintenance of methyl-free CpGs as the result [30–32].

A portion of CTCF binding sites is found enriched at

transitions between active chromatin (high in H2K5Ac) and

inactive chromatin domains (high in H3K27me3) [27,33].

This seems particularly true for retrotransposed CTCF binding

sites [8]. CTCF sites frequently flank the so-called lamina-

associated domains (LADs). LADs are chromosomal regions

associated with the lamin-based protein network that coats

the inner side of the nuclear envelope; these chromosomal

regions tend to be transcriptionally inactive [14]. Its presence

at LAD boundaries suggests that CTCF helps to organize

the three-dimensional structure of chromatin. In Drosophila,

the knockdown of CTCF leads to decreased levels of

H3K27me3 inside inactive domains, indicating that CTCF

binding at boundaries is required for the maintenance of repres-

sion [34]. Association of CTCF follows the resetting of active and

inactive domains during cellular differentiation, further

suggesting that it functions to separate different chromatin

states [33]. Some of the LADs also dynamically change during

cellular differentiation [35], but whether CTCF binds to the

borders of these differential LADs is currently unclear.

Although CTCF binding is often found distal to TSSs, it does

show a strong correlation with gene density (figure 2a,b) [11].

Indeed, evidence for a direct role of CTCF in transcription regu-

lation came from early studies on individual genes [3,37].

Genome wide, a portion of CTCF sites co-localize with the

promoter-specific H3K4me3 mark and another part coincides
with the enhancer mark H3K4me1 [27]. CTCF binding events

at promoters tend to be conserved across tissues, whereas

CTCF binding to enhancers is more tissue restricted [10].
4. CTCF and cohesin share DNA binding sites
An unanticipated observation was the co-localization of cohe-

sin with many of the chromosomal binding sites of CTCF

[38–42]. Cohesin has always been associated with DNA

replication and sister chromatid cohesion during the S, G2

and M phase of the cell cycle [43]. It is a protein complex

that contains members of a family of ‘structural maintenance

of chromosomes’ proteins. The complex forms a ring-like

protein structure that is thought to embrace two DNA helices.

Surprisingly at the time, cohesin was also found to bind chro-

matin in post-mitotic cells, with half of its binding sites

overlapping with CTCF sites [38–40]. Cohesin association

to these sites is dependent on the presence of CTCF: without

CTCF, cohesin still binds to chromatin but is no longer found

at specific sequences. In contrast, CTCF does not rely on cohe-

sin for finding its DNA binding sites. One possibility is that

bound CTCF serves as a roadblock or barrier to position a

sliding cohesin molecule on the chromatin template [38–42].

Its cell-cycle independent association to DNA suggests

that cohesin has an additional role in gene regulation.

Given its capacity to hold together two sister chromatids,

cohesin is obviously also attractive as a looping factor.

Indeed, at the H19–Igf2 locus, cohesin was shown to be

important for CTCF-mediated chromatin loop formation

and proper regulation of Igf2 transcription [44]. Similarly,

at the interferon gamma (IFNG) locus, depletion of cohesin

was found to disrupt chromatin loops between regulatory

DNA sequences and cause a reduction in IFNG expression

[45]. Also at the b-globin locus cohesin has been implicated

in chromatin looping, not only between the flanking CTCF

sites but also between the LCR enhancer region and the

downstream b-globin target genes [46]. Conditional deletion

of cohesin in thymocytes was shown to disrupt the formation
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of regulatory chromatin loops in the T-cell receptor-a locus,

with reduced transcription and impaired V(DJ) rearrangement

as a consequence [47]. Pairwise comparison between two cell

types revealed that it is mostly the CTCF-independent cohe-

sin-binding events that show cell-type specificity. At these

sites, cohesin is often found co-localized with mediator and

RNA polymerase II (RNAPII), indicating a CTCF-independent

function at enhancer sequences. Consistent with this, these

genomic sites were often found to be close to actively tran-

scribed genes [48], and to be co-occupied by tissue-specific

transcription factors [49,50]. Collectively, this shows that

CTCF and cohesin have shared and independent functions at

regulatory sequences in the genome. Cohesin can form chro-

matin loops during interphase. However, whether this occurs

through its embracement of two DNA double helices still

awaits formal proof.
 B
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5. CTCF and other binding partners
CTCF performs multiple roles, and in agreement the protein

shares chromatin binding sites with many other factors

[51–53]. Co-association events such as those with the histone

deacetylase SIN3 [54], the thyroid hormone receptor [55],

nucleophosmin [56], Kaiso [57] and the DEAD-box RNA

helicase p68 with associated non-coding RNA [58] have

been implicated in its insulator function. Interestingly, the

p68 RNA–protein complex appears required for position-

ing cohesin at the CTCF sites of the H19–Igf2 ICR [58].

