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Abstract

Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data
from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the
genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to
model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model
disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of
Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning
Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian
and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time
complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real
cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks
proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
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Introduction

Mutations of single nucleotides but also structural changes, e.g.,

deletions, duplications, inversions, and translocations of genomic

segments, as well as epigentic modifications have all been

implicated in cancer. Traditionally cytogenetic techniques have

been used to characterize structural aberrations in tumors and

more recently Comparative Genomic Hybridization (CGH) arrays

have been used to reveal Copy Number Aberrations (CNA).

Today, genomics resequencing, exon resequencing, and RNA-Seq

are the methods of choice for assaying cancer tumors. Although

this constitutes a remarkable technological development and

today’s data are in many aspects unprecedented, cancer data is

and will continue to be mainly cross-sectional. That is, for each of

a number of patients, a single tumor is removed at one time point

and assayed, which gives information about the set of aberrations

in the tumor. However, aberrations occur sequentially in time and,

also, one aberration can yield another aberration, by making the

second favorable for the tumor (a good example is that an

aberration causing angiogenesis is favorable to a tumor subse-

quent, but not previous, to an aberration causing increased tumor

size). In fact, it is of central importance that cancer progresses and

is a historical process in which the next event depends on those

already having occurred. Mathematical models of cancer

progression and corresponding learning algorithms are required

in order to facilitate inference of cancer progression pathways, i.e.,

the set of favorability relations between aberrations.

Vogelstein et al. [2] suggested a path-based model of colorectal

cancer progression consisting of 4 genetic events. This is a

biomedical model that can be viewed as a starting point for a

development of a series of mathematical models. Due to the

complexity of cancer, it is desirable to base cancer models on more

complex discrete structures than paths. Tree-based models are

clearly more general than paths, but they do unfortunately not

allow different progression paths to converge. Consequently, a

substantial modeling effort has led the area to evolve from

considering path-based models to tree-based models and beyond.

Desper et al. [3] suggested tree based models that are non-

probabilistic, i.e., how well an individual model describe a data set

cannot be assigned a probability. Beerenwinkel et al. [4] used

probabilistic tree-based models and mixtures of such models. They

also gave ‘‘EM-like’’ algorithms for learning these models. The

original application was analysis of HIV data but later also cancer

data was analyzed [5]. these results were subsequently improved

by introduction of Hidden Variable Oncogenetic Trees (HOTs)

that have a monotonicity property well-adapted to model disease

progression as well as latent variables which yields a better

capacity to describe noise by experimental data [6]. Global

structural EM-algorithms for learning these models were also

described [6].

In order to go beyond tree-based models, Hjelm et al. [7]

proposed Network Aberration Models, in which aberration

probabilities are based on waiting times and event histories affect

waiting times in a pairwise and additive fashion. The learning

algorithms for these models are straightforward heuristics that can

not handle more than 12 aberrations. Beerenwinkel et al. [1,8]

proposed Conjunctive Bayesian Networks (CBNs) which is a
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network model with a monotonicity property. Conjunctive

Bayesian networks are similar to noisy-AND models in the AI

literature [9]. CBNs are not well-suited to learn noisy experimental

data. Gerstung at al. [10] address this problem by proposing

Hidden CBN (H-CBN) where the variables of a CBN are

considered latent and visible variables have a 1-to-1 correspon-

dence to these latent variables.

In a pioneering line of work Höglund et al. [11–13] used a non-

probabilistic method, which incorporates Principal Component

Analysis (PCA) on the pairwise correlation between aberrations

and to a large extent depends on human decision and, therefore, is

somewhat orthogonal to the methods described above. Cussens

[14] used integer programming in pedigree reconstruction

problem. Pedigrees can be seen as Bayesian networks.

Recently, by introduction of high-throughput sequencing

technologies, sequencing of small collection of tumor genomes

have become feasible. The temporal order of somatic mutations

(point mutations and structural rearrangements) that have created

a tumor genome from a germ line genome are not immediately

revealed from these genomes. Greenman et al. [15] proposed an

algorithm for reconstructing the events sequence of a single tumor.

In a recent effort Nik-Zainal et al. [16] applied the Greenman

algorithm [15] to 21 breast cancer tumors.

