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Abstract
metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry-
based untargeted metabolomic data that is designed to identify differences in metabolic profiles
across multiple sample groups (e.g., “healthy” versus “active disease” versus “inactive disease”).
By performing second-order (“meta”) analysis, the software facilitates prioritization of interesting
metabolite features from large untargeted metabolomic datasets prior to the rate-limiting step of
structural identification. Here we provide a detailed step-by-step protocol for going from raw mass
spectrometry data to metaXCMS results visualized as Venn diagrams and exported Microsoft
Excel spreadsheets. There is no upper limit to the number of sample groups or individual samples
that can be compared by the software, and data from most commercial mass spectrometers is
supported. The speed of the analysis depends on computational resources and data volume, but
will generally be less than one day for most users. metaXCMS is freely available at http://
metlin.scripps.edu/metaXCMS/.

INTRODUCTION
Metabolites are the biochemical end products of gene activity and therefore provide a
functional readout of cellular phenotype.1–3 Untargeted metabolomics denotes the global
and simultaneous profiling of as many metabolites as possible in a search to identify altered
pathways that provide a phenotypic signature for the biological system of interest.4–7 The
approach has been widely applied to elucidate biomarkers of disease, to discover new
therapeutic targets, to assign unknown gene function, and to gain mechanistic insight into
physiological processes in plants, yeast, bacteria, and mammals.8–13 Although historically
much attention has been dedicated to the analysis of metabolites, until recently most studies
focused on a relatively small number of compounds. Developments in high-resolution mass
spectrometers, however, now enable the simultaneous detection of thousands of low-
concentration species and have largely driven the field of global metabolic profiling over the
course of the past ten years.14,15

As with any “omics” technology, the development of metabolomics has relied upon
advances in bioinformatic tools that are required for analysis of the complex datasets
generated. The analytical technique that has proven to be the most suitable for looking at the
largest number of compounds is liquid chromatography/mass spectrometry (LC/MS).14,16 A
typical LC/MS analysis of a metabolic extract from a biological tissue or fluid results in the
detection of thousands of peaks, each with a unique m/z value and retention time.17,18 The
first bioinformatic challenge in LC/MS-based metabolomics was comparing the intensity of
each individual peak, known as metabolite features, across all of the samples measured. A
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complication is that the retention time of a particular metabolite can change slightly from
one run to the next due to experimental drift. Deviations in retention time (e.g., from
fluctuations in the room temperature, time-dependent changes in the sample, column
degradation, etc.) are nonlinear and complicate the feature assignments that are used for
correlation between samples.19 In 2005, a metabolomic program was developed called
XCMS to identify dysregulated metabolite features between two sample groups by using a
novel nonlinear retention-time alignment algorithm that does not require the addition of
internal standards.17 XCMS is a freely available and platform-independent R-package that
processes, analyzes, and visualizes LC/MS metabolomic data. XCMS is widely used in the
field of untargeted metabolomics with over 350 citations of the original paper and more than
45,000 downloads as of 2011.

Although XCMS and other metabolomic programs that have been developed are well suited
for the analysis of large sample numbers, the programs are limited in that they only compare
two different sample groups directly.20,21 Manual comparisons of multiple sets of XCMS
results have been performed, but these studies involve only a small number of sample
groups and require additional analysis time.22 metaXCMS was developed to provide a tool
for efficient meta-analysis of untargeted metabolomic datasets containing any number of
sample groups.23 Meta-analysis can be defined as an approach that compares the results
from two or more independently performed studies to identify data points that are unique or
shared among all or some of the experimental groups.24 Figure 1 highlights the application
of metaXCMS to identify unique and shared metabolite features that are dysregulated
between three independent pairwise comparisons. Similar types of meta-analysis tools have
been successfully applied in genome-wide association studies to investigate conditions with
complex and heterogeneous phenotypes.25–27

APPLICATIONS
To drive our understanding of chemical physiology, dysregulated metabolites and related
cellular pathways need to be specifically correlated with unique biological processes or
disease states. Often, however, an untargeted metabolomic analysis results in a significant
number of altered metabolite features and it is a major challenge to differentiate molecules
causally associated with the phenotype of interest from those that are altered as a
downstream effect. Here metaXCMS provides a broadly applicable data-reduction strategy
as we recently demonstrated in a study of three different mouse models of pain characterized
by unique pathogenic etiology (Figure 2).23 Animals injected with Complete Freund’s
Adjuvant were used as an inflammatory model, animals to which noxious heat was acutely
applied to the hind paw were used as an acute heat model, and animals intraperitoneally
injected with serum from K/BxN mice were used as a pain mode of spontaneous
arthritis.28–30 Although the pairwise comparisons of each pain model with its respective
control resulted in hundreds of altered metabolite features in total, we suspected that at least
some of these molecules may be involved in triggering nociceptive transduction. The
second-order analysis of the results with metaXCMS showed that only three of the altered
molecules were shared among all of the models. We determined that one of the shared
differences was the well-characterized pain mediator histamine, validating the value of the
meta-analysis for identifying mechanistically relevant metabolites causally associated with
the phenotype of interest. A comparable approach could be applied to any type of disease or
stress model.