In addition, CTCF co-occupies sites with the transcription

factors FOXA1 and the oestrogen receptor (ER). These sites

tend to locate near ER-responsive genes, suggesting that

CTCF facilitates their transcriptional activation [59]. Further-

more, CTCF recruits the basal transcription factor TAF3 to

intergenic sites in embryonic stem cells (ESCs), where

TAF3-dependent chromatin loop formation was shown to

activate gene transcription [60]. In a study that monitored

RNAPII tracking along long tumour necrosis factor-alpha

responsive genes, pausing of RNAPII was observed at

CTCF- and cohesin-bound sites [61]. This pausing can serve

to incorporate weak exons and, therefore, facilitate alternative

splicing [62]. Thus, intra- and intergenic CTCF sites can have

many different roles.
6. CTCF function at individual gene loci
Given its diverse activities, it seems necessary to zoom in on

individual loci to understand CTCF’s local function. At the

proto-oncogene Myb locus, CTCF binding occurs in the first

intron of the gene, where it inhibits RNAPII elongation. Tran-

scriptional pausing by CTCF can be overcome by upstream

enhancers that bind tissue-specific transcriptional activators

and loop towards the Myb promoter [63]. At the major histo-

compatibility complex class II (MHCII) locus, CTCF and

cohesin binding to, and looping between, upstream sequences

precedes transcriptional activation. Upon binding of the

MHCII trans-activator CIITA to the promoter sequences,

loops are induced between them and the various CTCF sites,

resulting in increased expression of MHCII genes [64,65].

CTCF also binds to many sites across the immunoglobulin

and T-cell receptor antigen receptor gene loci. In conditional

CTCF knockout mice, V gene usage in the Igk light chain

locus was found to be altered, with increased recombination
with proximal and reduced recombination with distal V seg-

ments. This was accompanied by corresponding changes in

germline transcription at these locations, suggesting that

CTCF, such as cohesin [47], mediates gene usage of the antigen

receptor loci via the local regulation of germline transcription

[66]. In this model, germline transcription increases acces-

sibility of the region, which facilitates their selection for

recombination [67]. CTCF depletion does not always result in

aberrant gene expression. Using the same conditional knockout

mice [1] Hoxd gene expression in the developing limb bud was

unaltered after knockout of CTCF [68]. Hoxd gene expression in

the limb bud is under the control of many distant regulatory

sequences that physically loop towards the genes [69]. Unal-

tered Hoxd expression in the absence of CTCF suggests that

these enhancer–promoter loops are not influenced by CTCF

binding to sites in and around the locus. This raises the ques-

tion whether CTCF has any impact on the three-dimensional

topology of the locus. While Hoxd expression was not affected,

CTCF depletion did cause massive cell death in the limb, show-

ing that CTCF is critical for the transcriptional regulation of

other genes involved in cellular homeostasis [68].

A final locus that is interesting to discuss is the proto-

cadherin-a cluster. This cluster encodes neuronal-specific

transmembrane proteins that are mono-allelically expressed

and thought to be involved in the recognition and diversifica-

tion of neurons. Expression of the cluster is under control of a

downstream enhancer that influences the expression of the

12 isoforms, each of which is having its own alternative

promoter [70]. Interestingly, the enhancer as well as each indi-

vidual promoter has a binding site for CTCF. Expression of the

isoforms is reduced upon conditional CTCF knockout in post-

mitotic neurons. This suggests that long-range interactions are

part of the regulatory process that controls transcription of

these genes [70–72].

Collectively, these studies support the idea that chroma-

tin-bound CTCF can attract many different transcription

factors in a tissue- and genomic context-specific manner. Its

exact function at a given genomic site is probably determined

by these associated transcription factors, by the location of

this site relative to the TSS of a gene, and by its engagement

in chromatin loops with other CTCF-binding sites, enhancers

or gene promoters.
7. Genome-wide chromatin loops mediated
by CTCF

A computational intersection of the genomic-binding sites of

CTCF (assessed by genome-wide ChIP) with a genome-wide

DNA contact map generated by Hi-C [73] suggested that

CTCF is involved in chromatin interactions between and

within chromosomes across the genome [74]. Chromatin inter-

action analysis with paired-end tag sequencing (ChIA-PET)

combines ChIP with a 3C approach and was developed to

study genome-wide DNA interactions mediated by a protein

of interest [75]. When targeted to CTCF, ChIA-PET uncovered

roughly 1500 intra-chromosomal and around 300 inter-

chromosomal interactions mediated by this protein [13].