Gerstung and colleagues [17] observed that tumors from the

same type of cancer often show a few genetic alterations in

common. They hypothesized that temporal order of the events in

a tumor may act on the pathway level rather than the gene level.

According to their hypothesis, mutations in the genes that are

involved in the same functional pathway can partly explain the

heterogeneity in the tumors. After mapping the genes to the

functional pathways, they applied the H-CBN algorithm on the

pathway level. Cheng et al. [18] used the same approach to

determine whether specific pathway alterations appear early or

late during the tumor progression.

Methods

Notation
Learning cancer progression networks give rise to hard

computational problems. In order to obtain biologically sound

solutions, we need a lot of notations and mathematical apparatus.

The notations and mathematical tools that are used in the paper

are introduced in this section.

We use hypergraphs to represent the dependence structures of

Bayesian networks. In this section, we introduce key concepts and

notation for hypergraphs. We will use ½n� to denote the set

f1, . . . ,ng. A hypergraph H consists of a vertex set, denoted V (H),
and a set of non-empty subsets of V (H) called hyper-edges, denoted

E(H). In a graph with standard meaning, all edges are 2-element

subsets of V (H). In other words, in a standard graph each edge

connects two vertices. We will consider directed hypergraphs where

each hyper-edge e has a unique child, denoted c(e), and a set of

parents, denoted Pa(e). An alternative terminology would be to call

c(e) the head of e and Pa(e) its tail. However, using the terms child

and parents fits the terminology of our application better. A

directed hypergraph H is acyclic if there is a linear order , on

V (H) such that for every hyper-edge e[E(H) and p[Pa(e),
pvc(e). A hyperDAG is a directed acyclic hypergraph. A k-uniform

hypergraph (k-bounded) is a hypergraph in which all hyper-edges

contain exactly (at most) k-vertices. This means that a graph (with

the standard meaning) is a 2-uniform hypergraph.

The Models
We here describe the standard Bayesian network model and our

models aimed to capture disease progression.

Bayesian and progression networks. We first introduce

additional notation. We will typically consider a set of r.v.s

X1, . . . ,Xn. Assume I5½n�. We will use X (I) to denote the set

fXi : i[Ig. We will use x(I) to denote assignments to X (I), i.e., an

assignment X (I) : ?f0,1g. In particular, x(I)~1 denotes that all

variables in X (I) are assigned the value 1 and x(I)~0 denotes

that all variables in X (I) are assigned the value 0.

A Bayesian Network (BN) is pair (H,H), where H~(V ,E) is a

hyperDAG and H maps edges of H to Conditional Probability

Distributions (CPDs), such that: (1) for each v[V (H), there is an

associated r.v. Xv and (2) for each hyper-edge e[E(H), H(e) is the
CPD Pr½X (c(e))DX (Pa(e))�. Also, we will say that a BN (H,H) is
k-bounded if the hypergraph H is k-bounded.

We now introduce our model of disease progression. A BN is

called monotone if all its r.v.s are monotone, i.e., for some small

constant e and for each hyper-edge e,

Pr½X (c(e))~1DX (Pa(e))=1�ve. The interpretation of this model

is that in order to make the child aberration advantageous to the

tumor all parental aberration must have occurred. A r.v. in a BN is

called semi-monotone if it only has non-negligible probability to be 1

in case at least one parent is 1. Formally a BN is called semi-

monotone if all its r.v.s are semi-monotone, i.e., for some small

constant e and for each hyper-edge e,

Pr½X (c(e))~1DX (Pa(e))~0�ve. The interpretation of this model

is that in order to make the child aberration advantageous to the

tumor at least on parental aberration must have occurred.

Monotone and semi-monotone BNs are collectively refereed to

as Progression Networks (PNs).

Figure 1(A) shows a hyper–edge with three r.v.s Xi, Xj , and Xk.

The columns that are labeled MPN and SMPN in Figure 1(B) are

monotone and semi-monotone CPDs for the hyper–edge in

Figure 1(A), respectively. Conjunctive Bayesian Networks that are

proposed by Beerenwinkel and collaborators is a special case of

our monotone BNs with e~0, see [1].

