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Drug discovery based on classic models for cognitive impairment and negative symptoms of schizophrenia have met with only modest suc-
cess. Because cognitive impairment and negative symptoms may result from disruptions in neurodevelopment, more complex developmental
models that integrate environmental and genetic risk factors are needed. In addition, it has become clear that biochemical pathways
involved in schizophrenia form complex, interconnected networks. Points at which risk factors converge, such as brain-derived neurotrophic
factor (BDNF) and protein kinase B (AKT), and from which processes involved in neuroplasticity diverge, are of particular interest for phar-
macologic interventions. This paper reviews elements of neurodevelopmental models for cognitive deficits and negative symptoms of schizo-
phrenia with the aim of identifying potential targets for interventions.
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The mechanisms responsible for cognitive impairment
and negative symptoms in schizophrenia continue to be
poorly understood and, as a result, these highly disabling def-
icits remain relatively refractory to current treatments. Two
decades of efforts at drug discovery based on commonly-
employed animal models have been largely disappointing,
suggesting that new models for these symptom domains are
needed. The large literature on previous clinical trials with
existing compounds has been reviewed elsewhere (1,2). This
paper outlines current etiologic theories for cognitive deficits
and negative symptoms, potential animal models, and novel
treatment strategies suggested by these models.

Traditional theories of cognitive deficits and negative
symptoms in schizophrenia have focused on single neuro-
transmitters or receptor subtypes and have employed ani-
mal models in which the targeted receptor is dysregulated
by pharmacological manipulation or genetic engineering.
In contrast, emerging theories posit a neurodevelopmental
or neurodegenerative diathesis, involving complex inter-
actions between environmental factors and integrated net-
works of biochemical pathways. The goal of newer models
is to identify points of convergence among the many
implicated environmental risk factors, genes, and neuro-
chemical pathways that can account for course and symp-
toms of the illness. This approach assumes that schizo-
phrenia is a single biologically-valid syndrome, although
different paths may lead to the development of the illness.
If, instead, schizophrenia represents a heterogeneous col-
lection of brain disorders without overlapping etiologies
or mechanisms, then multiple models will be necessary to
support a personalized approach to treatment.

RISK FACTORS AND NEUROPATHOLOGICAL
FINDINGS

Established risk factors for schizophrenia include in
utero exposure to infection, stress or malnutrition, as well

as a large number of common alleles that individually con-
tribute very small incremental risk (3). Many of these risk
genes are modulators of brain development, are involved
in response to infection or inflammation, or are regulators
of synaptic connectivity. Within the category of neuro-
transmitters, genes involved in glutamatergic, GABAergic
and dopaminergic transmission are over-represented (4).
In addition to genetic and early environmental risk fac-
tors, daily use of cannabis in adolescence also appears to
increase risk (5,6).

At the time of onset of symptoms in young adulthood,
comparisons with healthy controls have identified ele-
vated serum levels and gene expression of inflammatory
markers, increased glucocorticoid response to stress,
enhanced oxidative load, and decreased activity of brain-
derived neurotrophic factor (BDNF) (7,8). These factors
have been associated with loss of gray matter, cognitive
deficits and negative symptoms (7,9).

An optimal model for drug discovery should also account
for cardinal neuropathological findings in schizophrenia,
including gray matter loss (10) and loss of inhibitory inter-
neurons expressing GAD67 (an enzyme required for synthe-
sis of GABA) (11), as well as for dysregulated dopamine
release (12) and hypofunction of N-methyl-D-aspartate
(NMDA) receptors (13). Intact inhibitory input from
GABAergic interneurons is believed to be important for the
synchronization of neuronal activity and related cognitive
processes (14).

