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Abstract

The analysis of a shotgun proteomics experiment results in a list of peptide-spectrum matches

(PSMs) in which each fragmentation spectrum has been matched to a peptide in a database.

Subsequently, most protein inference algorithms rank peptides according to the best-scoring PSM

for each peptide. However, there is disagreement in the scientific literature on the best method to

assess the statistical significance of the resulting peptide identifications. Here, we use a previously

described calibration protocol to evaluate the accuracy of three different peptide-level statistical

confidence estimation procedures: the classical Fisher’s method, and two complementary

procedures that estimate significance, respectively, before and after selecting the top-scoring PSM

for each spectrum. Our experiments show that the latter method, which is employed by MaxQuant

and Percolator, produces the most accurate, well-calibrated results.
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1. Introduction

In a typical shotgun proteomics experiment, a database search procedure assigns to each of

the tens of thousands of observed fragmentation spectra a peptide from a given database [1,

2, 3]. The resulting peptide-spectrum matches (PSMs) are then ranked by a match quality

score that, ideally, places the correctly matched spectra near the top of the ranked list.

Because many spectra are incorrectly matched, however, a key challenge in this setting is
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the assignment of accurate statistical confidence estimates to the resulting identified spectra

[4]. Such estimates are essential for setting appropriate score thresholds to control the error

rates and for the downstream interpretation of the results.

The confidence assigned to a PSM may be reported using various measures, but all of them

rely fundamentally on the notion of a p value. Roughly speaking, the p value assigned to a

match between spectrum S and peptide P with score x is the probability that we would

observe a score greater than or equal to x, assuming that P is not actually responsible for

generating S. Statisticians refer to the situation that we are not interested in—in this case,

that peptide P did not generate spectrum S—as the null hypothesis. Thus, a small p value

indicates high confidence, because it is extremely unlikely that we would observe such a

high score from data generated under the null hypothesis.

Before conclusions can be drawn from the results, the p values must be corrected for

multiple testing, because thousands of spectra are matched to the thousands of peptides in

the database. This correction can be done using a false discovery rate (FDR) analysis [5, 6,

7], which estimates the expected fraction of false positives among the identifications

accepted by a given score threshold x, i.e., identifications with scores greater than or equal to

x. To describe the confidence of a specific identification, the q value is defined as the

minimal FDR required to accept the identification, after having considered all possible

thresholds. For PSMs, the confidence is routinely estimated using one of several different

approaches, including target-decoy analysis [8, 9], parametric curve fitting procedures [10,

11], maximum likelihood methods [12] or exact dynamic programming methods [13].

In this work, we focus on methods for assigning statistical confidence estimates to peptides,

rather than to PSMs. Although the definition of a unique peptide can vary, for example

depending on how alternative post-translational modifications are considered, this study

deals with any reduction of PSMs to peptides. Regardless of the peptide definition, peptide

confidence estimates are interesting for two reasons. First, in peptidomics [14], the peptides

themselves are the entity of interest and the need for peptide-level confidence estimates is

obvious. Second, even in experiments in which proteins are of primary interest, many

existing protein confidence estimation procedures require accurate peptide-level confidence

estimates as an intermediate step. Such procedures include commonly used algorithms such

as ProteinProphet [15], MaxQuant [16] and Fido [17]. It should be noted, however, that

protein confidence is sometimes estimated directly from PSMs [18, 19].

A priori, it may not be immediately obvious that confidence estimates assigned to PSMs

cannot be transferred directly to peptides. To see that such an approach is problematic,

consider an example in which 1000 PSMs are deemed significant with an FDR of 0.01. This

set of selected PSMs should contain approximately 99% correct matches and 1% incorrect

matches [6, 7]. To produce a list of unique peptides, it is tempting to take the list of

confident PSMs, make a corresponding list of all the peptides therein, and then claim that

99% of these peptides were correctly identified. This claim, however, is likely to be

incorrect. The reason is illustrated in Figure 1 and demonstrated below. The essence of the

problem is that a truly present peptide will be matched by a higher number of PSMs, on

average, than an absent peptide. This asymmetry arises because the incorrect PSMs are
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distributed across the entire peptide database, whereas the correct PSMs are distributed

across only the set of present peptides. As a consequence, the peptide-level FDR is often

higher than for the corresponding set of PSMs.

