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Abstract

In retrospective studies, odds ratio is often used as the measure of association. Under independent 

beta prior assumption, the exact posterior distribution of odds ratio given a single 2 × 2 table has 

been derived in the literature. However, independence between risks within the same study may be 

an oversimplified assumption because cases and controls in the same study are likely to share 

some common factors and thus to be correlated. Furthermore, in a meta-analysis of case-control 

studies, investigators usually have multiple 2×2 tables. In this paper, we first extend the published 

results on a single 2×2 table to allow within study prior correlation while retaining the advantage 

of closed form posterior formula, and then extend the results to multiple 2 × 2 tables and 

regression setting. The hyperparameters, including within study correlation, are estimated via an 

empirical Bayes approach. The overall odds ratio and the exact posterior distribution of the study-

specific odds ratio are inferred based on the estimated hyperparameters. We conduct simulation 

studies to verify our exact posterior distribution formulas and investigate the finite sample 

properties of the inference for the overall odds ratio. The results are illustrated through a twin 

study for genetic heritability and a meta-analysis for the association between the N-

acetyltransferase 2 (NAT2) acetylation status and colorectal cancer.
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1 Introduction

Very often epidemiological studies involve comparison between two populations with 

binary outcomes. Data from these studies are usually summarized by a single or multiple 2 × 

2 tables. Inference on the comparative measures between two probabilities of an adverse 

event, or risks, by using 2 × 2 tables has been investigated by many statisticians. The 

confidence intervals derived from conventional large sample theory often have poor 

coverage probabilities when the risk is rare or the sample size is small1. Sometimes one 

could encounter the “zero cell” problem, which further impairs the use of conventional 

confidence intervals. A quick remedy for the “zero cell” problem is to add an arbitrary 

positive number to the cells2,3,4. However, this arbitrary positive number makes the 

interpretation of results difficult and contradicting conclusions could be made with choices 
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of numbers5. For the confidence intervals of odds ratios, the most commonly used exact 

method in practice is obtained by inverting the Fisher’s exact test6,7. This method, with 

coverage probabilities always greater than nominal levels, has been criticized for being too 

conservative due to the discreteness of the test statistic8,9,10. Consequently the loss of power 

would diminish the practical utility of this method.

Alternative methods have been proposed for studies with rare events or small sample sizes. 

In this regard, at least two general statistical approaches have been suggested. One is the 

frequentist approach where various confidence intervals have been proposed with the 

primary goal being to obtain the actual coverage probability close to the nominal 

level11,12,13,14,15,16. Instead of inverting two separate one-sided tests as in Cornfield11, 

Baptista and Pike12 and Agresti and Min13 suggested inverting a single two-sided test. 

Aitkin et al.14 constructed the confidence intervals based on inverting the likelihood ratio 

test. More recently, Agresti and Min15 proposed the unconditional method where they found 

that the proposed confidence intervals tend to be shorter and have coverage probability 

closer to the nominal level compared to the intervals based on the conditional method.

The second general approach is the Bayesian approach where the main objective of 

inference is to obtain the posterior distribution of odds ratios that reflects the evidence from 

the data and the available prior knowledge. The Bayesian approach does not suffer from the 

“zero cell” problem because a prior distribution of risk is assumed and the inference is solely 

based on the posterior distribution of the risk or the comparative measures of risks. 

Conjugate beta prior distributions for risks are often used because its simplicity and 

flexibility to incorporate prior knowledge. Efforts have been made to obtain the posterior 

distribution of odds ratios. Under independent beta priors, Zelen and Parker17 and Ashby et 

al.18 suggested two normal approximations for the posterior distribution of log odds ratio. 

The exact cumulative posterior distribution of odds ratios has been derived by Numinen and 

Mutanen19 with the assumption of hyperparameters being positive integers. Marshall20 

extended the results to allow hyperparameters being any positive numbers. Given the 

important contributions on the exact Bayesian inference of odds ratio under independent 

prior risk assumption, to our best knowledge, the exact Bayesian inference under dependent 

beta prior risks has never been considered. In some situations, independence between risks 

within the same study may be an oversimplified assumption because cases and controls in 

the same study are likely to share some common factors and thus to be correlated. One such 

example is given in the following.

Our motivating example is a meta-analysis of the N-acetyltransferase 2 acetylation status 

and colorectal cancer risk. N-acetyltransferase 2 (NAT2) is a low-penetrance gene that 

regulates metabolizing enzymes. The activity of the enzymes is classified as rapid and slow 

acetylators. To investigate the association between rapid NAT2 acetylator status and 

colorectal cancer, Ye and Parry21 conducted a meta-analysis based on twenty published 

case-control studies from January 1985 to October 2001. The twenty studies were conducted 

at very different locations including Australia, Japan, Spain, UK and USA. Consequently, 

the environment and genetic background of different studies can be very different. On the 

other hand, cases and controls in the same study are likely to share some common, but 

possibly unmeasured, factors such as ancestors. The probabilities of exposures (i.e., rapid 
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NAT2 acetylator) in cases and controls within the same study were likely to be correlated. 