Finally, the study of schizophrenia is complicated by
medication effects, which may be both protective and
toxic. For example, early treatment of psychosis with anti-
psychotics has been found to improve functional out-
comes (15); however, treatment of nonhuman primates
for roughly 18 months (16,17) and rats for 8 weeks (18)
with antipsychotics has been shown to result in decreased
brain volume with loss of neuropil and cognitive deficits
believed to reflect frontal D1 receptor down-regulation
(19).
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NEUROINFLAMMATION

Exposure to inflammation during early development
has emerged as an important component of neurode-
velopmental models for schizophrenia. Exposure to acute
maternal infection in utero is a well-established risk factor
for schizophrenia; for example, maternal influenza infec-
tion increased risk in offspring 3–8 fold in prospective
studies with serologic documentation of infection (20,21).
Elevated levels of the inflammatory cytokine, interleukin-
8 (IL-8), in second trimester blood samples from pregnant
women doubled risk for schizophrenia in offspring (22).
While early infection is a far greater contributor to risk
than any single susceptibility gene, it has been estimated
that 48% of schizophrenia susceptibility genes are directly
involved in response to infection (23). Genes comprising
the HLA region in particular are strongly implicated (3).
Elevated levels of neuroinflammation represented by
microglial activation have been demonstrated in post-
mortem schizophrenia brain (24,25) and, by positron
emission topography (PET) imaging studies, in early and
chronic schizophrenia subjects (26–28). A recent meta-
analysis clarified that peripheral cytokine elevation is
most apparent in medication na€ıve patients and during
periods of relapse (29).

Animal models that simulate maternal viral infection
during pregnancy have unique ecological validity, since
they duplicate a process known to increase risk for schizo-
phrenia in humans. The injection of polyinosinic:polycyti-
dylic acid (PolyI:C) stimulates maternal release of inflam-
matory cytokines, mimicking response to viral infection.
Offspring exhibit many characteristics similar to the neu-
rodevelopmental abnormalities found in schizophrenia
(30). These include increased volume of lateral ventricles,
decreased temporal lobe volume, abnormal prepulse inhi-
bition, increased behavioral sensitivity to dopamine ago-
nists and impairments in memory. These deficits are not
observed until young adulthood, roughly the age at which
humans first exhibit symptoms of schizophrenia (30).

NEUROINFLAMMATION, OXIDATIVE STRESS, AND
EXCITOTOXICITY

From a therapeutic perspective, it is important to estab-
lish the mechanisms by which early exposure to inflamma-
tion may produce neurobehavioral effects suggestive of
schizophrenia in adulthood. Equally important is the
determination of whether these consequences of early ex-
posure to inflammation are potentially reversible. In utero
exposure to PolyI:C is associated with decreased density of
D1 and D2 receptors in the frontal cortex and of NMDA
receptors in the hippocampus (30). In the hippocampus,
PolyI:C administration also was shown to lower concen-
trations of protein kinase B (AKT) and decrease axonal
diameter, myelination, and markers of neurogenesis in

adolescent offspring (31,32). The changes in AKT, axonal
size and myelination returned to normal in adulthood (31),
possibly representing a specific period of vulnerability dur-
ing adolescence. Jukel et al (33) also examined the brains
of adolescent offspring exposed to PolyI:C in utero and
found increased numbers of abnormally activated microg-
lia in the hippocampus and striatum, suggesting that, fol-
lowing exposure to inflammation in utero, an active inflam-
matory state persists later in life at the time of vulnerability
for onset of symptoms. The potential reversibility of some
of the effects of early neuroinflammation was demon-
strated by the administration of clozapine during adoles-
cence (postnatal days 34–47) in PolyI: C-exposed mice,
which prevented the development of structural and behav-
ioral changes in adulthood (34).

Neuroinflammation in adulthood may be particularly
relevant to cognitive impairment and negative symptoms
in schizophrenia, since these deficits have been associated
with elevation of C-reactive protein (CRP), a marker for
inflammation, in medication-na€ıve and chronic schizo-
phrenia samples (35–37). Serological evidence of infec-
tion with herpes simplex virus has also been associated
with impaired cognitive function and gray matter loss in
individuals with schizophrenia (38,39).

