1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

"% NIH Public Access
@@‘ Author Manuscript

2 HEpst

NATIG,

O

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2008 ; 11(0 1): 833-841.

Automatic Image Analysis of Histopathology Specimens Using
Concave Vertex Graph

Lin Yangl3, Oncel Tuzel?, Peter Meerl, and David J. Foran3
1Dept. of Electrical and Computer Eng., Rutgers Univ., Piscataway, NJ, 08854, USA

?Dept. of Computer Science, Rutgers Univ., Piscataway, NJ, 08854, USA

3Center of Biomedical Imaging and Informatics, The Cancer Institute of New Jersey, UMDNJ-
Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA

Abstract

Automatic image analysis of histopathology specimens would help the early detection of blood
cancer. The first step for automatic image analysis is segmentation. However, touching cells bring
the difficulty for traditional segmentation algorithms. In this paper, we propose a novel algorithm
which can reliably handle touching cells segmentation. Robust estimation and color active contour
models are used to delineate the outer boundary. Concave points on the boundary and inner edges
are automatically detected. A concave vertex graph is constructed from these points and edges. By
minimizing a cost function based on morphological characteristics, we recursively calculate the
optimal path in the graph to separate the touching cells. The algorithm is computationally efficient
and has been tested on two large clinical dataset which contain 207 images and 3898 images
respectively. Our algorithm provides better results than other studies reported in the recent
literature.

1 Introduction

As new therapies emerge for blood cancer screening, it becomes increasingly important to
distinguish among subclasses of lymphocytes in advance. Processing the specimen using a
reliable, image-based analysis system could reduce the cost and patient morbidity. In image-
based analysis the first step is segmentation. However, the traditional methods usually fail to
accurately segment touching cells in the digitized hematologic specimens. Touching cells
are especially prominent in malignant cases. In Figure 1, we show representative
morphologies for benign and five hematologic malignancies (hematoxylin-eosin staining):
Chronic Lymphocytic Leukemia (CLL) [1], Mantle Cell Lymphoma, (MCL) [2], Follicular
Center Cell Lymphoma (FCC) [3], Acute Myelocytic Leukemia (AML) and Acute
Lymphocytic Leukemia (ALL) [2].

The watershed algorithm is the most commonly used method for performing touching object
segmentation. However, it suffers from several major drawbacks.

»  Oversegmentation. The algorithm is sensitive to noise and often produces many
oversegmented small regions. Marker-based watershed [4] can partially remedy
this issue, but it requires manual selection or accurate estimation of the markers.

e Lack of shape prior. It is generally difficult to include shape priors in the watershed
transform. Although there are some efforts [5,6] proposed for specific cases, the
general problem still exists.

In this paper, we propose a novel algorithm to separate touching cells. The algorithm starts
from a deformable model which extracts the boundary contour of the touching cells. The
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concave vertex graph is constructed using the concave vertices on the contour and the edges
detected in the region of touching cells. The segmentation is then treated as an optimal
grouping of pixels, which can be solved by recursively searching optimal shortest path in the
concave vertex graph.

2 Boundary Contour Extraction

The initial step of the algorithm is to extract the boundary contour of the touching cells. We
first apply a L, £ robust estimation [7] to provide a rough estimation of the outer boundaries
of the cells inside the region of interest (ROI). A robust gradient vector flow (GVF) snake
[8] using Luv[9, Sec. 8.4] color gradients is further applied to extract the objects from the
background. Since the deformable models are initialized using the results of robust
estimation, the convergence speed is increased and the method can handle topological
changes. In this paper, we focus our attention on the touching cases shown in Figure 2b,
where the output contour represents the outer boundary of the touching cells.

3 Concave Points and Inner Edges Detection

In Figure 3, we show the construction of the concave vertex graph. The contour found by
boundary contour extraction algorithm is shown in Figure 3a. We detect the high curvature
points on the contour via [10](Figure 3b). At each point p on the contour a set of triangles
are constructed. The points which satisfy

dmin < la|l £ dmax  dmin £ |0l £dmax @ < ¥max 1)

where azarccos% Ohin, Omax = 7, 9 pixels and amax = 150° are kept. The candidates
are further processed to suppress the local nonmaxima points. The final high curvature
points correspond to both concave and convex points. We keep only the concave points,
shown as red rectangles in Figure 3c. This can be calculated from the sign of the cross

product a ® b, which has to be negative for concave points.