To test this hypothesis empirically, we calculated the correlation coefficient between the 

proportions of having rapid NAT2 acetylator in cases and controls within the same study. A 

preliminary data analysis has indicated a strong within study correlations (see details in 

Section 4.2). Therefore, it is important to consider the consequence of ignoring within study 

correlation, and extend the current results under independent prior risk assumption to 

dependent prior assumption.

In this paper, we first extend the results in Marshall20 to incorporate within study prior 

correlation by using the Sarmanov family22. We then extend our results to multiple 2 × 2 

tables and regression setting, which are common in meta-analysis and meta-regression 

analysis23. We also evaluate the performance of the models with independent and correlated 

priors through simulation studies. We note that the Sarmanov models for bivariate binary 

outcomes have been introduced to the applications of marketing innovatively by Danaher 

and Hardie24, where the focus is on predicting one outcome given the other. In contrast, the 

focus of this paper is on meta-analysis, where we are more interested in estimating both the 

overall and study-specific odds ratios.

This article is organized as follows. Section 2 states the main results, where we first extend 

the current results for a single 2 × 2 table with independent priors to correlated priors, and 

then extend to multiple 2 × 2 tables and regression setting. In Section 3, we conduct 

simulation studies to verify our formulas and evaluate the finite sample performance of the 

estimation procedure. We illustrate our methods in Section 4 with two examples: an analysis 

on a single 2 × 2 table and a meta-analysis for the association between the N-

acetyltransferase 2 (NAT2) acetylation status and colorectal cancer. We summarize our 

results and discuss possible extensions in Section 5.

2 Statistical Methodology

In this section, we will first restate the results on the exact posterior distribution of odds ratio 

for a single 2 × 2 table under independent prior, and then extend it to a bivariate correlated 

prior. Furthermore, we will extend the results to multiple 2×2 tables and discuss the 

estimation procedure.

2.1 Single 2 × 2 table

Let nj, yj and pj (j=1,2 for case and control groups respectively) be the number of subjects, 

number of exposed subjects, and risk of being exposed in the jth group, respectively. 

Assume that the prior risks p1 and p2 are beta random variables with hyperparameters (a1, 

b1) and (a2, b2) respectively, where aj, bj > 0. The posterior distributions of p1 and p2 are 

beta distributions with parameters (α1, β1) and (α2, β2) respectively, where αj = yj + aj and βj 

= nj − yj + bj (j = 1, 2). Denote the odds ratio of risks comparing the second group with the 

first group by θ = {p2/(1 − p2)}/{p1/(1 − p1)}. If the prior risks p1 and p2 are assumed 

independent, the posterior risks p1 and p2 given data are independent and the corresponding 

posterior distribution of odds ratio θ has been derived by Marshall20 as follows
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(1)

where B(α, β) denotes the beta function defined by  and F (·, ·; ·; ·) 

denotes the hypergeometric function25 defined by

However, in many situations, independent priors between risks in cases and controls may be 

an over-simplified assumption because cases and controls within the same study are likely to 

share some common factors. One such example is in genetic association studies where 

people in same study are likely to share similar environmental factors or similar ancestors26. 

Another example is in multivariate meta-analysis where multiple correlated outcomes of 

interests were provided in each study24,27,28,29.

Sarmanov22 first proposed and studied a family of bivariate distributions constructed from 

marginal distributions. This framework was re-discovered and studied by Cole et al.30, 

Lee26 and Shubina and Lee31. The general form of the Sarmanov bivariate distribution for a 

pair of random variables (p1, p2) with the specified marginal distributions f1(p1) and f2(p2) is 

given by

(2)

where ψj(·) are bounded integrable nonconstant functions that satisfy ∫ ψj(t)fj(t)dt = 0 for j = 

1, 2, and 1 + ρψ1(p1) ψ2(p2) ≥ 0 to ensure a nonnegative distribution26. When beta marginals 

for p1 and p2 are assumed, i.e. fj(pj) = B(αj, βj), the function ψj(pj) can be ψj(pj) = (pj − μj)/δj, 

where μj = aj/(aj + bj) is the mean of pj and  is the square root 

of variance of pj (j = 1, 2). An advantage of choosing this function ψj(pj) is that the 

parameter ρ has an intuitive interpretation of correlation coefficient, i.e., ρ = corr(p1, p2). 

Note that when ρ = 0, equation (2) reduces to independent bivariate beta distribution, i.e., 

the product of two independent beta distributions.

When beta marginals are assumed, Sarmanov family in equation (2) (referred to as 

Sarmanov beta priors) has the following advantage in modeling. First, it allows for both 

positive and negative correlations; second, it only needs specification of marginal 

distributions and correlation parameter, which has important advantage in Bayesian 

inference because it is often easier to specify and interpret univariate prior comparing to 
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bivariate prior; third, it is pseudo-conjugate for binomial distribution, i.e., equation (2) can 

be expressed as linear combinations of independent bivariate beta distributions26. Here we 

derived the exact posterior distribution of odds ratio under Sarmanov beta priors as follows 

(see Appendix Section A for the proof),

(3)

where fθ (θ; α1, β1, α2, β2) is the posterior density function of odds ratio under independent 

beta priors, defined in equation (1), ωk (k = 1, …, 4) are functions of a1, b1, a2, b2, ρ given in 

Appendix Section A.