Given that PSM-level statistical confidence estimates cannot be used as peptide-level

confidence estimates, we need a reliable method to convert from one to the other. An

intuitive approach could be to combine the evidence from many PSMs mapping to the same

peptide to produce a single confidence estimate for the given peptide. However, previous

studies have pointed out that multiple PSMs cannot be considered independent evidence of

the peptide’s presence in the mixture [15]. Due to this dependence between spectra that map

to the same peptide, many procedures weed out redundant PSMs, discarding all but the

highest scoring PSM for each peptide. Indeed, to our knowledge, this principle is used by all

fully probabilistic protein level inference methods described in the literature [20, 21, 16, 22,

23].

However, once the redundant PSMs have been eliminated, the literature is split between two

different ways to assign confidence measures to the remaining PSMs, the so called peptide-

level statistics. Some authors suggest that one should use the PSM-level statistics of the

remaining peptides [24, 15]. We will refer to this procedure as Estimate then Weed-Out

(ETWO). Other authors suggest that one should first weed out the redundant PSMs and then

calculate peptide-level measures using target-decoy analysis. We refer to this procedure as

Weed-Out Then Estimate (WOTE). WOTE is employed for instance in MaxQuant [16] and

Percolator [21].

In this work, we systematically evaluate the statistical calibration of ETWO and WOTE. We

apply a previously described calibration protocol [25] to three datasets using three different

scoring functions. We demonstrate that WOTE yields better calibrated statistics than ETWO

in each of our analyses, an effect that becomes quite pronounced when using multiple

hypothesis corrected statistics, such as FDRs, q values and posterior error probabilities

(PEPs) of the unique peptides. Furthermore, similar to a negative control, we empirically

confirm the dependence between multiple PSMs mapping to the peptide by also testing the

calibration of Fisher’s method to combine p values.

2. Methods

2.1. Estimating peptide-level p values

The input to a statistical confidence estimation procedure is a collection of fragmentation

spectra, each of which is associated with a single target peptide and a single decoy peptide.

Each target or decoy PSM is assigned a score.

We consider three methods for estimating peptide-level p values. The first procedure,

WOTE, proceeds as follows. Separately for the target and the decoy matches, we identify

peptides that appear multiple times in this list of PSMs, and from each set of redundant

PSMs, we eliminate all but the highest-scoring PSM. The result is two lists of peptides—

targets and decoys—ranked by score. From here, the procedure is identical to what has been

described previously [26]: we treat the decoy scores as a null distribution, and we use them
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to compute p values for the target scores. Specifically, for an observed score x associated

with a given target PSM, the corresponding p value is estimated as the fraction of decoys

with scores better than x. Assuming that the score function is defined such that large scores

are better, then the p value of x is estimated as in Equation 1, where X0 is the set of scores of

the decoy PSMs of interest:

(1)

In this setting, we interpret X0 as the unique decoy peptides remaining after we have

removed PSMs with redundant peptide matches. The addition of 1 to the numerator and

denominator yields a p value estimate with the correct type 1 error rate [27]. The above

equation can be roughly understood by reasoning that the target PSM itself, with score x, is

also drawn from the null distribution when the null hypothesis is true. Subsequently, the

resulting collection of peptide p values can be adjusted for multiple testing using standard

methods [6, 28, 29]. Thus, the output of the procedure is a list of peptides, each associated

with a PEP or a q-value.

The second procedure, ETWO, is similar to WOTE; however, in this case, we calculate all

statistics with respect to PSMs rather than peptides. Hence, we instead interpret X0 in

Equation 1 as the set of decoy PSMs before we have removed redundancy. We also perform

all the multiple hypothesis corrections based on all PSMs. We subsequently use the PSM-

level PEPs and q values as peptide-level statistics.

The third strategy is the classical Fisher’s method to combine independent p values. This

approach combines a set of PSM-level p values into a peptide-level p value, under the null

hypothesis that all PSMs are incorrect. First, p values are calculated according to Equation 1

and, just like in the ETWO method, peptides that appear multiple times are not filtered out

before the p value calculation; hence, X0 in this case is the set of all decoy PSMs. This

procedure thus yields PSM-level p values. Subsequently, the p values pi, …, pk of the k

PSMs matching a given peptide are combined into a χ2 test statistic:

(2)

Assuming that the peptides were identified independently, this statistic follows a χ2

distribution with 2k degrees of freedom, thereby allowing us to calculate a p value

corresponding to the observed χ2. Finally, the peptide-level p values are converted to q

values, as described above.