Inflammatory effects on brain development may be
mediated in part by a cytokine-induced increase in oxida-
tive stress and reduction in BDNF release. In both develop-
ing and adult brain, administration of the inflammatory
cytokine, IL-6, has been shown to increase oxidative stress
and inhibit the expression of GABA in inhibitory inter-
neurons (40), consistent with findings in post-mortem
schizophrenia brain (11). Maturation of inhibitory circuits
continues through adolescence, as reflected in changes in
brain oscillations with increased gamma rhythms and
improved capacity for executive function (41). Inflamma-
tion-associated oxidative stress could disrupt this process
in late adolescence, producing cognitive deficits that might
be reversible with targeted anti-inflammatory or anti-oxi-
dant therapy early in the course of illness. In chronic schizo-
phrenia patients, elevated markers for oxidative stress have
been associated with negative symptoms (42).

An additional consequence of early exposure to neuro-
inflammation may be a compensatory, protective down-
regulation of factors that promote neurotoxicity in the
presence of neuroinflammation. For example, the NR2C
subunit of the NMDA receptor is down-regulated follow-
ing exposure to the inflammatory cytokine, IL-6 (43). This
down-regulation of the NR2C subunit is associated with a
marked reduction in neurotoxicity in response to activa-
tion of the receptor by NMDA (43). The expression of the
NR2C subunit was found to be selectively decreased post-
mortem in the frontal cortex of schizophrenia patients
(44). Timing of inflammatory exposure is an important
determinant of neurodevelopmental impact; for example,
exposure to PolyI:C in adolescence produced elevated
expression of NMDA NR2A subunits, along with lowered
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seizure threshold and memory deficits in rats; these effects
of neuroinflammation in adolescence were reversed by
minocycline (45).

BDNF AND AKT

Both inflammation and environmental stress reduce the
release of activated BDNF from axons. The effect of envi-
ronmental stress on BDNF is mediated by cortisol secretion
acting on glucocorticoid receptors. BDNF facilitates neuro-
plasticity by the stimulation of dendritic growth, synapse
formation and neurogenesis (46). The BDNF Val66Met ge-
notype is associated with reduced BDNF activity and has
been linked to diminished synaptic plasticity in the hippo-
campus (47). BDNF activity declines with age; this decline
has been linked to the reduction in hippocampal volume
and cognitive decline in the elderly (48,49). In first episode
schizophrenia subjects, BDNF genotype significantly pre-
dicted longitudinal change in hippocampal volume (50) and
BDNF gene expression predicted cross-sectional volume
(7).

BDNF in turn activates (phosphorylates) AKT, a second
point of convergence of several risk factors, since AKT acti-
vation is also influenced by dopamine D2 receptors, canna-
binoid CR1 receptors and metabolic status (51). It has
recently been shown that AKT genotype predicts the likeli-
hood that cannabis abusers will develop a psychotic disor-
der (5). Like BDNF, AKT modulates neurogenesis, neuronal
survival, dendritic growth and, in addition, selectively phos-
phorylates NMDA receptors (NR1 and NR2C subunits) and
GABA receptors (A beta2 subunits). While the role of hip-
pocampal neurogenesis in humans remains uncertain,
BDNF and AKT may play a role in gray matter volume loss,
decreased neuropil, and associated negative symptoms and
cognitive deficits. Deficits in neuroplasticity have been
found on several cognitive and electrophysiological meas-
ures in schizophrenia (52,53).

A NEURODEVELOPMENTAL MODEL

In summary, a complex interplay between environmental
factors of inflammation and stress seems to interact with a
large number of genes to shift biochemical pathways in the
brain from states of neuroplasticity and neurogenesis in the
presence of a “benign” environment to a defensive state
with reduced neuroplasticity and decreased vulnerability to
neurotoxicity under conditions of environmental stress.
Dysregulation of this process may underlie the neurode-
velopmental origins and expression of several psychiatric
conditions, including schizophrenia.