When within study correlation is zero, i.e., ρ = 0, in which the weights are ω1 = 1 and ω2 = 

ω3 = ω4 = 0, the results in equation (3) reduce to the previous results in equation (1). When 

within study correlation is nonzero, the prior correlation is introduced to the posterior 

distribution of odds ratio through the weights ωk. Note that in order to ensure a nonnegative 

Sarmanov beta prior distribution, i.e., 1 + ρφ1(p1)φ2(p2) ≥ 0, the correlation ρ must subject 

to the constraint

where . It is easy to see that the range is narrower 

than [−1, 1]. For example, the constraint is [−0.5, 0.5] with Jeffreys prior (a1 = b1 = a2 = b2 

= 0.5). This is a common problem for non-normal bivariate distributions such as the Farlie-

Gumbel-Morgenstern distribution whose correlation coefficients are limited to the interval 

[−1/3, 1/3]32.

2.2 Multiple 2 × 2 tables and regression extensions

The rapid growth of evidence-based medicine has lead to a dramatic increasing attention to 

meta-analysis which combines statistical evidence from multiple studies. When the primary 

scientific interest is in comparing risks between two populations, data are often summarized 

by multiple 2×2 tables.

For the i-th study, let nji, yji and pji (j=1,2 for case and control groups respectively) be the 

number of subjects, number of exposed subjects, and risk of being exposed in the jth group, 

respectively. The study-specific risks, or the random effects, (p1i, p2i) are often assumed to 

be independent across studies, following a common distribution. To allow for heterogeneity 
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in risks across studies and prior correlations in risks within the same study, a Bayesian 

hierarchical model can be assumed as follows,

(4)

where the distribution g(p1, p2; a1, b1, a2, b2, ρ) is the Sarmanov beta prior with 

hyperparameters (a1, b1, a2, b2, ρ) as in model (2). Denote the dispersion parameter φj = 

1/(aj + bj +1). The model (4) allows for two types of correlations: the correlation between 

the exposure status for two subjects from the same study and the same group, φj, and the 

correlation between the exposure status for two subjects from the same study but different 

groups, . One interesting property of the model (4) is the linear regression 

relationship between p1i and p2i. Specifically, the conditional expectation can be calculated 

from the equation (2) as E[p2|p1] = μ1 + ρδ2/δ1(p1 − μ1), which takes the same form as in 

bivariate normal distribution.

These hyperparameters (a1, b1, a2, b2, ρ) are often unknown. One way is to impose another 

level of hierarchy by assuming the prior distributions for these parameters. Alternatively, 

with abundant data, the hyperparameters can be well estimated from the data. Such 

approaches are called empirical Bayes methods33,34,35,36. The hyperparameters can be 

obtained by maximizing the log marginal likelihood combining all studies as considered in 

Danaher and Hardie24

(5)

where PBin(yji; nji, pji) and PBB(yji; nji, aj, bj) are the probability mass function of binomial 

distribution and beta-binomial distribution, respectively. The model (5) can be referred to as 

Sarmanov beta-binomial. When ρ = 0, the Sarmanov beta-binomial reduces to the 

independent beta-binomial model, i.e., product of two beta-binomial distributions. This 

model can be fitted using commonly used statistical software such as SAS, SPLUS/R and 

STATA. We implement it through R (R Development Core Team, Version 2.11.1) with the 

optim function, which uses a quasi-Newton method with box constraints on the ranges of 

parameters. Furthermore, we use delta method to get the variance of log odds ratio. The 

Wald intervals for log odds ratio is then calculated and transformed to the Wald intervals for 

odds ratio. A SPLUS/R program to fit this model (with a working example) is attached in 

Appendix Section B.

Denote (â1, b̂1, â2, b̂2, ρ̂) the maxima of the log marginal likelihood function (5). The 

quantity of primary interest, overall odds ratio, defined by θ = {μ2/(1−μ2)}/{μ1/(1−μ1)} with 

μj = aj/(aj +bj) can be estimated by plugging in the estimates of hyperparameters. On the 

other hand, the study-specific odds ratio in the ith study, θi, has posterior distribution 

 if the hyperparameters were known. In 

practice, we can simply replace the hyperparameters by their estimates. Note that the 
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inference based on  ignores the 

uncertainty on the hyperparameter estimates, hence may leads to credible intervals that are 

liberal. To obtain confidence intervals that close to the nominal level, one can use the bias 

correction method or the bootstrap method37,38.

To adjust for study level covariates, the model (4) can be extended to the regression setting. 

Specifically, we assume that the study-specific risk pji for j = 1, 2 have Beta distributions 

with mean parameters μji and dispersion parameters φj, respectively,

where Beta(p; α, β) is the beta distribution defined by B(α, β)−1pα−1(1−p)β−1. Then E[pji|φj, 

μji] = μji and . The mean of each Beta distribution is a 

function of covariates

where h(·) is some link function and Xi are the study-specific covariates related to study-

specific risks. To allow for the correlation between risks, we assume the paired study-

specific risks (p1i, p2i) follow the Sarmanov beta prior distribution, i.e.,

This model allows different dispersion parameter φj across different groups. Similarly to the 

estimation procedure for model (4), this bivariate beta-binomial regression model can be 

fitted by maximizing the log marginal likelihood function.