As another example, we analyzed two knockout strains of Halobacterium salinarum.
Specifically, knockout strains ΔVNG1816G and ΔVNG2094G were each compared to their
parent control strain Δura3. The proteins encoded by VNG1816G and VNG2094G are
known to affect glutamic acid metabolism.23,31,32 As expected, results from metaXCMS
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showed a feature similarly dysregulated in the pairwise comparison of each mutant to its
control that was consistent with the accurate mass and retention time of glutamic acid
(feature number 88, m/z 148.0606, retention time 5.8 min). The identity of glutamic acid
was confirmed by comparing the retention time and MS/MS fragmentation pattern to that of
a commercial standard. A truncated version of the XCMS files from each pairwise
comparison is available for download as a test dataset at http://metlin.scripps.edu/data/
metaXCMS/metaXCMS-testdata.zip. Expected results from performing the protocol
described here are provided for comparison within the zip file.

metaXCMS also has broad applicability in the more clinical context of biomarker
elucidation. Traditionally, metabolite biomarker discovery has been performed by
comparing healthy to disease patients.33 Most disease states of interest, however, are
exceedingly complex and highly variable from patient to patient at different stages of
progression and severity with potentially different prognoses.34 In addition, there are a
number of confounding variables that can be difficult to account for but that are known to
influence metabolic profiles such as sex, age, diet, drug regimen, ethnicity, and body mass
index.35 Given the relatively good throughput of LC/MS-based metabolomics, it has become
readily practical to analyze thousands of human patient samples.10,11 metaXCMS may be
applied to compare subgroup populations within these large cohorts to identify metabolic
predictors of disease course (Figure 3) and potential risk factors related to other clinical
variables. Additionally, metaXCMS analysis of phenotypically stratified subgroup
populations similarly has utility in assessing drug efficacy. The comparison of subgroup
difference profiles of patients on and off drug (e.g., “low blood pressure on drug” versus
“low blood pressure off drug” compared to “high blood pressure on drug” versus “high
blood pressure off drug”) will greatly facilitate the identification of variables affecting drug
response and potential patients at risk of off-target effects.

EXPERIMENTAL DESIGN
Although untargeted metabolomics is generally hypothesis generating as opposed to
hypothesis driven, it is important to carefully construct an experimental design to assure that
the results have value given the significant effort and time that will be required for data
analysis. Generally, the rate-limiting step in the untargeted metabolomic workflow is
structural identification of metabolites.36 While the untargeted profiling analysis provides
the accurate mass of altered features between sample groups, these data must then be
searched in metabolite libraries and structurally characterized by comparison of retention
time and tandem MS data to that of standard model compounds. Thus, pairwise comparisons
that yield hundreds of altered features can be challenging in requiring significant effort and
resources for identification. The incorporation of additional physiologically meaningful
sample groups into the experimental design, however, can result in a reduced list of
interesting features. Importantly, this data reduction by meta-analysis is at the feature level
prior to the rate-limiting step of structure determination. metaXCMS therefore has the
potential to improve the overall throughput and efficiency of untargeted studies by
prioritizing features to be identified that have a high likelihood of being biologically
relevant.

Two broadly applicable experimental designs utilizing metaXCMS that have been
introduced here include: (i) the comparison of different variations of a disease or stress
model to identify shared metabolic alterations related to a mechanistically fundamental
response, and (ii) the comparison of phenotypically stratified patient cohorts to deconvolute
metabolic responses associated with specific clinical variables and disease heterogeneity.
Many other context-dependent applications are also conceivable, but in all cases certain
experimental conditions should be followed for best results. First, the samples should be
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prepared by using the same metabolite-extraction method. Different extraction methods may
lead to the removal of different metabolites and thereby introduce artificial differences into
the comparison.37 Additionally, because metaXCMS correlates peaks on the basis of m/z
values and retention time, all samples being compared should be analyzed by using the same
column and chromatographic method. These experimental requirements are limiting in that
meta-comparisons of metabolomic analyses from different laboratories are likely to be
unreliable. Although such inter-laboratory comparisons have intriguing potential, the
protocol described here was not designed for that purpose. It should be noted, however, that
meta-analyses from different laboratories should in principle provide the same profile of
shared differences despite potential alterations in the retention times of specific compounds
across different laboratories.