While many parallel and interactive pathways contribute
to this regulation of brain equilibrium, the modulation of
BDNF by inflammation and by stress-induced elevation of
glucocorticoids represents one important point of conver-
gence. Similar to BDNF, AKT functions like a “thermostat”,

since its level of activity represents a summation of BDNF
levels, D2 receptor activation and activity at the cannabi-
noid receptor. BDNF and AKT both represent a point of
convergence of risk factors for schizophrenia and a point
of divergence for factors controlling neuroplastic and
NMDA/GABAergic regulation that may contribute to phe-
notypic expression of cognitive and negative symptoms of
schizophrenia.

Many schizophrenia genes are involved in pathways
involved in these diverse networks, consistent with an
“epistatic” combination of multiple genetic factors in deter-
mining risk. In addition, the functional state of inflamma-
tory and glucorticoid pathways is influenced by early envi-
ronmental exposure, thereby contributing an epigenetic
component to this model. Given the multiple developmen-
tal, genetic and environmental factors interacting in a highly
complex and interactive network, the development of thera-
peutic targets for cognitive impairment and negative symp-
toms of schizophrenia involves identification of “drugable”
factors that can be manipulated to correct pathological
imbalances at key developmental stages of the disorder.
Non-pharmacologic approaches are also quite promising,
such as cognitive behavioral therapy (CBT) to reduce stress,
and cognitive remediation, repeated transcranial magnetic
stimulation (rTMS) and transcranial direct current stimula-
tion (tDCS) to stimulate neuroplasticity and enhance brain
functioning in schizophrenia.

THERAPEUTIC IMPLICATIONS

Studies of offspring exposed to PolyI:C in utero predict
that neurodevelopmental abnormalities associated with
schizophrenia risk factors may be reversible during ado-
lescence or early adulthood. This model might be used to
test potential interventions during the prodromal phase of
schizophrenia. Whether interventions targeting factors,
such as inflammation and oxidative stress, believed to
influence neurodevelopment can be effective later in the
course of the illness is unknown, but preliminary findings
suggest that efficacy tends to be less robust with increasing
chronicity.

Anti-inflammatory agents

One example of a therapy based on this neurodevelop-
mental approach is the use of omega 3 fatty acids (fish oil)
in the schizophrenia prodromal phase. Omega 3 fatty
acids possess potent anti-inflammatory activity (54). Fish
oil is an ideal agent for anti-inflammatory prophylaxis,
since it is well tolerated and quite benign. In a placebo-
controlled 12-week trial in 81 ultra-high risk (prodromal)
subjects, fish oil significantly reduced the rate of conver-
sion to psychosis over a 52 week period (55). A large,
multi-center trial is currently in progress to attempt to rep-
licate this finding. Trials of omega 3 fatty acids in chronic
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patients have not produced consistent results, however
(56).

Several placebo-controlled add-on trials of standard anti-
inflammatory agents, including COX-2 inhibitors (57,58)
and aspirin (59), have demonstrated efficacy in schizophre-
nia for positive and negative symptoms, but not for cognitive
deficits. A recent meta-analysis of studies of non-steroidal
anti-inflammatory agents revealed a moderate therapeutic
effect size of 0.4 for total symptom response (60). In general,
response to anti-inflammatory agents has been observed
most consistently in individuals within the first five years of
illness onset (61). In a placebo-controlled study of add-on
aspirin treatment, peripheral levels of inflammatory cyto-
kines predicted response of symptoms (59). The use of
inflammatory biomarkers to identify patients most likely to
benefit and the targeting of early stage patients are two strat-
egies that may improve outcomes in future studies.

Minocycline is also of interest, given that it is well toler-
ated and has been shown in mice to decrease expression of
activated microglia (62) and release of inflammatory cyto-
kines (63). Minocycline significantly improved negative
symptoms at 6 months compared to placebo in two studies
of early-stage schizophrenia subjects (64,65). Working
memory also improved in one of these studies (65).

