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Abstract
Breast cancer accounts for about 30% of all cancers and 15% of cancer deaths in women.
Advances in computer assisted analysis hold promise for classifying subtypes of disease and
improving prognostic accuracy. We introduce a Grid-enabled decision support system for
performing automatic analysis of imaged breast tissue microarrays. To date, we have processed
more than 100,000 digitized specimens (1200×1200 pixels each) on IBMs World Community Grid
(WCG). As part of the Help Defeat Cancer (HDC) project, we have analyzed the data returned
from WCG along with retrospective patient clinical profiles for a subset of 3744 breast tissue
samples and the results are reported in this paper. Texture based features were extracted from the
digitized images and isometric feature mapping (ISOMAP) was applied to achieve nonlinear
dimension reduction. Iterative prototyping and testing were performed to classify several major
subtypes of breast cancer. Overall the most reliable approach was gentle AdaBoost using an eight
node classification and regression tree (CART) as the weak learner. Using the proposed algorithm,
a binary classification accuracy of 89% and the multi-class accuracy of 80% were achieved.
Throughout the course of the experiments only 30% of the dataset was used for training.

Index Terms
Tissue Microarray; Texton; Grid Computing; AdaBoost

I. Introduction
Breast cancer is one of the leading cancers for women. It is the second most common cause
of cancer death in white, black, Asian/Pacific Islander and American Indian/Alaskan native
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women [1], [2]. Early detection and improved therapy planning are crucial for increasing the
survival rates of cancer patients.

Tissue microarray (TMA) technology makes it possible to extract small cylinders of tissue
from pathology specimens and arrange them on a recipient paraffin block such that hundreds
can be assessed simultaneously [3], [4]. Although TMA technology is still evolving, the
underlying methods have already been tested extensively and validated for use in several
key areas of cancer research. Recently, several leading research groups participated in
efficacy studies in which they compared the accuracy of TMA-based analysis with
assessments, which had been rendered using traditional whole tissue sections or cDNA
microarrays. These findings were reported for a range of disorders including breast cancer
[5], [6], prostate cancer [7] and gastric cancer [8]. It is now generally accepted that two to
four samples taken from different regions of each donor tissue block provides enough
information to allow reliable evaluation of the specimen.

One of the advantages of TMA arrays is that they allow for amplification of limited tissue
resources by providing the means for producing large numbers of small core biopsies, rather
than generating one single specimen section. Using TMA technology, a carefully planned
array can be constructed such that a 20 years survival analysis can be performed on a cohort
of 600 or more patients using only 100–200 microliters of antibody. Another major
advantage of the TMA technique is that each constituent disc within a given array is treated
in an identical manner in terms of incubation times, temperatures and washing conditions.
Currently, the primary methods used to evaluate tissue arrays involve interactive review of
specimens which are subjectively evaluated and scored. An alternate, but less utilized
approach is to sequentially digitize each specimen for subsequent semi-quantitative
assessment. Both strategies ultimately involve interactive evaluation of TMA samples,
which is a slow, tedious process which is prone to error. Reducing the amount of time and
effort to process TMA could potentially lead to acceleration of the pace of cancer research.

Although strides have been made towards automating some aspects of the analysis [9], [10],
the full promise of TMA has not yet been realized, in part, because of a lack of reliable
methods for performing large-scale quantitative comparative analysis. We recently
undertook a collaborative project with IBM, the “Help Defeat Cancer” (HDC) [11] project,
which enabled us to utilize the massive computational power of the World Community Grid
(WCG). A screenshot of one of the thousands of distributed client computers participating in
the HDC is shown in Figure 1. The WCG enabled us to demonstrate the feasibility of using
spectral and spatial signatures to characterize staining characters of imaged cancer
specimens. In this paper, we report a Grid-enabled framework and efficient classification
algorithm for high-throughput analysis of digitized breast cancer specimens. We analyzed a
subset of the data returned from WCG along with the patients’ retrospective clinical profiles
to discriminate among benign breast tissues and two other subtypes of breast cancer. More
background information can be found on the HDC project though Wikipedia using the
keyword “Help Defeat Cancer” [12].