MATERIALS
Equipment

Hardware requirements

• A personal computer with at least 2 GB of RAM. A multi-core processor with at
least 2 GB of RAM per core is recommended for the processing of large files/
sample groups.

• Sufficient hard-drive storage space for raw data files, converted files, and results.

Software requirements

• For sample conversion : 32 or 64 bit versions of Windows operating system (XP,
Vista, Windows 7).

• For XCMS and metaXCMS analysis: any 32 or 64 bit version of Windows, Unix
operating system, or Mac OS X (release 10.5 and above) can be used. However,
since most 32 bit operating systems cannot allocate more than 2 GB of RAM, 64
bit operating systems are recommended for working with large files/sample groups.

Equipment Setup
Install metaXCMS as described on (http://metlin.scripps.edu/metaxcms/download.php).
XCMS will be automatically installed during the installation of metaXCMS.

Download and install ProteoWizard (http://proteowizard.sourceforge.net). CRITICAL:
Download the ProteoWizard version that includes vendor reader support.

PROCEDURE
Figure 4 shows an overview of the meta-analysis workflow. The process of file conversion,
feature detection and alignment, and second-order analysis is described below step-by-step.
For details on data acquisition, see Want et al.38. For more details on result browsing and
interpretation, see Smith et al.17 and Tautenhahn et al.23.

Conversion of vendor-format data files to mzXML

1| Locate MSConvertGUI.exe in the ProteoWizard folder and run it by double-
clicking to call up the graphical user interface as shown in Figure 5.

2| Click ‘Browse’. Select the raw data files to convert. Multiple files can be
selected at once.

CRITICAL: Proteowizard currently supports the conversion of Agilent, Applied
Biosystems, Bruker, Thermo Fisher, and Waters data files (see http://
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proteowizard.sourceforge.net/formats.shtml for information about other file
formats).

3| Click the filter selection dialog. Select ‘Peak Picking’. Make sure ‘Prefer
Vendor’ is activated.

4| Click the ‘Add’ button to add peak picking to the filter list. This will make sure
the resulting files are in centroid mode, which is a requirement for the
subsequent feature detection.

5| Click ‘Browse’ to select the output directory. Select ‘mzXML’ as output format.

6| Click ‘Start’ to begin file conversion.

Pairwise Comparison by using XCMS

7| Organize mzXML files in folders. Create a folder for each pairwise comparison.
Inside of this folder, create a subfolder for each group. Move all mzXML files
that were acquired for the respective sample group into the corresponding folder.
For example, make a folder “variationA_vs_controlA” that contains subfolders
for each group “variation” and “controlA” where the individual mzXML files
are copied.

8| Run R and load the XCMS package.

library(xcms)

9| Set the R working directory to the folder containing the files for the first
pairwise comparison, for example setwd(“C:/Data/variationA_vs_controlA”)

CRITICAL: R uses the Unix-style forward slashes / as path separators on
Windows operating systems, single backslashes \ do not work.

10| Start the feature detection using the “centWave” method.39

xset <- xcmsSet(method="centWave",ppm =30, peakwidth=c(10,60),
prefilter=c(0,0)) If you use a PC with multiple cores, add the argument nSlaves
and specify the number of cores (e.g., xset <- xcmsSet(method="centWave",
nSlaves=2) for a PC with 2 cores).

11| Perform retention-time correction using the “OBIwarp” method.40

xset1 <- retcor(xset, method="obiwarp", plottype = c("deviation")) The retention
time correction curves should be displayed as represented in Figure 6.

12| Group features together across samples.

xset2 <- group(xset1, bw = 5, minfrac = 0.5, mzwid = 0.025)

13| Fill in missing peaks, calculate statistics, generate feature table and extracted ion
chromatograms.

xset3 <- fillPeaks(xset2) dr <- diffreport(xset3,
filebase="variationA_vs_controlA", eicmax=100)

Use the name of your pairwise comparison for filebase. Output files and folders
will be generated with that name.

The parameters used above are optimized for HPLC with ~60min gradient and
high-resolution Q-TOF. Suggested parameter settings for most common
experimental setups are show in Table 1.

14| Close R session.
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q(“no”).

15| Repeat steps 8–14 for each one of the pairwise comparisons.

CRITICAL: Do not rename or move the data folders and do not rename columns
in the XCMS result table after XCMS processing. This will make metaXCMS
unable to process the XCMS results.