2.2. Assessing the calibration of estimated p values

To determine whether the estimated peptide-level p values are accurate, we employ a

previously described semi-labeled calibration test [25]. This test involves searching spectra

derived from a purified sample of known protein content with respect to a bipartite target

database containing a sample partition and an entrapment partition. The sample partition
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includes amino acid sequences of the known proteins and likely contaminants in the sample.

The entrapment partition is larger, and contains repeatedly shuffled versions of the sample

sequences. Considering only the highest scoring PSM of each spectrum, most

uninterpretable spectra will match to the entrapment sequences of the bipartite database.

These matches are then labeled as incorrect, and are used as a null model, while the other

PSMs are discarded. Hence, using an additional decoy database, p values can be assigned to

entrapment PSMs (or peptides), to obtain a set of null p values. By definition, null p values

follow a uniform distribution; hence, we can test our p value estimation procedure by

examining the distribution of p values assigned to entrapment PSM. The entrapment

partition differs from a decoy database in the sense that the matches are not used to estimate

error rates; instead, the entrapment partition serves to “trap” as many of the uninterpretable

spectra as possible. The decoy databases used here are reversed versions of the bipartite

target databases.

2.3. Datasets

To test the calibration of p values, we used fragmentation spectra from three different

samples of known protein content [30, 31, 32] (Table 1). The sequences of the proteins and

the known contaminants of the sample make up the sample partition of the bipartite

database. Each protein sequence was then shuffled 25 times to generate an entrapment

partition 25 times the size of the sample partition. This number was chosen to obtain an

entrapment partition sufficiently larger than the sample partition. The sample and

entrapment sequences were concatenated for each dataset to form the bipartite databases

used in the calibration protocol.

The spectra were searched and scored using Crux version 1.37 [33] in sequest-search mode

and MSGF+ version 8806 [13]. The negative logarithm of the MSGF+ E value was used as

the MSGF+ score. The Crux searches were followed by analysis via Percolator version 2.03

[21]. Non-enzymatic searches were used, with a 10 ppm precursor mass tolerance for the

ISB18 dataset, and 3 Da for the Sigma 49 and OMICS 2002 datasets. We calculate the p

value as explained above, according to Equation 1. The distribution of entrapment p values

was evaluated by the distance, DKS, reported from a Kolmogorov-Smirnov (K-S) test. The

smaller the value of DKS, the closer to uniform the p value distribution. Finally, quantile-

quantile (Q-Q) plots were made to compare the empirical distribution of null p values with a

uniform distribution.

In experiments involving complex mixtures from full cell lysates, a yeast dataset described

previously [21] was used. Here, we searched the data with Crux and Percolator as described

above, but using tryptic searches with any number of missed cleavages and a 3 Da mass

tolerance window.

3. Results

3.1. The WOTE method yields well calibrated peptide-level p values

When comparing different methods to compute peptide-level p values, our main concern is

that the p values are well calibrated, meaning that the statistical scores accurately indicate

our confidence in the correctness of the peptide identification. Therefore, as described

Granholm et al. Page 5

J Proteomics. Author manuscript; available in PMC 2014 June 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



above, we compare the null distribution of reported p values to an ideal uniform distribution

using a Q-Q plot, in which a uniform p value distribution lies close to the y = x diagonal.

We tested the calibration of the peptide-level p values reported from the WOTE, ETWO and

Fisher’s methods using three scoring schemes—the SEQUEST XCorr [34], the MSGF+

score [13] and the Percolator score [21]—on three different datasets of known protein

mixtures. The results are shown in Figure 2. Regardless of the scoring scheme or dataset

used, the WOTE and the ETWO method yields entrapment peptide p values that distribute

nearly uniformly. Fisher’s method, on the other hand, clearly produces p values that lie

further from the uniform distribution. The mean Kolmogorov-Smirnov DKS values of the

three scores across the datasets (ISB18 mix, Sigma 49 and OMICS, respectively) were

0.014, 0.025, 0.022 for WOTE, 0.028, 0.041, 0.037 for ETWO and 0.047, 0.048, 0.046 for

Fisher’s method. Although the figures indicate no large differences between WOTE and

ETWO, the DKS values suggest that WOTE is better calibrated. The DKS value quantifies the

deviance of all p values from the uniform distribution, and does not emphasize the

importance of small p values, as the log-scaled plot does. However, the peptides assigned

low p values are generally of more interest than others; thus, the calibration of these p values

is more important.