3 Simulation Study

3.1 A Single case-control study

To verify the results in formulas (1) and (3) empirically, we conducted simulation studies 

using Monte Carlo methods. For concreteness, we used the twin study dataset considered in 

Fisher6. More details of this dataset will be introduced in Section 4.1. Two settings were 

considered. In the first setting, independent Jeffreys prior on p1 and p2 (i.e., a1 = b1 = a2 = 

b2 = 0.5) was assumed. We drew 5, 000 samples of p1 and p2 independently from f1(p1) = 

Beta(p1; 10.5, 3.5) and f2(p2) = Beta(p2; 2.5, 15.5), respectively. For each pair of samples p1 

and p2, we calculated the odds ratio θ = {p2/(1 − p2)}/{p1/(1 − p1)} and plotted the 

histogram. We then calculated the density function using the formula (1) and overlaid the 

density curve on top of the histogram. In the second setting of correlated priors, p1 and p2 

were assumed to follow Samarnov prior with ρ = 0.5, a1 = b1 = a2 = b2 = 0.5. The samples 

were jointly drawn using rejection sampling techniques in the following steps:
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1. Sample p1 and p2 independently from f1(p1) and f2(p2);

2. Simulate u from Uniform distribution over (0, 1);

3. Accept (p1, p2) as one pair of samples if u ≤ g(p1, p2)/[M · f1(p1)f2(p2)], where g(·) 

is density function (2), M is an upper bound of importance ratio g(p1, 

p2)/[f1(p1)f2(p2)]. Specifically, we let M = 1 + |ρ|/(δ1δ2), where δj is the square root 

of variance of pj (for j = 1, 2) as defined in Section 2.1;

4. Repeat steps 1 to 3 until sufficient pairs of samples are obtained.

Figure 1 shows the histograms based on random samples and the overlaid density functions 

based on formulas (1) and (3). The empirical results suggested that the posterior density 

functions of odds ratio are correct.

3.2 Meta-analysis of case-control studies with binary exposure

When multiple 2 × 2 tables are available, the hyperparameters can be estimated using the 

empirical Bayes method illustrated in Section 2.2. Then the overall odds ratio and the within 

study correlation can be obtained. In this subsection, we conducted simulation studies to 

evaluate the finite sample performance of the maximum likelihood estimator for the overall 

log odds ratio (OR). We set the true values of hyperparameters a1 = b1 = a2 = b2 = 0.5, with 

within study correlation ρ = 0, 0.2, 0.4, and the number of studies being 20, 40, and 60. The 

configuration of sample sizes for the studies were set as the same as that in the meta-analysis 

conducted by Ye and Parry21. Table 1 compares the bias, true standard error (computed as 

the standard deviation of the overall log OR estimates and labeled as “SD”), model based 

standard error (labeled as “SE”), and coverage probability (labeled as “CP”) of the Wald 

confidence interval for the log OR estimated from Sarmanov beta-binomial model (5) and 

independent beta-binomial model. Note that the model based SE is the square root of the 

average of the overall log OR variance estimated via Delta method. When ρ = 0, the 

independent model gives unbiased estimates, model based SE close to true SE, and coverage 

probabilities close to nominal levels while the Sarmanov model performs equally well in 

terms of bias, true SE, and model based SE, only with coverage probabilities negligibly 

worse. When ρ = 0.2 or 0.4, the Sarmanov model can still provide unbiased estimates, model 

based SE close to true SE, and coverage probabilities close to 0.95. Although the log OR 

estimates from independent model are also unbiased, the model based SEs deviate from the 

true SEs and the coverage property of the confidence intervals deteriorates. These simulation 

results indicate that Sarmanov model can provide valid inference and is robust to the within 

study correlation with moderate number of studies. In contrast, although the independent 

model could obtain consistent estimates for odds ratio, the estimated variability for these 

estimates would be inadequate; hence confidence intervals and statistical tests are not 

feasible.

One interesting phenomena shown in Table 1 is that the true SE decreases as the within 

study correlation ρ increases. To visually display this pattern, we compare in Figure 2 the 

true SE (left panel) and the model based SE (right panel) from the Sarmanov model and the 

independent model under various ρ with number of studies n being 40. The left panel of 

Figure 2 shows that, when ρ increases, the true SEs of both models decrease due to 
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“borrowing strength” across groups27 but the Sarmanov model always provides smaller true 

SEs because the log OR is estimated by the maximum likelihood estimator. In contrast, as 

shown by the right panel of Figure 2, the model based SE from the independent model 

remains unchanged, because the likelihood function of the independent model fails to 

incorporate the within study correlation. The model based SEs from the Sarmanov model are 

close to the true SEs. Figure 2 suggests that inference based on the Sarmanov model can 

take advantage of the within study correlation by “borrowing strength” across groups, while 

the independent model produces confidence intervals that are over-conservative. The 

relative efficiency, comparing the estimator based on independent beta-binomial model to 

Sarmanov beta-binomial model, is also calculated in Table 1. The relative efficiency 

decreases dramatically as the correlation increases and the efficiency gain by using the 

Sarmanov model can be as large as 39%. Another interesting phenomena in Table 1 is that 

the true SE of the Sarmanov model when n = 40 and ρ = 0.4 is even smaller than the true SE 

from the independent model when n = 60 and ρ = 0. This indicates that by “borrowing 

strength” across groups, the required number of studies to achieve certain efficiency can be 

significantly reduced.