Meta-Analysis by using metaXCMS

16| Run R and load the metaXCMS package (Figure 7).

library(metaXCMS)

17| Click ‘Import XCMS diffreport’. Navigate to the folder that contains the results
from one of the pairwise comparisons and open the .tsv file (e.g.,
variationA_vs_controlA.tsv).

18| Repeat step 17 until all of the results from the pairwise comparisons are loaded.

19| Verify that sample classes have been assigned correctly by clicking on the
filename of one of the pairwise comparisons on the left side of the window to
select it. All sample names and the automatically assigned sample classes of that
comparison are displayed on the right side of the window. If sample classes are
assigned incorrectly, double-click and select the correct sample class from the
pull-down menu.

20| Verify that the control sample class is assigned correctly. The sample class that
is used as a control for each pairwise comparison is shown in the column
‘Control is’. If the assignment is incorrect, double-click and select the correct
sample class from the pulldown menu. This will make sure metaXCMS can
correctly display and filter up- and down-regulated features.

21| Click ‘Continue’ to view filtering options (Figure 8).

22| Select fold change and p-value thresholds for filtering. Note: p-values are
calculated in XCMS by performing a Welch’s t-test for unequal variances.

23| Click ‘Apply filter’. The number of remaining features (green) will be updated.

24| If only up- or down-regulated features should be used from a pairwise
comparison, click on ‘all’ and select ‘UP’ or ‘DOWN’ from the pull-down
menu. Click ‘Apply filter’.

25| If features from a pairwise comparison should be subtracted from the result
(e.g., such as features altered in a sham control) select the “subtract from result”
checkbox.

26| Click ‘Continue’.

27| Adjust acceptable m/z and retention-time tolerance. Default values for HPLC/Q-
TOF are 0.01 and 60 seconds.

28| Click ‘Find common features’. After the alignment has been calculated, a Venn
diagram with the numbers of unique and common features between the pairwise
comparisons will be shown (Figure 9).

29| Save the Venn diagram as a .png or .pdf file.

30| To export a table with only the common features, click ‘Export common
features table’.
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31| To export a table with all features (unique, common, and shared), click ‘Export
all features table’.

32| Click ‘Continue’.

33| Click ‘Run Raw Data Alignment’. Retention-time correction for all samples will
be recalculated (Figure 10).

34| Click ‘Generate EICs for common features’. After an output folder for the
extracted ion chromatograms (EIC) has been selected, EICs will be generated
for all common features by using the data from all samples.

TIMING: Depending on the number of samples and the file size, steps 33 and 34 can take up
to 1–2 hours each. Also, depending on the number of CPU cores used, XCMS processing
(step 10–13) typically takes 15 min - 2 hr per pairwise comparison.

ANTICIPATED RESULTS
metaXCMS will create tables with all features (unique, common, and shared) in CSV format
(comma separated values). The files can be opened by Microsoft Excel or Open Office and
displayed as spreadsheets. Each row of the spreadsheet will correspond to a feature and list
m/z values as well as retention-time values in addition to fold changes and p-values (as
originally calculated by XCMS) for each of the pairwise comparisons. EIC’s will be
generated for each feature in the table and can be used for visual inspection. It is important
to note that metaXCMS does not provide metabolite identifications. To identify interesting
features, generally accurate masses are first searched in metabolite databases for making
putative metabolite assignments. The putative assignments are subsequently confirmed by
additional experiments comparing retention time and tandem MS data to that of model
standards.
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BOX 1| NUMBER OF SAMPLES PER SAMPLE GROUP