For independent tests, Fisher’s method outputs uniformly distributed p values under the null

hypothesis. Therefore, the poor empirical calibration of the p values produced by Fisher’s

method’s is due to dependencies between peptide sequences and peptide scores. This

phenomenon is illustrated in Figure 3(A), which shows the correlation between scores

assigned to the same entrapment peptide with respect to two different spectra. In general,

such a dependence is expected for peptides that are present in the sample, but not for

peptides that are absent. This observed covariation leads us to suspect that peptide sequences

have some inherent sequence property that repeatedly causes similar scores. This is

analogous to spectral covariation, seen for raw score functions such as XCorr [11, 4], but

with respect to the peptide sequence rather than the spectrum. To test whether peptide

sequence properties such as peptide length (Figure 3 B), mass or m/z (data not shown)

influenced this correlation, we plotted the Percolator score as a function of these properties;

however, no correlation was observed for these features. One plausible, alternative

explanation for this phenomenon is that the theoretical fragment masses of the peptide

sequence by chance closely resemble the fragmentation spectrum of a common modified

peptide in the sample, which is not found in the protein database [15].

3.2. The difference between WOTE and ETWO becomes more pronounced at the level of
multiple-hypothesis corrected statistics

A striking difference between ETWO and WOTE lies in the sets to which the multiple-

hypothesis correction is applied. With ETWO, multiple-hypothesis corrected statistics are

calculated for PSMs, while they are calculated for unique peptides with WOTE. From a

theoretical perspective, it is clear that multiple-hypothesis corrections should be applied to

the set of hypothesis that are tested, and not to another set. For this reason, we expect that

WOTE will give more accurate results because it performs its multiple hypothesis

corrections on the same level as we report our statistics. To demonstrate this difference, we

Granholm et al. Page 6

J Proteomics. Author manuscript; available in PMC 2014 June 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



applied the WOTE and ETWO method to two different datasets (Figure 4). The left panels

illustrate the relationship between WOTE and ETWO peptide-level q values as a function of

the underlying score, and the right panels show the direct relationship between the two types

of q values. For example, in panel B, which corresponds to a collection of spectra from a

yeast whole cell lysate, an ETWO-based q value threshold of 1% corresponds to a WOTE-

level q value threshold of 1.35%. In terms of the number of identifications, ETWO and

WOTE identifies 1661 and 1516 unique peptides, respectively, for a 1% q value threshold.

A more pronounced difference between these two types of q values can be seen for highly

purified mixtures (panels C and D). For all datasets we analyzed, the line representing

peptide-level versus PSM-level q values was consistently above y = x, regardless of the

score and mass tolerance window used. These results clearly illustrate that the false

discovery rate associated with a fixed score threshold is larger at the peptide-level than at the

PSM-level.

As mentioned previously, the explanation for the higher false discovery rate on the peptide-

level than on the PSM-level is that the average number of PSMs that match present peptides

is higher than the average number of PSMs that match absent peptides. To illustrate this

phenomenon, we made histograms of the distribution of the ISB18 PSMs matching the

sample and entrapment part of the target database (Figure 5). From the histogram we can see

the dramatic effect produced by present peptides amassing more PSMs than absent peptides.

This effect explains the large deviations in multiple hypothesis corrected statistics between

WOTE and ETWO: q values and false discovery rates are proportional to the ratios of the

areas under the curve between incorrect and all identifications with scores over a threshold,

fractions that we easily can spot as different for peptides and PSMs. Similarly, posterior

probabilities are proportional to the ratio of the “heights of the curves” of the incorrect and

all identifications, ratios that we again can spot as different between PSMs and peptides.

To assure that this phenomenon is not an artifact of the low complexity of the runs, we

compared the number of PSMs per peptide for all peptides identified when matching 35,108

yeast spectra against a target database and a decoy database. The distribution in Figure 6

shows that target peptides are identified by more PSMs than decoy peptides.