Canny edge detector is applied inside the cell region and straight line fitting is used to model
the edges (Figure 3d). The separating curve combines a pair of convex vertices on the
boundary and is enforced to pass through the inner edges.

4 Touching Cells Segmentation

The outer boundary of the touching cells is defined as C, and the region enclosed by Cis
R(C). The concave points are the set V; e.g. v1— V5 which are shown in Figure 3e. The inner
edges are the set £, e.g. shown as white solid lines in Figure 3e and also illustrated by &;in
Figure 3f.

4.1 Concave Vertex Graph

In Figure 3f we construct the concave vertex graph G. Let Wbe the vertex set consisting of
the end points of inner edges £ e.g. wjand wj;in Figure 3f. The vertices of graph G are then
equal to VU W.

The graph has two sets of edges £and F. The set £ contains the inner edges found by the
edge detection algorithm. The set Fis constructed with fi/ling edges by connecting the
vertices in G which are not connected by inner edges, e.g. i in Figure 3f. The lengths of the
inner edges are set to  (10716), while the lengths of the filling edges in set Fare given by
the Euclidean distance between the two vertices of the edges.
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The Dijkstra algorithm is used to find the shortest path p;;between v;and v;. The length of
the pj; [|loj I, is given by the total length of the filling edges fi in p;;because the length of
real inner edges is set to be

Ipifll= D length (fi).

fr€pij

In Figure 3f, as an example, we can see ||p12|| > ||,013l| because py» traverse longer filling
edgesthan py3. The defined path lengths enforce the segmentation to follow inner edges
since the trivial solution to directly connect two concave vertices using only filling edges in
graph Gwould provide a longer path.

Alg. 1

The algorithm to separate touching cells using concave vertex graph

Input: Given the region of interest (ROI) containing touching cells.

. Extract the boundary contour C, detect the concave points V; the inner edges £in R(C), construct the
concave vertex graph G.

. for each vertex /) € V
—  Find the path p;and calculate the length ||p;;|| using (2).
. Initialize mincost=+o0o and Q= @.
. while (Vis not empty)
—  foreach vertex L)) € V
¢ *foreachvertex jZ)E V
. gpply the path pj;to separate the graph Ginto L and

. Calculate the cost cusing (6) and save in Q.
- Sort @and pick up the path p; with the lowest cost c.
- if (¢ <1.5* mincosh
¢ Record path p;;and the region R(C, p;) with cost cin the result.
4 The edges and zero degree vertices in the R(C, p;) are removed from G.
¢ Set mincost=cand Q=@

- else return result.

After the Dijkstra algorithm is applied, we find all the shortest pathes among concave
vertices, pj;, which are valid candidates to separate touching cells. The key idea of our
algorithm is to treat the touching cells segmentation as recursively searching for the best
path pj7in G, which minimizes a cost function specifically designed to prefer cell-like
object-cut.

4.2 Cost Function

We are looking for perceptually “good” segmentation of touching cells. For this purpose, we
design the cost function to represent the clues that surgical pathologists use for judgement.

e The cells should be objects which are perceptually salient, since humans intend to
separate such objects in an image. A good definition of saliency is proposed in [11]
based on the Gestalt laws [12]. We apply the minimum of two saliency costs
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. [ lIpijll lIpill
Ccy=min N 3)
yarea,(C, pij) yJareay(C, p;j)

where ||p;| is the length defined in (2), each path p;;in G divides R(C) into two
regions L and R, and the miJn function in (3) selects the region with the smallest
cost. The area(C, pjj) denotes the area enclosed by Cand path pj;.

e The cells are objects which are close to elliptical shape and can be modeled by
ellipse fitting using points on Cand pj;. The ratio between the long and short axes is
recorded as fg. The segmented objects are expected to provide a ratio fgin the
range [#gy, fgv], in which case the dist (tg, [tgy, tgo]) = 0. Otherwise, we define dist

(tg, [tg1, tgo]) = min (|tg - tg2|, |tg - t91)).

1 1
1+exp (—dist (ig, , [ 18, 1821))" 1+exp (~dist (1g,,, [ 131, g,]))

Cg=Imin (

©

where the L and R have the same definition as (3). The fg; and #g, represent the
lower bound and upper bound of the long axes to short axes ratio.

e The cells are objects which have biologically reasonable areas. Following the
definition above, we use fa; and 74, to represent the lower bound and upper bound
of the cell area.