4 Applications

4.1 Application to a twin study for genetic heritability

In the landmark paper by Fisher6, a small study of criminal twins of same gender was 

considered with the objective to quantify the evidence of heritability of criminality. The 

frequencies of convictions of monozygotic and dizygotic twins of criminals can be 

summarized by a single 2 × 2 table. Specifically, 10 out of 13 monozygotic twins of 

criminals were convicted with crime, while only 2 out of 17 dizygotic twins of criminals 

were convicted. In our notation, y1 = 10, n1 = 13, y2 = 2 and n2 = 17.

Of interest is the association between the criminal conviction and genomic sharing of 

criminal twins. This can be measured by the odds ratio of conviction comparing dizygotic 

twins with monozygotic twins. Although the primary objective in Fisher6 is testing rather 

than estimation, we consider it as a good example to illustrate the exact Bayesian inference 

and sensitivity analysis. We considered six different priors, which include three independent 

beta priors, i.e., Jeffreys Prior, Laplace prior and an informative prior with ρ = 0 and all 

other hyperparameters being 0.5, 1 and 2 respectively, two Sarmanov correlated priors (i.e., 

a1 = b1 = a2 = b2 = 0.5, ρ = −0.5, 0.5) and one prior suggested by Kass and Raftery39 and 

Howard40 (i.e., a1 = b1 = a2 = b2 = 0.5, δ = 1 in Section 7 of Howard40). The corresponding 

prior and posterior distributions of odds ratio under the six prior distributions are plotted in 

Figure 3. As shown in Figure 3, the posterior distributions under all three independent priors 

and two Sarmanov correlated priors share similar pattern of having most of weights on small 

values of odds ratio, whereas the posterior distribution based on Howard’s prior is much 

flatter. This leads to similar credible intervals under independent priors and Sarmanov 

correlated priors, while much more conservative credible interval (i.e., credible interval 

closer to 1) under Howard’s prior. The parameter settings for the priors and posterior, along 

with the corresponding 95% equal tail credible intervals and 95% highest posterior density 

regions for odds ratio, are summarized in Table 2. Specifically, if Jeffreys prior is assumed, 
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the credible intervals for odds ratio under independent model (i.e. ρ = 0) are very close to the 

credible intervals derived from the correlated models with ρ = −0.5 or ρ = 0.5, suggesting 

that the Bayesian inference of odds ratio based on this dataset is fairly robust to the prior 

independence assumption.

4.2 Application to a meta-analysis of the N-acetyltransferase 2 acetylation status and 
colorectal cancer risk

N-acetyltransferase 2 (NAT2) gene is critical to the metabolism of a wide range of 

hydrophobic compounds including carcinogens. Rapid NAT2 acetylation status has been 

considered as a risk factor for colorectal cancer in many studies. Because of the inconsistent 

results of the studies with respect to the presence and magnitude of the association, Ye and 

Parry21 conducted a meta-analysis based on twenty published case-control studies from 

January 1985 to October 2001. Twenty studies were included in the meta-analysis with 4, 

471 colorectal cancer cases and 4, 885 controls among which 2, 361 and 2, 238 subjects had 

rapid NAT2 acetylator status. The data are summarized in Table C.1 of the Appendix 

Section C. A strong within study correlation between probabilities of exposure in cases and 

controls is found, with Pearson’s correlation, Spearman’s rank correlation, and Kendall’s tau 

equal to 0.872, 0.493, and 0.396, respectively, and all p-values less than 0.03. To visualize 

this pattern, a scatter plot of probability of exposure among cases and controls was displayed 

in the left panel in Figure 4. It displays strong positive within study correlation. As 

suggested by simulation studies in Section 3.2, the within study has to be accounted for to 

ensure valid inference on odds ratio. Here we define the odds ratio as the ratio of odds of 

having rapid NAT2 acetylator status comparing those with colorectal cancer to those 

without. We fit both independent beta-binomial model and Sarmanov beta-binomial model. 

The likelihood ratio test yields a p-value of 0.075, suggesting moderate evidence of 

correlation. We then obtained the estimates of hyperparameters (â1, b̂1, â2, b̂2, ρ̂) = (3.108, 

2.914, 3.942, 3.361, 0.125), and the exact posterior distribution of each study-specific odds 

ratio using formula (3). Figure 5 presents the posterior density functions of four randomly 

selected study-specific odds ratios.