The remainder of the paper is organized as follows: Section 2 introduces background
information on the World Community Grid. In Section 3, we introduce the data generation
and system framework. Section 4 explains the data analysis methods, including feature
extraction, dimension reduction and classification. Section 5A provides comparative
experimental results of nine binary classifiers. Section 5B shows the performance of
extending the binary gentle AdaBoost algorithm to the multi-class problem. Section 6
concludes the paper.
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II. World Community Grid
IBM World Community Grid [13] (WCG) is a philanthropic project which utilizes otherwise
unused CPU cycles from personal computers around the world and aggregates the combined
computational power. WCG was established to address challenging large scale non-profit
research projects which can benefit humanity. It takes advantage of otherwise wasted energy
and at the same time creates a virtual supercomputer that by some measures exceeds the
capacity of traditional supercomputers. The result is that some otherwise impractical or
intractable research projects can be brought to successful completion. Investigators can
submit a research proposal for consideration by the WCG project committee. If approved by
the advisory board, the project is run at no cost to the research team. Findings are
subsequently placed in the public domain. Suitable research areas include, but are not
limited to biomedical, climatology, environment, conservation and emergency preparedness.

WCG enabled the most computationally intensive components of the Help Defeat Cancer
(HDC) project to run at optimal speed, thereby increasing the accuracy and sensitivity with
which expression calculations and pattern recognition procedures were conducted. By
harnessing the collective computational power of WCG, we were able to analyze a larger set
of cancer tissue specimens than what would be possible using traditional computer
resources. This added level of speed and sophistication led to improved capacity to detect
subtle changes in measurable parameters, and prognostic clues which are difficult to observe
by visual inspection alone.

The research proposal for the HDC project was originally submitted in August 2005. By
May, 2006, the research team composed of researchers from The Cancer Institute of New
Jersey, Robert Wood Johnson Medical School, Rutgers University and the University of
Pennsylvania School of Medicine delivered test programs to the technical support team of
WCG for review. The IBM team subsequently performed a thorough security review of the
code and modified it for use on the Grid. The changes included footprint reductions,
incorporation of robust checkpointing and Grid I/O modifications.

Imaged pathology specimens were generated using a high-throughput whole slide scanner
and transferred from laboratories within Robert Wood Johnson Medical School (RWJMS)
and The Cancer Institute of New Jersey (CINJ) to the secure Boulder Colorado IBM hosting
site where World Community Grid servers reside. As results were computed, they were
returned to the servers at RWJMS and CINJ. The total of the transfers approached one
terabyte of data. About 2909 years of run-time in the form of slightly more than 5 million
work packages were harvested from the personal computers that contributed to World
Community Grid. This includes an approximate 3 times redundancy of work to ensure that
the computations were not in error or tampered with. Because of the fairly large working set
memory required for the program, only machines with over 1 GB of RAM were selected to
run the project.

III. Data Generation and System Framework
The Tissue microarrays (TMA) used in the HDC project were collected from The Cancer
Institute of New Jersey, Yale University, University of Pennsylvania and Imagenex
Corporation (San Diego, CA). To date over 300 slides containing cohorts of hundreds of
tissue discs each and originating from 45 TMAs were digitized at 40× resolution using a
Trestle MedMicro virtual microscopy system. The output images typically contain 1–3
billion of pixels and were stored as a compressed tiled TIFF file sized at 0.5 to 2 Gigabytes.
Our registration protocols [14] were applied to the scanned images to identify rows and
columns of the tissue arrays. Any tissue cores that suffered from exceedingly pronounced
artifacts were excluded from the study. Images of each tissue core were systematically
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extracted from the archive and packaged as workunits for the HDC project. The dimension
of each image was 1200 × 1200. The specimens under study had previously been stained
with hematoxylin and hematoxylin & eosin. Two staining examples are shown in Figure 2.
A texton extraction algorithm was applied on the staining maps of the two dyes which were
generated using color decomposition [14]. Each of the resulting staining maps as well as the
luminance measure generated from the original color image were uploaded as separate
workunits to the WCG. The work-flow and logical units are shown in Figure 3.

IV. Data Analysis
As TMA is being utilized increasingly in cancer research, the development of accurate and
efficient method to evaluate TMA specimens remains a major goal. The individual tissue
discs comprising a given TMA contain complex, heterogeneous tissue components, which
renders most straight forward quantification methods ineffective. Furthermore, as
researchers design experiments using different staining techniques which target specific
proteins, the methods used for interpreting these specimens must vary accordingly.