4. Discussion

We have employed a semi-labeled calibration test using known protein samples to assess

three methods for estimating peptide-level confidence estimates. We found that WOTE and

ETWO are well calibrated in the sense that they produce p values that are uniform under the

null hypothesis. On the other hand, we find a large discrepancy between the q values

produced by WOTE and ETWO, a discrepancy attributed to the fact that the multiple

hypothesis correction is erroneously performed on the PSM-level when using ETWO.

Some use of the ETWO method is likely the result of confusion regarding the difference

between PSM- and peptide-level statistics. We would like to emphasize the distinction

between PSMs and unique peptides, as they comprise of two disparate sets of identifications.

Hence, their error rates must be evaluated separately.
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Previous research has concluded that multiple PSMs involving the same peptide should not

imply increased peptide confidence because observed spectra cannot be considered

independent evidence for a single peptide [15]. Bern et al. go further and claim that the

number of PSMs might not differ between present and absent peptides [22]. In their

observation, almost as many decoy PSMs as target PSMs (22% and 24%) redundantly

identify a peptide. We confirm the non-independence of peptides by showing the extent to

which p values of PSMs to the same peptide correlate, even for incorrect matches (see

Figure 3(A)). On the other hand, in contrast to what Bern et al. report, but in agreement with

Shteynberg et al., we show that peptides that are present in the sample do obtain more

matches than absent peptides (Figure 5 and 6). This result indicates that the number of

spectra matched to a peptide is indeed an important indication of the peptide confidence.

Most likely, this effect did not show up for Bern et al. because a majority of the PSMs map

uniquely to a peptide; thus, the average number of PSMs per target and decoy peptide does

not clearly differ. However, we look closer at the redundant PSMs, and we consequently

find that there is indeed a difference between target and decoy peptides. In fact, this effect is

frequently used for quantifying proteins using spectral counting [35, 36].

Although we have demonstrated that WOTE is the desired method for estimating peptide

level statistical confidence measures, an apparent drawback of this procedure is its failure to

make use of multiple spectra matching the same peptide. Based on the above reasoning, the

ideal method would estimate peptide-level statistics using information from all PSMs,

without assuming independence, to improve the discrimination between present and absent

peptides. This, in turn, would yield more confident protein identifications. Bern et al.

introduce the principle of combining p values of PSMs mapping to the same peptide

sequence, but with different post-translational modifications. The same idea could be

extended to combine PSMs of peptides identified with different charge states. Such PSMs

are more likely to be independent; hence, this method is probably the most accurate current

approach for combining p values of multiple PSMs.

As stated earlier, the accuracy of the peptide-level confidence estimates influences the

reliability of the confidence estimates for proteins. Given an unbiased and efficient protein

inference algorithm, well calibrated peptide level statistics from the WOTE procedure, are

expected to generate well calibrated protein level statistics. ETWO, on the other hand, is

anti-conservative, and expected to generate more protein identifications, but with an inflated

error rate. However, it is important to note that although the statistics of PSMs and peptides

might be well calibrated, the subsequent protein inference algorithm also risks introducing

biases. For completely reliable proteomics results, protein inference procedures should

therefore be calibrated as well, an issue not addressed in this study.

Researchers aiming at estimating the statistical confidence of results from proteomics

experiments generally make assumptions about how to model the data. The target-decoy

analysis, for instance, requires such assumptions. In practice, it is difficult to know whether

these assumptions are reasonable, without empirically validating the results. Thus, we

encourage users and developers of new procedures for estimating peptide-level confidence,

to test the accuracy of the results, for instance by using the semi-labeled calibration test.
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Well-calibrated p values are a prerequisite, but no guarantee, for accurate statistics. The

largest discrepancy between WOTE and ETWO is manifested on the level of multiple

testing corrected statistics such as PEPs and q values. Hence, it is less of an error to use p

values generated by ETWO, as Combyne [22] does, than to use multiple testing corrected

posterior probabilities. As a conclusion, multiple hypothesis corrections should be carried

out for the set of hypothesis that we are testing. Multiple hypothesis-corrected statistics

cannot easily be transferred from one set to a subset or superset of the tested hypothesis

without corrections.
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Highlights

1. Confidence estimates for unique peptides and peptide-spectrum matches (PSMs)

differ.