Learning a k-bounded Bayesian Network
In this section, we will show how learning a k-bounded BN can

be reduced to the problem Maximum Weight k-Bounded

Subhypergraph (MWkBS) for a weighted k-bounded hypergraph

called the selector graph and, then, how this problem can be

reduced to a Mixed Integer Linear Program (MILP). Solving a

MILP problem is one, out of several NP-complete problems, for

which very good heuristics have been designed. We apply the

popular approach of reducing another problem to a MILP rather

Figure 1. The figure shows a hyper–edge and its correspondig
CPDs. A sample hyper–edge with 3 r.v.s (a) and monotone and semi–
monotone CPDs for Pr½Xk DXi,Xj � that hyper-edge (b).
doi:10.1371/journal.pone.0065773.g001
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than developing new heuristics. We do so since by reducing the

problem of learning a Bayesian network with bounded number of

parents, for each random variable, to a MILP, we obtain a fast

heuristic for the former problem. The algorithm can work with

any decomposable score such as maximum likelihood score or

Bayesian Information Criterion (BIC) score.

The reduction to MWkBS assigns weights in a fairly standard

way, i.e., using Maximum Likelihood (ML) estimated parameters,

so that the weight used is exactly what the edge contributes to the

overall score of the Bayesian network. We first define weights

corresponding to the ML score and, then, we show how to modify

them in order to obtain weights corresponding to the BIC score.

We could equivalently, as is common, use the mutual information

between c(e) and Pa(e) as the weight of the hyperedge e, see [19].
Also, since we consider decomposable scores, the weight of an

edge is the same in any Bayesian network with parameters optimal

for the score, which we show explicitly for the BIC score.

Assume that fX1, . . . ,Xng is a set of r.v.s and Q is a subset of it.

Let D be a dataset and #D the size of the dataset. For any

assignment a : Q?f0,1g, let #Da denote Dfx[D : xDQ~agD where
xDQ denotes the function x restricted to the domain Q. Define the k-

bounded selector hypergraph S for D as follows. The vertex set is

V~½nzk�, where ½n� are indices corresponding to our r.v.s and

fnz1, . . . ,nzkg is a special set of vertices called root parents, which

we denote R. The root parents are used for technical reasons as

parents of vertices that otherwise would not have parents in the

subDAG that finally is selected. Let S be obtained from the

complete k-bounded hypergraph on ½nzk� (i.e., having all possible
edges) by removing all edges with a child in R. The weight of an

hyperedge will be defined below so that it depends only on its

parents that are not root parents.

Let B~(H,H) be a BN. The log-likelihood of B, log Pr½DDB�,
equals.

X

x[D

log Pr½xDB�~
X

x[D

X

e[E(H)

log Pr½x(c(e))Dx(Pa(e)),H(e)�~

X

e[E(H)

X

x(e)

#Dx(e) log Pr½x(c(e))Dx(Pa(e)),H(e)�

Given H, we define Pa
0
(e) as the set of the parents of e that are

not root parents. If Pa
0
(e) is not the empty set, the ML estimate of

H are given by

Pr½x(c(e))Dx(Pa(e)),H(e)�~ #Dx(e)

#Dx(e)DPa0 (e)
: ð1Þ

In a BN that is not monotone or semi-monotone for each edge

of H, we define a weight w(e) by

w(e)~
X

x(e)

#Dx(e) log
#Dx(e)

#Dx(e)DPa0 (e)
: ð2Þ

If the parent vertices in a hyper–edge e consist only of root

parents, the weight of e depends only on the child vertex c(e).
Then weight of the hyper–edge e can be calculated according to

Equation 3

w(e)~
X

x(e)

#Dx(e) log
#Dx(e)

#D

: ð3Þ

If some parents in a hyperedge e are root parents, instead of

w(e) we use weight of another hyperedge e’ in which

Pa(e’)~Pa(e){R and c(e)~c(e’). In other words when calculat-

ing the weight of a hyperedge in which some of the parents are the

root parents, we ignore the root parents.