Currently, there is no consensus in the field with respect to the minimal number of
samples that should be included per sample group for an untargeted metabolomic
analysis. Similarly, different p-value and fold-change cutoffs are used depending on the
biological system under investigation, the methods used for metabolite extraction, and
the analytical platform employed. Studies have shown that instrument variability is
smaller than biological variability for mammals and suggested that lower-limit fold-
change thresholds of 1.5–2.0 be used.41,42 These lower-limit fold-change thresholds from
individual pairwise comparisons are likely appropriate thresholds to be used for meta-
analysis. Although XCMS and metaXCMS can be used to analyze groups with as few as
2 samples, typically larger sample groups are needed due to intergroup biological
variability. It should also be noted that it may be appropriate to apply a statistical
correction for multiple comparisons (e.g., a Bonferroni correction) to metaXCMS results
depending on experimental design. These additional statistical tests are context-
dependent and should be performed manually after metaXCMS analysis when
appropriate.
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Figure 1.
Introduction of pairwise and second-order comparison. XCMS performs a pairwise
comparison of two sample groups with any number of biological replicates. Data from
multiple pairwise comparisons is then used by metaXCMS to perform a second-order
comparison in which shared and unique differences are identified.
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Figure 2.
Data reduction by meta-analysis. Three pairwise comparisons of different pain models to
their respective controls resulted in 22,577 detected metabolite features (model A is animals
plantar injected with Complete Freund’s Adjuvant, model B is animals treated with noxious
heat, and model C is animals intraperitoneally injected with serum from K/BxN mice, for
further details see Tautenhahn et al.23). Next, features with fold changes less than 1.5 and p-
values greater than 0.05 were filtered and the remaining 1,825 features were plotted. A
second-order comparison by metaXCMS showed that only 3 of these features were
commonly shared, one of which was determined to be histamine.
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Figure 3.
Visualization of theoretical meta-analysis applied to identify biomarkers of disease severity.
The left Venn diagram shows shared and unique metabolite features for mild disease, severe
disease, and healthy patients. While features in the areas labeled a, b, and c may serve as
biomarkers, areas a and c could provide additional markers specific to mild and severe
disease respectively. The right Venn diagram shows a second-order visualization of the
same comparison that is representative of metaXCMS output when the parameters are set to
plot only metabolite features that are unique to disease (i.e., features that are detected in
disease but not in healthy samples). The advantage of the second-order visualization is that it
is not limited to representing only metabolites unique to a certain sample group. Rather,
metabolites that are up- and down-regulated by even small fold changes can be easily
represented according to user-defined thresholds. Given that biomarkers may not be
metabolites unique to disease samples but instead metabolites that increase by some
quantified fold change, second-order visualizations are generally better suited for
metabolomic data since they can be used to show up- and down-regulated features (see
Venn diagram in Figure 2). Changing the second-order visualization here to include features
with smaller fold changes, for example, would result in the display of more features that
might represent useful diagnostic markers.
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Figure 4.
Overview of the computational workflow. The workflow consists of five stages: acquisition
of LC/MS data, conversion of the data to .mzXML files, analysis of the files by XCMS,
analysis of XCMS results by metaXCMS, and result browsing and interpretation.
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Figure 5.
MSConvertGUI.exe, the graphical user interface of the ProteoWizard file converter. The
input fields or icons of the software that correspond to specific steps in the protocol are
indicated by the step number.
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Figure 6.
Retention-time correction curves generated by XCMS. Each colored line represents a
different sample processed. Note that the retention-time deviation is different for each
sample and that it is not linear.
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Figure 7.
Graphical user interface of metaXCMS. The input fields or icons related to the import of
XCMS diffreports are indicated by arrows that are numbered according to the protocol step
in which they are described.
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Figure 8.
Graphical user interface of metaXCMS. Filtering may be performed on the basis of p-value,
fold change, and up-/down-regulation. The input fields or icons related to filtering are
indicated by arrows that are numbered according to the protocol step in which they are
described.
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Figure 9.
Graphical user interface of metaXCMS. Features that are uniquely or commonly altered
among the pairwise comparisons are displayed as Venn diagrams. The icons related to data
visualization and export are indicated by arrows that are numbered according to the protocol
step in which they are described.
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Figure 10.
Graphical user interface of metaXCMS. Retention-time correction for all samples compared
is displayed and EICs are generated. The icons related to retention-time correction and EIC
generation are indicated by arrows that are numbered according to the protocol step in which
they are described.
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Table 2

Troubleshooting table

Step Problem Possible Reason Solution

10 Error in xcmsSet(method = "centWave") :
No NetCDF/mzXML/mzData/mzML
files were found.

Working directory does not
contain any LC/MS raw data
files

Make sure the correct folder is selected

10–13, 17–34 Error: cannot allocate vector of size X
Mb

Insufficient RAM Upgrade RAM, use 64 bit operating system

33 Cannot find the raw data files for X ? Raw data files have been
deleted or moved

Do not rename or move the data folders and do
not rename columns in the XCMS result table
after XCMS processing

16 Error in inDL(x, as.logical(local),
as.logical(now), …) : unable to load
shared object 'C:/Program Files/[…]/
cairoDevice.dll':

GTK+ is not installed Install GTK+ as described on http://
metlin.scripps.edu/metaxcms/download.php16 Error in inDL(x, as.logical(local),

as.logical(now), …) : unable to load
shared object 'C:/Program Files/[…]/
RGtk2.dll':

Any other Please describe the problem in the XCMS/
metaXCMS user forum http://
metlin.scripps.edu/xcms/faq.php
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