Subsequent clustering of the regions (10–200 kb) encompassed

by the intra-chromosomal loops was done based on the distri-

bution of histone marks. This showed that CTCF loops can

contain active chromatin separated from inactive chromatin

outside the loops and vice versa. CTCF can also capture
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enhancers and promoters together in a chromatin loop [13].

Only a fraction of the roughly approximately 40 000 CTCF

binding sites was found to participate in the roughly 1500

CTCF-mediated loops. This implies that either not all inter-

actions mediated by CTCF have been identified or that most

CTCF sites are not engaged in the formation of loops.

The latter may well be true, because 5C (chromosome

conformation capture carbon copy) technology showed that

most CTCF sites across 1 per cent of the genome do not par-

ticipate in chromatin loops, no matter whether they are co-

occupied by cohesin or not. CTCF-bound sequences were

often skipped by gene promoters making contacts with

enhancers or with other CTCF sites even further away [76].

The recent availability of large genome-wide DNA inter-

action datasets [15,73] facilitates the assessment of CTCF’s

impact on chromosome topology. Sequences close on the

chromosome to CTCF binding sites were shown to be biased

in their DNA contacts: they interacted with other sequences

on the same side of the CTCF site more than with sequences

across this site (figure 3a; [77]). The same was previously

shown for a different insulator protein in Drosophila: its binding

to a site prevented flanking sequences to physically contact

each other across this site [78]. Interestingly, this may provide

an explanation for how insulators function: they can prevent
spatial DNA contacts across the insulating sequence. In a par-

ticularly detailed genome-wide DNA contact study topological

domains were defined; they are chromosomal regions of on

average 1 Mb in size, within which sequences preferentially

interact with each other [15,79]. A strong conservation of topo-

logical domains was seen between tissues and even between

species, suggesting that these domains do not contribute them-

selves to the specific identity of cells. Interestingly, CTCF

binding sites were enriched in 20 kb windows surrounding

the boundaries of these domains (figure 3b), re-emphasizing

its role as a chromatin organizer. In one case it was shown

that disruption of a boundary led to intermingling of topologi-

cal domains and caused misregulated expression of the genes

involved [79]. Unlike the topological domains themselves,

contacts within the domains do change during differentiation.

Here to CTCF appears to play a role, probably to accomodate

developmental changes in gene expression [80,81].
8. Concluding remarks
Despite being the subject of intense research, CTCF manages to

remain a mysterious transcription factor. It binds to many thou-

sands of sites across the genome, where it can interact with a
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plethora of other transcription factors. It is often found engaged

in chromatin loops, sometimes with and sometimes without

the involvement of cohesin. It can form chromatin loops with

other CTCF binding sites, but also with enhancer and promoter

sequences. CTCF binds to sequences outside and away from

genes, but also inside the gene body, where it appears capable

of pausing the sliding polymerase molecule. Finally, CTCF

binding sites still actively jump around as retrotransposable

sequences, giving diversity to the CTCF binding landscape

between different mammalian species.

We believe that the unifying theme that may explain the

many, and sometimes opposing, functional consequences of

CTCF association to chromatin is probably its ability to form

chromatin loops. Depending on the sequences encompassed

in the loops and those excluded from the loops, chromatin

shaped by CTCF may facilitate or hamper three dimensional

contacts between enhancers and target genes, with different

outcomes for transcription. Many questions still remain

though: why do some CTCF sites form a chromatin loop

and others not? To what extent does this rely on co-associated
protein factors? How does the protein manage to interact with

so many other transcription factors when bound to chromatin?

One possibility is that CTCF serves as a roadblock for chroma-

tin-scanning transcription factors that somehow get trapped

when encountering the bound protein. What is the relevance

of CTCF-mediated interchromosomal contacts? Does CTCF

block enhancer–promoter communication by preventing 3D

DNA contacts? Or does insulation involve the physical inter-

action of the insulator sequence with both enhancers and

promoters? Answers to these questions are needed to enable

predicting whether a given CTCF binding event will be func-

tionally irrelevant, will cause transcriptional activation or

repression, will interfere with transcriptional activation or

will create a chromatin boundary.
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