Anti-oxidants

Strategies to reduce oxidative stress are also promising
(66). The best-studied agent is N-acetyl-cysteine (NAC), the
glutathione precursor, which is a potent antioxidant and also
increases glutamate levels by competing for the cysteine/glu-
tamate transporter (67). In a placebo-controlled trial, NAC
significantly improved negative symptoms in chronic schizo-
phrenia patients, producing a moderate effect size that was
detected after 6 months but not at 2 months (68). In a 60-day
placebo-controlled cross-over study in chronic schizophre-
nia patients, NAC significantly improved response to mis-
match negativity (an evoked potential test of auditory dis-
crimination) (69) and resting-state EEG synchronization
(70). Additional studies are needed in early course subjects,
ideally with biomarkers for oxidative load. Studies of NAC in
early-stage psychosis are currently in progress.

BDNF

Another therapeutic approach suggested by the neurode-
velopmental model involves the targeting of BDNF. As
described previously, environmental factors such as stress
and inflammation that lower BDNF expression and a
Met66Val genotype that results in diminished BDNF activ-
ity are both associated with loss of brain volume in schizo-
phrenia. Antidepressants appear to act primarily via release
of BDNF; this mechanism may account for both antidepres-
sant effects and protection against hippocampal volume loss
(71–73). Release of BDNF by antidepressants has been
shown to increase neurogenesis and survival of immature

neurons in rodent dentate gyrus (74,75). Whereas antide-
pressants enhance BDNF activity in hippocampus, first gen-
eration antipsychotics may decrease BDNF expression (76)
and second generation antipsychotics either have no effect
(77) or may increase it (78). Effects of selective serotonin
reuptake inhibitors (SSRIs) on BDNF have been shown to
decrease with age in humans and were diminished in mice
with the Val66Met BDNF genotype (79). In chronic
patients, antidepressant treatment has been associated with
improvement of negative symptoms (80,81). In an open
trial, Cornblatt et al (82) found that antidepressant treat-
ment prevented conversion from prodrome to psychosis,
whereas treatment with second generation antipsychotics
did not. A multi-center placebo-controlled trial (DECIFER)
is currently in progress to evaluate the effects of a 12-month
trial of an SSRI in first-episode schizophrenia.

Physical exercise and hippocampal-dependent cognitive
exercises also enhance neurogenesis in rodent models by
stimulating BDNF release (83). A recent controlled study
in which schizophrenia subjects exercised on a stationary
bicycle found improvement in memory and increased hip-
pocampal volume (84). Cognitive remediation has been
reported to elevate peripheral BDNF levels, although this
increase did not correlate with cognitive benefit (85).

Folate

Another treatment suggested by the neurodevelopmental
model is folate supplementation. Folate deficiency results in
elevation of homocysteine, which at high concentrations
may be neurotoxic via oxidative stress and activity at NMDA
receptors (86,87). Maternal folate deficiency and elevated
homocysteine concentrations during pregnancy have been
identified as risk factors for schizophrenia (88,89). Risk for
schizophrenia is also increased in individuals with a geno-
type of methylenetetrahydrofolate reductase (MTHFR) asso-
ciated with reduced availability of activated folate (90), and
in offspring of mothers with a similar genotype (91). In
chronic patients, MTHFR genotype, in combination with
blood folate concentration and other genes related to folate
absorption and activation, has been found to predict nega-
tive symptoms and cognitive deficits (92–94). In a placebo-
controlled pilot trial, MTHFR genotype predicted improve-
ment of negative symptom severity in response to folate sup-
plementation (95). In a large multi-center study, MTHFR
and related genes predicted negative symptom response to
supplementation with folate and vitamin B12 (96). Cognitive
deficits did not improve, however. In a third placebo-con-
trolled study, folate and B12 supplementation improved pos-
itive and negative symptoms in schizophrenia subjects with
elevated homocysteine levels at baseline (97).