By applying Bisection root-finding method to compute the 2.5% and 97.5% quantiles, we 

constructed the 95% equal-tail credible intervals of each study-specific odds ratio. The 

overall odds ratio is estimated by (â2b̂1)/(â1b̂2) and the 95% confidence interval is 

constructed by exponentiating the Wald’s intervals of overall log odds ratio. Figure 6 

presents the forest plot with credible intervals of study-specific odds ratios and confidence 

interval of overall odds ratio. The overall odds ratio for rapid NAT2 acetylator status and 

colorectal cancer risk is 1.100 (95% CI: 0.704, 1.718). In contrast, the overall odds ratio 

estimated from the independent beta-binomial model is 1.138 (95% CI: 0.717, 1.806). 

Although the odds ratio estimates from both models are not statistically significant, 

Sarmanov beta-binomial model provides sizable efficiency gain compared to independent 

beta-binomial model due to its ability of accounting for correlation within studies (relative 

efficiency is 0.867). In general, the larger the within study correlation, the larger efficiency 

gain by using Sarmanov beta-binomial model, as shown in Section 3.2. Notice that one large 

study could be the most influential on the analysis (3587 out of total of 9356 subjects). To 

evaluate the sensitivity of the results on this large study, we conduct the analysis with this 
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study removed. The corresponding estimates for odds ratio are 1.066 (95% CI: 0.668, 1.702) 

under Sarmanov beta-binomial model and 1.110 (95% CI: 0.683, 1.803) under independent 

beta-binomial model. In summary, the analysis with the largest study removed suggests 

similar conclusions.

5 Discussion

Recently, multivariate random effect models for meta-analysis have become increasingly 

popular in biomedical research. The major advantages of these models are the ability of 

accounting for heterogeneity between studies, similarly to the univariate random effect 

model proposed by DerSimonian and Laird45, and the ability to allow for within study 

correlation27,28,29. In this paper, we considered exact Bayesian inference of a single or 

multiple 2×2 tables under a class of independent or correlated priors. This type of prior 

distributions have the advantage of having closed form formulas for the posterior 

distributions of odds ratio, and allowing for between studies heterogeneity and within study 

correlations. We evaluated the finite sample performance of the estimation procedure of the 

overall log odds ratio through simulation studies. The Sarmanov model can provide valid 

inference and is robust to the within study correlation, while the independent model can only 

give valid inference when the within study correlation is zero. Moreover, we found that the 

Sarmanov model can utilize the within study correlation by “borrowing strength” across 

groups, which significantly reduces the required number of studies to achieve certain 

efficiency. The simulation studies suggest that the efficiency gain by using the Sarmanov 

models can be as large as 39%. In addition, the posterior distribution of the study-specific 

odds ratio can be easily calculated and displayed due to our exact formulas of the posterior 

density functions. We also discussed the regression extension when the study-specific 

covariates are available. The computation in this paper was performed in R (R Development 

Core Team, Version 2.11.1). Codes are available from the corresponding author upon 

request.

One important application of the Sarmanov beta binomial models can be meta analyses in 

genome-wide association studies (GWAS). In the last decade, genome-wide association 

studies have made considerable progress in identifying gene variants that are associated with 

susceptibility of diseases. The genetic effects are mostly moderate or small in magnitude. 

Single studies are often underpowered to detect associated gene variants. Meta-analysis of 

many GWAS is a promising approach to detect associations with greater power and to study 

the consistency of these finding across studies46. Traditional approaches include Fisher’s 

method of combining p-values, and inverse variance weighting methods under univariate 

fix-effects or random effect models. The Sarmanov beta binomial model can improve the 

performance over the traditional approaches in meta-analyses of GWAS because it can not 

only allow for heterogeneity between studies due to real population differences such as 

ethnic ancestry, study design, or phenotypic differences, but also utilize the within study 

correlation such as population substructure or cryptic relatedness47.

We want to mention a related bivariate random effect model that was originally proposed in 

the context of bivariate meta-analysis48,49 and diagnostic test50,51. This model assumes a 

hierarchical model, similarly to the Sarmanov beta binomial model, with the transformed 
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probabilities (e.g. after logit-transformation) following a bivariate normal distribution. This 

model is often referred as bivariate generalized linear mixed model (BGLMM). The 

Sarmanov beta binomial model considered in this paper is different with the BGLMM in at 

least two aspects. First, the BGLMM implicitly assumes the linear regression relationship 

between p1 and p2 in the transformed scale, while the Sarmanov beta binomial model 

assumes the linear regression relationship in the original scale as illustrated in Section 2.2. 

Secondly, the BGLMM models the correlation in a transformed scale, hence the 

interpretation of correlation is transformation dependent and less intuitive. Instead, the 

Sarmanov beta binomial model directly models the correlation between p1 and p2, which has 

an easier interpretation. The price to pay for the Sarmanov beta binomial model is that the 

possible range for the correlation is often smaller than [−1, 1], which is a common problem 

for non-normal bivariate distributions32.