In the MPNs there is an upper bound e on

Pr½X (c(e))~1DX (Pa(e))=1�. As explained before, this upper

bound is applied to impose the monotonicity in the learned PN

by penalizing the weight of the hyper’ edges in which the child

vertex is 1 while not all parent vertices are 1. For learning MPNs

we calculate all the probabilities according to Equation 1 except

for the cases that Pr½X (c(e))~1DX (Pa(e))=1�we in which the

weight is set to e. For learning SMPNs the upper bound e is

applied to Pr½X (c(e))~1DX (Pa(e))~0�.
In short, for each hyperedge a CPD like the CPD in Figure 1(B)

is calculated using equation 1. In case of MPNs and SMPNs,

according to their definitions, the upper bound, e, must be

enforced. The values of numerator and denominator of equation 1

can be calculated from the statistics of different CNAs in the

dataset according to the definition of #Da in the beginning of this

section. Using the computed CPDs, then the weight of each

hyperedge is calculated by equations 2 or 3.

Notice that log Pr½DDB�~
P

e[E(H)

w(e). Also notice, the weight

of the hyperedge e is independent of the rest of H, i.e., it is the

same for any k-bounded hyperDAG containing e. We define the

weight of e in S to be the weight it assumes in each of these

DAGs. From this follows that, H is a maximum weight k-

bounded subhyperDAG of S if and only if H together with ML

estimated parameters induce a BN that maximizes the likelihood

of the data.

Again, the weights that are defined above correspond to the log-

likelihood or equivalently likelihood score, see [19]. When learning

from noisy data using the log-likelihood score the resulting BN is

typically fully connected [19]. To avoid this type of behavior

Schwarz et al. [20] proposed the Bayesian Information Criterion

(BIC). In contrary to the likelihood score, the BIC score provides

an inclination to use simpler structures. With increasing size of the

data set, however, it tends to allow more complex structures to be

learned. The BIC weight of an hyperedge e, wBIC(e), is,

wBIC(e)~w(e){
logM

2
Dim(e)

where M is the size of the dataset and Dim(e) is the number of

independent parameters in the hyperedge e.

We now describe a MILP, denoted MILP(S), for identifying a

maximum weight k-bounded subhyperDAG of a selector graph S

and, thereby, complete the description of our algorithm for

learning BNs. The variables of MILP(S) are: (1) hyperedge

variables Ve[E(S), the variable he[f0,1g and: (2) order variables

Vi[V (S), the variable oi[½0,1�.
In the formulation below, order variables facilitate the

formulation of a condition that enforces the learned networks to

be acyclic.

Learning Oncogenetic Networks by Reducing to MILP
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The objective function of MILP(S) is:

P
e[E(S)

hewBIC(e),

where wBIC(e) is the BIC score of e in the selector graph S.

The conditions of MILP(S) are: (1) non-root parents have

exactly one incoming edge, i.e.,

Vv[V (S)\R,
X

e[E(S):c(e)~v

he~1

and (2) acyclic ordering of the vertices (child higher than parent),

i.e.,

Ve[E(S),p[Pa(e),he{1voc(e){op:

Maximizing the objective function with conditions (1) and (2)

results in learning the BN with the highest score. The second

condition in MILP(S) guarantees that the hypergraph induced by

the program is acyclic. Because hyperedges can not contain a

cycle, in each hyperedge the order variable of each parent vertex is

smaller than the order variable of the child vertex. Otherwise, for

at least one of the parents oc(e){opv0 and consequently hev1.

Because he is a binary variable, he~0. We can, hence, conclude

the solution of MILP(S) will not contain a cycle.

Results

This section contains the results of our experiments with

synthetic data as well as real cytogenetic data. The synthetic data

was sampled from 2 and 3-bounded BNs of all three types (i.e.,

MPN, SMPN, and general BNs). We learned each data set with all

three variations of our algorithm.

Our main focus was the relation between aberrations. So, in

order to measure the performance of our algorithm, we considered

the underlying directed simple graphs of hyperDAGs in which for

each parent and child of a hyper edge there is a directed edge from

the parent to the child. To compare edge sets, we used the

percentage of the recovered directed edges, as well as the relative

symmetric difference, which takes both sensitivity and specificity into

account. Let M and L be the set of edges in the true and the

learned underlying graph, respectively. The relative symmetric

difference, F, is defined as follows:

F~
DM\LDzDL\M D

DLDzDM D
ð4Þ

Furthermore, the values of false discovery rate FDR~ DL\M D
DLD and

false negative rate FNR~ DM\LD
DM D are provided separately in the

supplementary material.