In this section, we explain the methods used to generate and analyze the image features for
automatic classification of breast tissue specimens. Textures and intensities were used as
feature measures to classify the staining profiles of the imaged tissues. Because the feature
vectors lie in a high dimensional space, we applied a nonlinear dimension reduction method
to decrease the dimensionality. Through iterative experiments we determined that among
several different classification algorithms, the gentle AdaBoost classifier provided the best
overall performance in the reduced subspace.

A. Texton and Features
Figure 2 shows two breast cancer specimens. It can be found that the difference in texture
can be used as the discriminative features to separate different types of breast tissues.
Traditional texture analysis includes Law’s moment [15], cooccurrence matrices [16], run
length matrices [17] and autoregressive models [18] et. al.

In recent studies, texture has been represented using texton. Textons are defined as
conspicuous repetitive local features that humans perceive as being discriminative between
textures. Unlike many other texture features that describe each texture as a constant
relationship – a number, a data vector or a set of model parameters – between each pixel and
its surroundings, the concept of a texton supports the existence of numerous distinct textual
components in each texture. Therefore, it has advantages in describing textures that have
high-level components. Texton based texture analysis has been widely used in many fields
of texture related research, including classification [19], [20], [21], segmentation [22] and
synthesis [23].

Based on texton theory, we set out to establish a large reference library which could be used
as the fundamental vocabulary for distinguishing between cancer and benign tissues. This is
referred to as the “bag of visual words” model and has been widely used in recent object
recognition literature [22], [24], [25]. In our approach each work unit was first filtered with
a texton filter bank. Subsequently, the cluster modes were extracted from the resulting filter
responses to generate a universal reference library. The filtering responses collected across
all imaged discs can be considered as typical words that describe the underlying histology
and staining pattern of the specimens. Thus far, over 100,000 imaged tissue discs have been
processed on the Grid.

In our experiments, four different types of filter banks were compared.
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1. Gabor filter bank: The basic even-symmetric Gabor filter bank is a set of 2D
Gaussian function with variances σx and σy which are modulated by a complex
sinusoid. The sinusoid has center frequencies u and v along x and y-axes,
respectively.

2. The Leung-Malik (LM) Filter Bank [26]: The LM filter bank are a set of first and
second derivatives of 2D Gaussian function at six orientation and three scales,
coupled with eight Laplacian of Gaussian (LoG) and four Gaussian function.

3. The Schmid filter bank [27]: The Schmid filter bank is composed of 13 orientation
invariant filters. It is best suited for orientation insensitive texture segmentation.

4. The Maximum Response (MR) Filter Banks [20]: The MR filter bank is quite
similar to the LM filter bank. However, in order to achieve the orientation
invariance, only the maximum response is chosen as the feature for each scale of
the first and second derivatives of the Gaussian. The LoG and Gaussian are chosen
as another two features. All combined the dimension of the feature space is eight.

Systematic analysis did not show significant differences among these filter banks in
performance and ultimately we decided to utilize the 49 × 49 LM filter bank to compute the
filter responses. The feature vector is composed of eight LoG filter responses with

, four Gaussian filtering responses with 
and the bar and edge filtering response within six different directions, θ = 0, π/6, π/3, π/2,

2π/3, 5π/6, . In total, each image pixel was represented by a 48 dimensional
feature vector. Figure 4 shows the LM filtering bank in our system.

The image filtering response generated using the collective computation power of the World
Community Grid were gathered together and clustered using K-means, where K was set to
4000 in our experiments. The cluster centers, called textons, were used to generate the
texton library. The appearance of each breast tissue image was modeled by a compact
quantized description called texton histograms. Texton histograms are created by assigning
each pixel filter response in the image to its closest texton in the generated texton library,
which was calculated using

(1)

where I denotes breast tissue image, i is the ith element of the texton dictionary, T(j) returns
the texton assigned to pixel j. In this way, each breast tissue image was modeled as a texture
modes distribution, the texton histogram. Each image was mapped to one point in the high
dimension space Rd, where d = K = 4000 is the number of textons.

B. Dimension Reduction and Classification
After quantizing the filter response into texton histograms, each image was represented by a
4000 dimension vector. Generally, in such a high dimensional space, one has to consider the
“curse of dimensionality” [28, pp. 170]. In this paper, a nonlinear dimension reduction
method, the isometric feature mapping (ISOMAP) [29], was applied to find the embedded
dimensionality of the original feature space.