As pointed out by an anonymous reviewer, in the meta-analysis example in Section 4.2, 

much of the correlation between cases and controls within the same study could be 

explained by study-level covariates such as race and country. It would be of interest to 

explore the performance of the regression extension of the models considered, which can be 

a future research direction.
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Appendix

Section A: Derivation of equation (3) and some results on the moments of 

odds ratio

proof

With beta marginals and mixing functions φi = (pi − μi)/δi, the Sarmanov prior distribution 

of p1 and p2 can be written as linear combination of products of independent beta 

distributions as follows,

where beta(·; aj, bj) is the beta distribution, vk (k = 1, …, 4) are weights, defined by, v1 = 1 + 

ρd, v2 = v3 = −ρd, v4 = ρd, d = (μ1μ2)/(δ1δ2). After some algebra, the posterior distribution of 

p1 and p2 given data is also a linear combination of products of independent beta 

distributions,

where the weights ωk (k = 1, …, 4) are defined by,

and C, the normalizing constant, is calculated as

The proof is completed following the derivation of equation (1).

Under independent beta priors, the k-th posterior moment of odds ratio exists for k < 

min(α1, β2) and is given by

(6)

Specifically, the mean and variance are given by E[θ; α1, β1, α2, β2] = β1α2/{(α1 −1)(β2 − 

1)} and
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Under correlated beta priors, the k-th posterior moment of odds ratio exists for k < min(α1, 

β2) and is given by

(7)

where E[θk; α1, β1, α2, β2] is the k-th posterior moment of odds ratio under independent beta 

priors, defined in equation (6).

Section B: SPLUS/R program to fit model (4) and a working example

# function to compute the log-likelihood in 

equation (5)

myLik <- function(mypar, mydat) {

   par <- par.cal(mypar); a1 <- par[1]; b1 <- par[2]; a2 <- par[3]; b2 <- 

par[4]

   temp1 <- (lgamma(a1+mydat$y1) + lgamma(b1+mydat$n1-mydat$y1)+ 

lgamma(a2+mydat$y2) + lgamma(b2+mydat$n2-mydat$y2)

          + lgamma(a1+b1) + lgamma(a2+b2))

   temp2 <- (lgamma(a1) + lgamma(b1) + lgamma(a2) + lgamma(b2)+ 

lgamma(a1+b1+mydat$n1) + lgamma(a2+b2+mydat$n2))

   if (flag == 0) myLogLik <- sum(temp1 - temp2) # if independent beta-

binomial model

   if (flag == 1) { # if Sarmanov beta-binomial model

    rho <- par[5]

    mu1 <- a1/(a1+b1); mu2 <- a2/(a2+b2)

    delta1 <- sqrt(mu1*(1-mu1)/(a1+b1+1)); delta2 <- sqrt(mu2*(1-mu2)/

(a2+b2+1))

    temp3 <- (log(1+rho/delta1/delta2*(mydat$y1-mydat$n1*mu1)*(mydat$y2-mydat

$n2*mu2)/(a1+b1+mydat$n1)/(a2+b2+mydat$n2)))

Chen et al. Page 16

Stat Methods Med Res. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



    myLogLik <- sum(temp1 - temp2 + temp3)}

   return(myLogLik)

}

# Back-transform the parameters (a1,b1,a2,b2,rho) to original scale

par.cal <- function(mypar) {

  a1 <- exp(mypar[1]); b1 <- exp(mypar[2]); a2 <- exp(mypar[3]); b2 <- 

exp(mypar[4])

  if (flag == 0) return(c(a1,b1,a2,b2))

  if (flag == 1) {

   eta <- mypar[5]; cc <- sqrt(a1*a2*b1*b2)/sqrt((a1+b1+1)*(a2+b2+1))

   upper.bound <- cc/max(a1*b2, a2*b1); lower.bound <- -cc/max(a1*a2, b1*b2)

   rho <- (upper.bound-lower.bound)*exp(eta)/(1+exp(eta)) + lower.bound

   return(c(a1,b1,a2,b2,rho))}

}

# function to calculate Wald confidence interval of OR using Delta method

OR.comp.log <- function(par, hessian) {

  a1 <- par[1]; b1 <- par[2]; a2 <- par[3]; b2 <- par[4]

  myOR.overall <- log(a2/b2/(a1/b1))

  myVar <- solve(-hessian)

  if (flag == 0) myD <- matrix(c(-1, 1, 1, -1), nrow=1)

  if (flag == 1) myD <- matrix(c(-1, 1, 1, -1, 0), nrow=1)

  myOR.overall.Var <- as.numeric(myD %*% myVar %*% t(myD)); myOR.overall.sd 

<- sqrt(myOR.overall.Var)

  myOR.left.bound <- myOR.overall-1.96*sqrt(myOR.overall.Var); 

myOR.right.bound <- myOR.overall+1.96*sqrt(myOR.overall.Var)

  return(list(OR=exp(myOR.overall), OR.left=exp(myOR.left.bound), 

OR.right=exp(myOR.right.bound)))

}

# Example 2 in Section 4.2: dataset from Ye and Parry (2002) Med Sci Monit

y1 <- c(10,19,13,40,13,92,33,151,50,34,140,74,68,96,134,95,88,807,119,162)

n1 <- 

c(41,45,41,96,28,205,36,329,112,96,343,174,201,221,187,100,200,1963,258,209)

y2 <- c(27,27,23,49,20,14,33,112,96,32,100,73,44,81,156,99,228,931,60,156)

n2 <- 

c(49,49,43,109,44,34,36,234,202,103,275,174,114,212,216,106,527,1624,120,200)

init.val <- rep(0, 5)