Synthetic Data
We sampled data from random PNs and then tested the ability

of our algorithms to learn the true models. In order to test our

algorithms, we generated BNs using all possible combinations of

N 2 and 3-bounded DAGs,

N 10, 20, and 30 vertices, and

N monotone, semi-monotone, and general BNs.

Synthetic data sets were created by sampling 500, 2000, and

10000 times from each such BN. In both monotone and semi-

monotone PNs e~0:2. We chose the sample size 500 to show the

performance of DiProg on the existing datasets, which are

relatively small. The sizes of tumor datasets are constantly

increasing. To measure performance of DiProg on the future

larger datasets, we also tested DiProg performance on datasets

with 2000 and 10000 samples.

We generated 50 DAGs from each combination. The percent-

ages of recovered edges in Figures 2(A)–2(F) are averages over 50

DAGs. Tables S1 and S2 show the percentage of the recovered

edges and the relative symmetric difference when the network is

learned with each of the three variations of the algorithm. Each

variation of the DiProg algorithm performs best when the data is

generated with the same variation. Tables S3 and S4 include the

percentages of false positives and false negatives for each variation

of DiProg.

All experiments were performed on a system with two quad-

core Intel Harpertown 2.66 GHz CPUs (E5430) and 8 Gb of

RAM, with a 64-bit Linux kernel installed. In our tests, we

assigned 6 Gb of memory and a limited amount of time

proportional to the number of variables and the value of k. The

default value for maximum CPU time for each problem instance is

accessible in DiProg’s help. When CPLEX did not find a provably

optimal solution in the assigned time or memory constraints, we

picked the best incumbent solution available in the solution pool.

For each problem, DiProg receives maximum allocated time and

memory as arguments.

Figure 2. Percentage of recovered edges when data is generated with monotone, semi-monotone, and general networks and
learned with the same method for 2 and 3-bounded graphs. The error bars show 1 standard deviation.
doi:10.1371/journal.pone.0065773.g002

Figure 3. The percentage of bad edges for various values of e
and k~3 for MPN, SMPN, and General PNs for BC learned by
DiProg.
doi:10.1371/journal.pone.0065773.g003
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Cancer Data
We tested the DiProg algorithm on renal cell carcinoma (RCC)

using the data from [21]. We also compared the results from

DiProg algorithm with the H-CBN algorithm from [10].

Comparing the results with non-probabilistic

methods. In [11] a dataset of 796 RCC tumors with 28

chromosomal aberrations is used. The data was retrieved from

Mitelman Database of Chromosome Aberrations in Cancer [21].

Figure 4. The learned MPN for RCC data with k~3 and e~0:2. + sign stands for gain and 2 sign stands for loss in a chromosome arm. Long
and short arms of each chromosome are denoted by q and p, respectively.
doi:10.1371/journal.pone.0065773.g004

Learning Oncogenetic Networks by Reducing to MILP
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To facilitate comparing our results with those in [11], we used the

same dataset.

The MPN and SMPN models have a free parameter, i.e., e. We

took advantage of the breast cancer (BC) data from [13] to find a

biologically realistic value of e by identifying the value that gave

the best correspondence between the progression network that we

obtained and the network proposed for BC in [13]. This was in

practice accomplished by choosing the value of e that gave the

minimum fraction of bad edges relative to the number of learned

edges. Following [6], we define a bad edge to be an edge in our

learned PN that contradicts the partial order imposed by the

progression pathways in [13]. In calculating the percentage of bad

edges the edges incidents to the root parents are also counted.

Figure 3 shows the percentage of bad edges in the breast cancer

data from [13] with k~3 for various values of e. A very interesting

observation is that for each value of e the percentage of bad edges

in the learned MPNs is less than the semi-monotone and general

learned PNs. Figures S1 and S2 show the percentage of bad edges

in the learned BC PNs with k~2 and k~4 for various values of e.
As illustrated in Figure S2, the percentage of bad edges in the

learned MPN is also less than those of the learned SMPN and

General, except for e~0:3. In the latter case, the large value of e
effectively weakens the monotonicity condition.