2. Methods for transfering estimates from PSMs to peptides have not been

validated.

3. Here, we evaluate the statistical accuracy, or calibration, of three such

procedures.

4. One of the procedures tested (here denoted WOTE) produces well calibrated

results.
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Figure 1. False discovery rate increases when we move from PSMs to peptides
The figure illustrates how the FDR associated with a collection of 20 PSMs might double

when we consider FDR calculated at the peptide-level for the same spectra.
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Figure 2. The calibration of peptide-level p values from WOTE, ETWO and Fisher’s method
Three different datasets of known protein mixtures were scored against a bipartite target and

a reversed decoy database using Crux, MSGF+ and Percolator. Subsequently, p values were

estimated using either the SEQUEST’s XCorr (left side panels), the Percolator score (middle

panels) or scores from MSGF+ (right side panels). Entrapment peptide p values are plotted

relative to an ideal, uniform distribution of p values. The y = x diagonal is indicated by a

black line, and y = 2x and y = x/2 are shown by dashed lines. Panels (A), (B) and (C) show

results from the ISB18 mix. Panels (D), (E) and (F) represent the Sigma 49 mix, and panels

(G), (H) and (I) represent the OMICS 2002 mix.
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Figure 3. Covariation of entrapment peptides’ p values
Orbitrap spectra from 10 runs of the ISB18 mix 7 were searched against a bipartite database.

For each of the 10 runs, we collected only the entrapment peptides that had been identified

twice. (A) Based on their Percolator score, we plotted the two PSM-level p values for each

identified peptide (Pearson correlation coefficient = 0.60). Similar covariation was seen for

p values estimated using Crux and MSGF+, as well as for the two other standard datasets.

(B) The mean Percolator score of entrapment PSMs as a function of peptide length (number

of amino acids in peptide sequence). The error bars represent one standard deviation.
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Figure 4. Varying data complexity: Comparison between WOTE and ETWO peptide-level q
values
The left two panels plot the WOTE and ETWO peptide-level q values as a function of

XCorr threshold; the right panels plot peptide-level q values as a function of PSM-level q

values. Panels (A) and (B) correspond to a high complexity set of 35,108 target and 35,108

decoy PSMs derived from a yeast whole cell lysate [21]. Panels (C) and (D) correspond to a

low complexity set of 34,816 target and 34,816 decoy PSMs from the Sigma 49 dataset. All

q values were estimated using qvality [37] considering their XCorr score. Two-sided K-S

tests of the similarity between q values from WOTE and ETWO produced highly significant

p values (< 10−100), indicating their difference. Similar results were obtained when using the

Percolator score and MSGF+ (data not shown).
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Figure 5. Entrapment and sample distribution for PSMs and peptides
Using the ISB18 mix dataset, we divided our findings into entrapment and sample PSMs,

depending on what sequence in the bipartite database they were matched to. We further

weeded-out redundant PSMs to create a list of unique peptides, for the entrapment and

sample matches. The histogram shows the effect of the weeding-out procedure for the two

groups.
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Figure 6. The average number of PSMs per peptide is higher for matches against the target
database than against the decoy database
We scored 35,108 spectra derived from a yeast lysate against a target and a decoy database.

We then compared the number of PSMs per peptide for peptides having two or more PSMs

per peptide. 30,669 target peptides and 33,252 decoy peptides had one PSM each.
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Table 1
Datasets used for the calibration test of the p values

Three datasets generated from purified protein samples were used in this study. The table lists the names we

assign to each dataset, a short description, and how we form a database for the expected identifications (the

sample database).

Name Description Sample database

ISB18 mix Ten Orbitrap runs from the Seattle Proteome Center’s Standard Protein Mix
Database mix 7 [30].

Provided with the data (110 proteins
including contaminants).

Sigma 49 mix Three replicate LTQ analyses of human proteins from the Mass Spectrometry
Research Center at Vanderbilt University [31].

Universal Proteomics Standard FASTA file
(Sigma Aldrich, 49 proteins).

OMICS 2002 14 runs of control mixture A reported in OMICS 2002 and obtained from the
Institute for Systems Biology (Seattle, WA, USA) [32].

Provided with the data (107 proteins).
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