1 1
1+exp (=dist (ta,, [ tay, tay]))” 1+exp (=dist (tay, [tay, tas])) )

®)

c,=min (

» The final cost cis the weighted sum

3
C:/l]CS+/lQCg+/l3Ca 2/1521. (6)
i=1

The optimal values of coefficients are selected as A; = 0.5, 1, =0.3 and A3 =0.2,
which are learned in an offline process using a training set and held constant
throughout the experiments.

4.3 Algorithm

Using the concave vertex graph G and the cost function ¢, the method is described in
Algorithm 1. It is recursively applied to separate touching cells until all the region /R(C) are
allocated to the segmented cells. The algorithm only separates the cytoplasm of the touching
cells. Since the colors of nuclei and cytoplasm are distinct, they can be easily separated. In
order to provide smooth boundaries, we apply the quadratic splines to postprocess the
boundaries of each segmented cell.

5 Experiments

The cell database consists of a mixed set of 86 hematopathology cases: 18 Mantle Cell
Lymphoma (MCL), 20 Chronic Lymphocytic Leukemia (CLL), 9 Follicular Center Cell
Lymphoma (FCC), 18 Acute Lymphocytic Leukemia (ALL), 19 Acute Myelocytic
Leukemia (AML), and 19 benign cases. For each case, there are varying number of cell
images from 10 to 90. In total there exists 3898 cell images in our complete database. All the
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cases were generated from the archives of City of Hope Hospital in California, University of
Pennsylvania of School of Medicine, Spectrum Health System, Grand Rapids, Ml and
Robert Wood Johnson Medical School, University of Medicine & Density of New Jersey.

The imaging platform for the experiments consisted of an Intel-based workstation interfaced
with a high-resolution Olympus DP70 camera equipped with 12-bit color depth on each
color channel and 1.45 million pixel effective resolution. The system also includes a single
2/3 inch CCD digital camera, an Olympus AX70 microscope equipped with a Prior 6-way
robotic stage, motorized objective turret and a magnification changer.

We compare the segmentation results with manually segmentation. Two sets of experiments
are performed.

»  The 207 touching cases of the histopathology cell image dataset.
»  The complete database which contains 3898 histopathology cell images.

Figure 4 shows some segmentation results. In Table 1 we present the segmentation
accuracies for the six different classes of lymphocytes in two set of experiments. We
obtained an average accuracy 88.9% on the touching cells dataset and 90.1% on the
complete database.

Only a limited number of recent literature addresses the issue of touching cells segmentation
in histopathology images using hematoxylin staining in high resolution (60% in our case).
The watershed algorithm [4] is widely accepted for touching object segmentation and
successfully used in segmenting histopathology images [13]. We compared our method with
watershed using the 207 touching cell image dataset and listed the results in Table 2. The
80% column in Table 2 represents the sorted 80% highest accuracy of all the results, and is
commonly used by doctors to evaluate the usability of the system. The experiments
demonstrate the superior performance of the presented approach.

6 Conclusion

In this paper, a novel segmentation algorithm has been proposed to address the challenges of
touching cell segmentation in hematologic specimens. The results are validated using real
clinical data containing six classes of hematologic blood cell images. We compare our
algorithm with watershed and experimentally show the superior performance of the
proposed algorithm.

For general pixel grouping problem using a normal graph, the optimization problem is N/ P-
hard. Only certain cost function can be agproximately solved using algorithm like
normalized cut [14] in polynomial time. In our algorithm, the cost function is designed to
meet the domain specific requirements. The concave vertex graph, which utilize the concave
points of the outer contour, reduce the search space to the shortest pathes in the constructed
graph G. Based on a MATLAB implementation, the algorithm can finish in less than 2
seconds for an 128x128 image.
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Fig. 1.

Some representative morphologies of touching lymphocytes. In the first row, from left to
right: CLL, MCL and FCC. In the second row, from left to right: ALL, AML and benign.
The specimens were prepared at different hospitals and institutions therefore there exists

large variations in staining.
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(a)

Fig. 2.
The segmentation result of robust color GVF snake. (a) The ROI contains only one cell. (b)
The ROI contains the touching cells.
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Fig. 3.

Construction of the concave vertex graph. (a) The original image with the yellow boundary
contour. (b) High curvature points detection. (c) Concave points detection. (d) Inner edges
detection. (e) The outer boundary C, concave vertices Vand inner edges £, superimposed on
the original image. (f) The constructed concave vertex graph G. The filling edges are shown
with dotted lines.
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Fig. 4.
The segmentation results using the concave vertex graph
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