The mechanism by which folate improves symptoms
and enhances neuroplasticity is not clear, since it serves
multiple roles in brain development and function, includ-
ing synthesis of neurotransmitters, maintenance of DNA,
modulation of prefrontal dopamine concentrations by
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methylation of catechol-O-methyl-transferase (COMT),
and modulation of gene expression and neurogenesis (98).
The potential therapeutic value of folate supplementation
in early-phase schizophrenia has not yet been studied.

Other targets

Whereas treatments designed to counter inflammatory
response, oxidative stress, glucocorticoid elevation and fo-
late deficiency may be most effective as preventive measures
or early in the course of illness, treatment of cognitive
impairment and negative symptoms in chronic patients may
require a focus on targets that are ultimately impacted by
these factors and which are more proximal to symptomatic
expression of the illness. Most clearly implicated are dys-
regulation of dopamine (D1) and glutamate (NMDA) recep-
tors. These factors influence many relevant brain functions,
including neuroplasticity, attention, and cortical synchroni-
zation. Both D1 receptors and NMDA receptors, along with
BDNF, are key elements of neuroplasticity as described by
Kandel (99) in his classic studies of the molecular biology of
memory. If schizophrenia involves aberrant neurodevelop-
mental processes that produce defects in connectivity,
approaches that facilitate neuroplasticity may be the most
effective to improve cognitive efficiency. Non-pharmaco-
logic approaches, such as cognitive remediation and tDCS,
may also facilitate neuroplasticity.

As it becomes increasingly clear that neurochemical
pathways in the brain are extremely complex and inter-
connected, many other potential targets may exist that can
alter the overall function of these networks in beneficial
ways. Prediction of such effects has proven very difficult,
however, although network analysis may facilitate this pro-
cess in the future (100). The reader is referred to other
reviews providing descriptions of the rationale and clinical
trial results for various additional targets, including
GABAergic, cholinergic and serotonergic receptors (1,2).

Dopamine D1 receptors

Dopamine D1 receptor activity in the prefrontal cortex
is crucial for attention and working memory. Dopamine
levels are determined in part by ventral tegmental dopa-
mine neuronal firing (regulated by D2 and NMDA recep-
tors) and by the rate of dopamine metabolism by COMT.
Optimal prefrontal functioning requires precise control of
dopamine concentrations – too little or too much may
both reduce cognitive functioning.

Several approaches have been suggested to enhance dopa-
minergic function. In monkeys, Castner et al (19,101) dem-
onstrated that chronic treatment with antipsychotic drugs
produced a gradual impairment of cognitive functioning, at-
tributable to a compensatory down-regulation of frontal
D1 receptors. Intermittent treatment with a psychostimu-
lant was found to “sensitize” dopamine transmission and

improve cognitive functioning (19,101). In individuals with
schizophrenia, addition of psychostimulants to antipsy-
chotic medication may enhance frontal D1 receptor activa-
tion, while potential psychotomimetic effects of dopamine
release are attenuated by D2 blockade. Single dose adminis-
tration of amphetamine was shown to improve memory in
medicated schizophrenia subjects and in healthy controls
(102). The COMT inhibitor, tolcapone, has been shown to
improve cognitive function in healthy subjects, predicted by
COMT genotype (103), and may represent a potential thera-
peutic approach in schizophrenia. Finally, direct agonists for
D1 receptors are under development, but clinical trials have
been complicated by problems with tolerability (104).

NMDA receptors

For over two decades, glutamate transmission has been
a focus for drug discovery in schizophrenia (105). NMDA
receptors in particular have been implicated, since they
are involved in many relevant processes: those on ventral
tegmental neurons modulate dopamine release, those on
inhibitory interneurons modulate brain oscillations, and
those on hippocampal and prefrontal neurons modulate
neuroplasticity and memory. As has been noted, many of
the genes that have been linked to schizophrenia are
involved in glutamate signaling. Furthermore, density of
certain NMDA receptor subunits has been found to be
decreased in the prefrontal cortex of patients with schizo-
phrenia (44). Most impressively, NMDA receptor block-
ade produces manifestations similar to the psychotic
symptoms, negative symptoms and memory deficits char-
acteristic of schizophrenia (106).