# fit independent beta-binomial model

flag <- 0 # flag = 0: independent beta-binomial model

results.indep <- optim(init.val[1:4], myLik, method = “L-BFGS-B”, 

lower=rep(-20,4), upper=rep(20,4),

          control = list(fnscale=-1,maxit=1000), hessian = T, 

mydat=list(y1=y1,n1=n1,y2=y2,n2=n2))

OR.comp.log(par.cal(results.indep$par), results.indep$hessian)

# fit Sarmanov beta-binomial model
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flag <- 1 # flag = 1: Sarmanov beta-binomial model

results <- optim(init.val, myLik, method = “L-BFGS-B”, lower=rep(-20,5), 

upper=rep(20,5),

                control = list(fnscale=-1,maxit=1000), hessian=T, 

mydat=list(y1=y1,n1=n1,y2=y2,n2=n2))

OR.comp.log(par.cal(results$par), results$hessian)

# Likelihood ratio test for within-study correlation

pchisq(q=-2*(results.indep$value-results$value), df=1, ncp=0, lower.tail = 

FALSE, log.p = FALSE)

Section C: Table C.1

Table C.1

Data from a Meta-analysis of Studies on the association between rapid N-acetyltransferase 2 

(NAT2) acetylator status (event) and colorectal cancer risk (cases)21

Author
Cases Control

no. events no. observations no. events no. observations

Ilett 27 49 10 41

Ilett 27 49 19 45

Wohlleb 23 43 13 41

Ladero 49 109 40 96

Rodriguez 20 44 13 28

Lang 14 34 92 205

Oda 33 36 33 36

Shibuta 112 234 151 329

Bell 96 202 50 112

Spurr 32 103 34 96

Hubbard 100 275 140 343

Welfare 73 174 74 174

Gil 44 114 68 201

Chen 81 212 96 221

Lee 156 216 134 187

Yoshika 99 106 95 100

Potter 228 527 88 200

Slattery 931 1624 807 1963

Agundez 60 120 119 258

Butler 156 200 162 209
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Figure 1. 
Histograms of 5, 000 odds ratio samples overlaid on density functions calculated by 

formulas (1) and (3) under independent prior (left panel) and correlated prior (right panel)
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Figure 2. 
Variance estimates under different correlation coefficients from Sarmanov beta-binomial 

model (solid lines) and independent beta-binomial model (dotted lines). True standard error 

(left panel). Model based standard error (right panel). Number of studies is 40.
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Figure 3. 
Prior and posterior distributions of odds ratio under Jeffreys prior, Laplace prior and 

informative prior (upper panels) and Sarmanov priors (ρ = −0.5 and ρ = 0.5) and Howard 

prior (lower panels). Odds ratios are defined as the ratio of odds of conviction comparing 

dizygotic twins to monozygotic twins.

Chen et al. Page 21

Stat Methods Med Res. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Scatter plot of risks of exposure among cases and controls for Ye and Parry21 dataset. The 

area of each circle is proportional to the total sample size of the study. A regression line is 

overlaid with coefficients estimated by weighted least squared (weights proportional to the 

total sample size of the study). Left: scatter plot based on all twenty studies. Right: scatter 

plot based on dataset with the largest study removed.
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Figure 5. 
Posterior distributions of study-specific odds ratios for four studies: Ladero et al.41, Chen et 

al.42, Yoshioka et al.43, and Butler et al.44. The numbers in the legend are the total sample 

sizes of the studies. Odds ratios are defined as the ratio of odds of having rapid N-

acetyltransferase 2 (NAT2) acetylator status comparing those with colorectal cancer to those 

without.
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Figure 6. 
Forest plot of 20 study-specific and the overall odds ratios with 95% credible intervals. The 

numbers on the y-axis are the total sample sizes of the studies. Odds ratios are defined as the 

ratio of odds of having rapid N-acetyltransferase 2 (NAT2) acetylator status comparing 

those with colorectal cancer to those without.
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Table 2

Bayesian Inference under Independent and Correlated Priors. HDR: highest posterior density region.

Priors Posterior Mean Posterior Median 95% equal tail 
credible interval

95% HDR 
credible interval

Independent Jeffreys Prior (a1 = a2 = b1 = b2 = 0.5) 0.064 0.043 [0.005, 0.245] [0.000, 0.189]

Independent Laplace Prior (a1 = a2 = b1 = b2 = 1) 0.080 0.057 [0.008, 0.291] [0.001, 0.227]

Independent informative Prior (a1 = a2 = b1 = b2 = 2) 0.114 0.086 [0.016, 0.374] [0.005, 0.300]

Sarmanov Prior ρ = −0.5 (a1 = a2 = b1 = b2 = 0.5) 0.057 0.038 [0.004, 0.222] [0.000, 0.170]

Sarmanov Prior ρ = 0.5 (a1 = a2 = b1 = b2 = 0.5) 0.078 0.054 [0.007, 0.284] [0.001, 0.222]

Correlated Prior proposed by Howard (δ = 1, a1 = a2 = 
b1 = b2 = 0.5) 0.207 0.172 [0.048, 0.571] [0.027, 0.478]
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