1) Nonlinear Dimension Reduction—Although the dimensionality of the input features
was quite high, the features have usually exhibited much less degrees of freedom. Given a
set of feature vectors Z = {z1, …zi, …zn} where zi ∈ Rd, there exists a nonlinear mapping T
which represents zi in the low dimension as
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(2)

where ui ∈ Rd is the sampling noise and and xi ∈ Rq denotes the representation of the
original zi in the low-dimensional subspace, where q represents the dimensionality of the
reduced subspace.

Unsupervised manifold learning is capable of discovering the degrees of freedom that
underlie complex natural observations. We applied ISOMAP to explore the low dimension
embedding in the original feature space. In the first step, we determined the neighbors of
each point zi in the original space Rd and connected the neighbors to form a weighted graph
G. The weights were calculated based on the Euclidean distance between each connected
pair of points. We then calculated the shortest distance in the graph G, dG(i, j), between pairs
of points of zi and zj. The final step was to apply the standard multiple dimensional scaling
(MDS) [30] to the matrix of graph distance M = {dG(i, j)}. In this way, the ISOMAP applied
a linear MDS on the local patch but preserved the geometric distance globally using the
shortest path in the weighted graph G. Cross validation (CV) [31] was applied to evaluate
the embedded dimensionality of the original 4000 dimensional feature vector. CV is the
statistical method of partitioning samples into subsets

(3)

where xi is the feature vector in the reduced subspace Rq, yi = {+1, −1}, which represents
the cancer and benign breast tissue labels. f−k(xi, α) is used to denote the classification
results using the α-th dimensionality with the k-th partition removed from the training set. In
Figure 5 we show the CV errors corresponding to the dimensions of the feature vector. An
elbow can be observed when the dimensionality approaches 500, therefore, we choose to
reduce the dimension of the original feature vector to 500.

2) Classification—In [32], the k-nearest neighbor (kNN) and classification tree (C4.5)
were integrated into a Bayesian framework for characterizing breast tissues. However, in our
case, each training sample was represented by a feature vector xi in the reduced subspace Rq

where q = 500. This is still a relatively high dimension where the maximal margin classifiers
such as support vector machine (SVM) [33] and boosting [34] are better suited. We
conducted experiments to compare the performance of four boosting algorithms, the
standard AdaBoost, the gentle AdaBoost, the real AdaBoost and LogitBoost with kNN,
Bayesian classifier and SVM. The results showed that the maximal margin classifiers [33],
[34], such as SVM and boosting, which simultaneously minimize the empirical classification
error and maximize the geometric margin, outperformed all the other algorithms. In order to
separate two subtypes of breast cancers from the benign, the best binary classifier in our
experiments (the gentle AdaBoost) was extended to a multi-class algorithm

The kNN consists of assigning all the features into k most similar cluster centers based on
certain similarity measurements. The final label was determined by majority voting from k
candidates. The C4.5 decision tree is a widely used multiple node tree based classifier,
which is built by minimizing the entropy.

Let x ∈ X represent the low level feature in the reduced subspace Rq, the Bayesian classifier
is designed to maximize a-posterior (MAP) probability
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(4)

and the Bayesian classifier determines the class Ci by maximizing the posterior probability
p(Ci|x).

The support vector machine (SVM) was first introduced in [33] for binary classification
problem. The strategy is to construct the linear decision boundaries in a large transformed
version of the original feature space. The SVM simultaneously minimizes the empirical
classification error and maximizes the geometric margins by minimizing the regularization
penalty

(5)

When the examples are not linearly separable, the optimization can be modified by adding a
penalty for violating the classification constraints. This is called soft margin SVM which
minimizes

(6)

where ξi are called slack variables which store the deviation from the margin and C is the
soft penalty to balance the training errors and margins. In (5) and (6), w is the slope of the
decision hyperplane and w0 is the offset. The xi denotes the feature vector, and yi is the
ground true labels. We minimize (6) by maximizing the dual problem of (6) which involve a
feature mapping φ(x) through an inner product. The inner product can be evaluated without
ever explicitly constructing the feature vectors φ(x) but through a kernel function κ(x, x′). In
our project, we proposed to use a nonlinear Mercer kernel [35] based on χ2 distance. It was
shown that among other choices of distance functions between histograms, χ2 distance
performed the best for the texture similarity measure. The kernel function is defined as

(7)

where

(8)