In early studies, agonists at the glycine site of the NMDA
receptor (glycine, D-serine and D-alanine) and the partial
agonist D-cycloserine (DCS), added to first generation anti-
psychotics, improved negative symptoms and, in some trials,
positive symptoms and cognition (107). However, when
added to second generation antipsychotics in the CONSIST
trial, glycine and DCS produced no effect (108). While the
explanation for this failure to replicate results from earlier
studies is not clear, it is possible that second generation anti-
psychotics may enhance glutamate release via 5HT2 antago-
nism and hence may mask therapeutic effects of glycine site
agonists (109). When added to clozapine, DCS worsened
negative symptoms, suggesting that clozapine may act, in
part, via effects on NMDA receptors (110,111).

Another approach to facilitate activity at the glycine site
of the NMDA receptor is the inhibition of glycine reuptake.
Sarcosine, an endogenous precursor of glycine which com-
petes with glycine for reuptake, was shown in a preliminary
study to improve negative symptoms (112). The selective
glycine transporter 1 (GlyT1) inhibitor, RG1678 (bitoper-
tin), produced a modest improvement in negative symptoms
in an initial multi-center clinical trial and is currently on
registration trials as potentially the first agent to gain Food
and Drug Administration approval for negative symptoms.
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High doses of D-serine are being investigated; in an un-
blinded study, high dose D-serine improved cognitive func-
tion (113). D-serine concentrations can also be increased by
inhibition of D-aminoacid oxidase (DAO); this approach is
also currently under study.

D-cycloserine may offer additional therapeutic options as
a highly potent agonist at NMDA receptors containing the
NR2C subunit (114,115). NMDA receptors containing this
subunit have been linked to memory and thalamic oscilla-
tions (116,117), although activation by D-cycloserine pro-
duces rapid tolerance for memory consolidation (118).
Recent work suggests that intermittent (once-weekly) dos-
ing with D-cycloserine may produce persistent improve-
ment of negative symptoms in addition to memory enhance-
ment (119). When combined with CBT in a placebo-con-
trolled cross-over pilot trial, a single dose of D-cycloserine
was associated with a large improvement in delusion sever-
ity in subjects who received the drug with the first session
(120). D-cycloserine has demonstrated efficacy as a facilita-
tor of CBT for anxiety disorders (121) and, by enhancing
neuroplasticity and memory, may have a role in facilitating
psychosocial interventions in schizophrenia.

CONCLUSIONS

In summary, classical models for drug discovery have been
only modestly successful in identifying therapeutic agents for
cognitive impairment and negative symptoms of schizophre-
nia. The evidence from epidemiological and genetic studies
suggests that schizophrenia is a complex neurodevelopmen-
tal disorder for which modulation of a single neurotransmit-
ter is unlikely to produce full symptomatic response. Analysis
of the many environmental and genetic risk factors may iden-
tify points of convergence that may contribute to disease
expression, such as neuroinflammation, stress, and folate
deficiency. These environmental risk factors, in combination
with genetic vulnerability, may disrupt normal brain develop-
ment and produce cognitive deficits and negative symptoms
by effects on neuroplasticity, apoptosis and neurogenesis, in
part mediated by reduced activity of BDNF and AKT.

Interventions targeting these factors may be effective
early in the course of illness, including use of anti-inflam-
matory agents, anti-oxidants, antidepressants and CBT. In
chronic patients, facilitation of neuroplasticity via cogni-
tive remediation, rTMS and tDCS, perhaps combined
with agents acting via NMDA and D1 receptors, are also
promising approaches for the treatment of cognitive defi-
cits and negative symptoms.
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