Table S5 shows the percentage of bad edges and BIC scores of

the learned MPNs with different values of k and e. For the

percentage of bad edges in the learned SMPNs and general BNs

see Tables S6 and S7. For a discussion about choosing the value of

e see Text S1.

Table S8 contains the BIC scores for MPNs that are learned

from RCC data in [11]. For the chosen value of e~0:2, the MPN

with k= 3 has the best BIC score. Figure 4 is the MPN that is

learned by DiProg algorithm with k~3 and e~0:2 from the RCC

data in [11]. The progression network for RCC that is proposed in

[11] consists of two pathways, one progression pathway starts with

loss 3p{ and another one starts with gains z7 and z10 and

continues with z17, z16, and their descendants. In our learned

MPN these two pathways are distinctly separated. Most of the

aberrations in the pathway in Figure 5 of [11] that starts with gains

z7 and z10 are captured in the sub-graph of our learned MPN

that consists of the descendants of gain z7. Most of the

aberrations in the second pathway in [11] are captured by the

component in our MPN that starts with the loss 3p{ and

continues with {14 and its descendants.

Comparison with the H-CBN algorithm. We compared

the results of the DiProg with the H-CBN algorithm. Gerstung

et al. [10] used RCC specific CGH data from Progenetics

database [22]. Due to limitations in the number of variables that

the H-CBN algorithm can handle, they restricted their analysis to

12 variables and 251 tumors in the RCC. In the previous section

we presented the results of DiProg on a larger dataset from RCC

with 28 variables. In order to be able to compare results of DiProg

with H-CBN, in this section we applied DiProg to the smaller

dataset with 12 variables. Text S2 contains a discussion about

choosing the best value for k. Figure 5 illustrates the MPN that is

learned by DiProg with k~3 and e~0:2. The learned MPNs by

DiProg are similar to the networks that are proposed in [10] and

[23]. It is noteworthy to mention that the authors in [10] rejected

the network that was originally learned by the H-CBN algorithm

because it only contains two edges. In order to learn a better

network, they used the network proposed by Jiang et al. [23] as the

starting point for a structure search by the H-CBN algorithm. So,

the proposed network for RCC in [10] is sub-optimal according to

the H-CBN algorithm. The network learned by DiProg is more

similar to the network in [23] than the network in [10]. This shows

the reliability of the DiProg results.

Discussion

We propose new algorithms based on mixed integer linear

programming (MILP) for learning BNs. Because we are especially

interested in modeling disease progression, we used monotone and

semi-monotone progression networks. Results from the synthetic

data show that depending on the upper bound on the number of

parents in monotone and semi–monotone PNs, we can learn the

majority of the edges in the generating model.

Because cancer progression is a historical process, it is

reasonable to assume that later aberrations need earlier aberra-

tions to have occurred before they can be introduced to the cell.

To force this monotonicity in learning the progression networks,

we defined MPNs and SMPNs. In MPNs, in each hyperedge there

is an upper bound on the probability of the child vertex being in

the tumor if not all its parents have happened. This makes MPNs

more suitable for modeling cancer progression comparing to the

general BNs with no such upper bounds.

We also applied our algorithm to cytogenetic data from [11]. In

contrast to the semi-automatic method by Höglund et al., DiProg

is automatic and,therefore, needs less support by human decision.

Furthermore DiProg is based on probabilistic models, which can

generate synthetic data and assign a likelihood to the biological

data. Also comparing our algorithm with the H-CBN algorithm

[10] on the same smaller dataset from RCC shows that DiProg

results are in agreement with the previously published results.

Comparing to the H-CBN algorithm, DiProg can handle

substantially more variables. To illustrate this we presented the

Figure 5. The learned MPN for RCC data with k~3 and e~0:2.
The smaller dataset in [10] is used. + sign stands for gain and 2 sign
stands for loss in a chromosome arm. Long and short arms of each
chromosome are denoted by q and p, respectively.
doi:10.1371/journal.pone.0065773.g005
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results of DiProg on synthetic data with 30 variables and on

cytogenetic data from RCC with 28 variables.
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