Boosting works by sequentially applying a classification algorithm on a reweighted version
of the training data and producing a sequence of weak classifiers hj(x), j = 1, 2, …, W where
W = 40 in our case represents the number of iteration rounds of each boosting algorithm.
The strong classifier is assembled from all the weak classifiers hj(x) to minimize the
exponential cost function exp(−yhj(x)), where y represents the label of the training sample x.
In the standard binary AdaBoost classification, the labels were decided by weighted voting
to produce the final prediction
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(9)

where H(x) is the learned strong classifier. The αj is the weight of the j-th weak classifier
hj(x) and is computed during training. All the boosting algorithms are designed to minimize

an exponential cost function . If the weak classifier hj(x) returns a
discrete class label {−1, +1}, the boosting algorithm is called AdaBoost. Instead of making a
hard decision, if the weak classifier hj(x) returns a real value prediction like a probability
mapped to the interval [−1, +1], it is called real AdaBoost. The gentle AdaBoost is a
modified version of the real AdaBoost algorithm, which applies Newton step rather than
exact optimization at each step of minimizing the loss function. The LogitBoost is another
boosting algorithm which uses Newton steps to fit an additive logistic regress model based
on maximum likelihood. The weak classifier we used was an eight node classification and
regression tree (CART).

We experimentally tested each of the classification algorithms. The gentle AdaBoost using
an eight node CART decision tree provided the best results for binary classification
problem. Fig. 6 shows the details of the gentle AdaBoost algorithm.

Multi-class experiments were designed to determine the capacity of the system to
subclassify different types of cancer. Given a M-class classification problem, where we have
N training samples {x1, y1}, …{xi, yi}, …, {xN, yN }. The xi ∈ Rq denotes the i-th feature
vector in the reduced subspace and yi ∈ {1, 2, …, M} represents the corresponding ground-
truth class labels. The target is to find a strong classifier which minimizes a multi-class

exponential loss function  where Hj(x) is the j-th strong classifier. This is
equivalent to run separate boosting algorithms in an one-against-all manner. One-against-all
boosting constructs M binary classifier, each of which is used to separate one class from all
the others. The j-th strong classifier was trained using boosting with all the training samples
satisfying yi = j, i = 1, 2, …, N as positive and all the others as negative. As the gentle
AdaBoost outperformed the other methods in the previous binary classification, we extended
it to classify two different subtypes of cancers from benign tissue images in the multi-class
experiment. The multi-class gentle AdaBoost algorithm is shown in Fig. 7.

V. Experiments
In these experiments, pathologists were asked to provide independent confirmation of the
ground-truth labels of records for the entire mixed set of 3744 digitized breast tissue images.
The breast tissue images contained 10 different types, which included normal (NOR), ductal
hyperplasia (DH), fibroadenoma (FIB), atypical ductal hyperplasia (ADH), ductal carcinoma
in situ (DCIS), lobular carcinoma in situ (LCIS), invasive ductal carcinoma (IDC), invasive
lobular carcinoma (ILC), lymph-node-negative metastasis (LNN) and soft tissue metastasis
(STM). The goal of the binary classification experiments was to determine the capacity of
the algorithms to separate benign from cancer tissue. Based upon our discussions with
surgical pathologists, NOR, DH, FIB and ADH were grouped as benign breast tissue and the
remaining classes were grouped as breast cancer. In the multi-class experiment, DCIS and
LCIS were treated as one subgroup of cancer and IDC, ILC, LNN and STM as the other.

The mixed set of breast tissue microarrays were digitized using a 40× volume scan on a
Trestle/Zeiss MedMicro, whole slide scanner system. We have developed algorithms to
automatically delineate the tissue discs comprising the arrays, decompose those discs into
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their constituent staining maps, and process the images on the World Community Grid. The
total number of computers currently participating in the World Community Grid efforts is
approximately 250,000 worldwide and growing.

We have analyzed 3744 breast cancer tissues (674 hematoxylin and 3070 hematoxylin and
eorin staining) from the total dataset containing 100,000 imaged specimens. Without the
Grid, it would require about 210 days of computation to generate the complete texton library
using an efficient C++ implementation on a PC with P3 1.5GHz processor and 1G RAM.
However, we built the texton library in less than 40 minutes for the breast cancer subset
using WCG.

A. Binary Classification of Benign and Caner
In this section, we first present the comparative performance results for four classification
methods, kNN, Bayesian, C4.5 and SV M, and four types of boosting algorithms. The
dataset used in these experiments consisted of 611 benign and 3133 cancer specimens. Each
algorithm was tested 10 times using different portions of the training images drawn from
random sampling. We selected 30% of the images as training and the other 70% was
reserved for testing. Figure 8 shows the average classification results. It is clear that the
maximal margin classifiers, SVM and boosting, produced comparative good results, while
outperforming widely used classifiers such as kNN, Bayesian and C4.5 decision tree. The
gentle AdaBoost using an eight node CART decision tree provided the best performance.
Because the training data was skewed to cancer samples, we obtained higher false positive
than false negative rates. This is indeed preferred and is actually a design criteria for many
clinical tests.

B. Multi-class Classification of Benign and Two Subtypes of Cancer
The experimental results are presented for studies in which the original gentle AdaBoost
algorithm was modified to accommodate multi-class classification. Based on the direction of
the clinical pathologist, we separated six subtypes of cancer tissues into two sub-groups:
cancer class I which contains DCIS and LCIS and cancer class II containing IDC, ILC, LNN
and STM. The dataset is consisted of 611 benign, 1103 cancer class I and 2030 cancer class
II. 30% of the images in each class were randomly selected for training and the remaining
70% was used for testing. The confusion matrix is presented on the right of Table I. Figure 9
shows some correct classification samples and failed cases. The left most three columns are
correctly classified samples, and the right most fourth column shows the failed cases. The
first row is the benign tissue where the last one is misclassified as cancer class II. The
second row represents cancer I while the last tissue image is misclassified as benign. The
last row is the cancer II, and the last image is misclassified as cancer I. In Figure 9 we show
the large intra-class variances and inter-class similarities which produced the classification
errors.

From all these experiments, it was shown that the gentle AdaBoost provided satisfactory
results on both binary and multi-class classification of breast tissue images. We obtained an
average 89% accuracy in separating benign from cancer tissue and an average accuracy of
80% in classifying two types of breast cancers from benign. In both cases only 30% of the
images were used in the training.

VI. Conclusion
We have presented a Grid-enabled framework which utilized texton histograms to perform
high throughput analysis of digitized breast cancer specimens. Experimental results have
shown that a gentle AdaBoost classifier using an eight node CART decision tree as the weak
learner provided the best results. We present the classification results of separating benign
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from cancer and two other subclasses of breast cancer. Multi-class classification errors
increase significantly as the number of classes increased. In future work, we plan to expand
the reference library of texton signatures and develop a robust multi-class classification
algorithm to further classify among subtypes of breast cancer. We also plan to expand our
studies to include a wide range of cancers, including colon cancer, head & neck, for which
we have already generated the texton reference libraries using IBM World Community Grid.
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Fig. 1.
A screenshot of Help Defeat Cancer (HDC) clinet running on IBM world community grid
(WCG).
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Fig. 2.
Two staining examples. On the left is a hematoxylin stained tissue and on the right is
hematoxylin & eosin stained tissue.
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Fig. 3.
The framework of the high-throughput analysis of breast tissues on the IBM World
Community Grid.
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Fig. 4.
The LM filter bank used to generate the texture features.
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Fig. 5.
The five-fold cross validation error over the dimensionality using ISOMAP for nonlinear
dimension reduction.
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Fig. 6.
The binary gentle AdaBoost using an eight nodes classification and regression tree (CART)
as the weak learner.
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Fig. 7.
The multi-class gentle AdaBoost using an eight nodes classification and regression tree
(CART) as the weak learner.
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Fig. 8.
The binary classification accuracy of nine different classifiers using 30% as the training set.
1) Bayesian classifier. 2) KNN (K = 3). 3) KNN (K = 5). 4) C4.5 decision tree. 5) Support
vector machine (SVM). 6) Standard AdaBoost. 7) Real AdaBoost. 8) LogitBoost. 9) Gentle
AdaBoost.
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Fig. 9.
The multi-class classification results using the gentle AdaBoost. The left three columns are
correct classified samples and the right fourth column shows the failed cases. The first row
is the benign samples. The second and third rows are the cancer samples.
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TABLE I

The confusion matrix shows three classes classification accuracy using multi-class gentle adaboost and 30%
images as the training set

Benign Cancer I Cancer II

Benign 84.5 6.4 7.1

Cancer I 6.8 81.2 13.8

Cancer II 8.7 12.4 79.1
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