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Abstract

Genome-wide association studies (GWAS) are a popular approach for identifying common genetic 

variants and epistatic effects associated with a disease phenotype. The traditional statistical 

analysis of such GWAS attempts to assess the association between each individual Single 

Nucleotide Polymorphism (SNP) and the observed phenotype. Recently, kernel machine-based 

tests for association between a SNP set (e.g., SNPs in a gene) and the disease phenotype have been 

proposed as a useful alternative to the traditional individual SNP approach, and allow for flexible 

modeling of the potentially complicated joint SNP effects in a SNP set while adjusting for 

covariates. We extend the kernel machine framework to accommodate related subjects from 

multiple independent families, and provide a score-based variance component test for assessing 

the association of a given SNP set with a continuous phenotype, while adjusting for additional 

covariates and accounting for within-family correlation. We illustrate the proposed method using 

simulation studies and an application to genetic data from the Genetic Epidemiology Network of 

Arteriopathy (GENOA) study.
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1 Introduction

Genome-wide association studies (GWAS) have become a popular approach for identifying 

genetic variants that are related to disease risk or quantitative traits. Such studies are often 

performed in an initial discovery phase and involve genotyping hundreds of thousands of 

single nucleotide polymorphisms (SNPs) across a large number of subjects, and then 

searching for the specific variants that are associated with the outcome of interest. The 

standard approach for identifying association in unrelated subjects is to perform individual-

SNP based analyses, typically involving a regression model of phenotype on individual 
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genotype (possibly controlling for additional covariates) and resulting in a p-value for 

association for each SNP. Analyses of related subjects from family studies are often 

similarly analyzed on an individual SNP basis by incorporating a random effect in the 

regression model encapsulating the correlation of related subjects [e.g., Abecasis et al., 

2000; Atkinson and Therneau, 2009]. Due to the large number of typed SNPs, the overall 

analysis is plagued with a substantial multiple testing burden, making it difficult for SNPs to 

reach genome-wide significance levels (e.g., p-values < 5 ×10−8). Consequently, individual-

SNP based tests will tend to have limited power in identifying SNPs with small effects, 

which have been observed in many GWAS studies of complex traits [Manolio et al., 2009]. 

Many of the top SNPs are hence often false positives and cannot be replicated due to weak 

signals. Moreover, epistatic effects of SNPs (i.e., SNP-SNP interactions and joint effects) 

will fail to be detected in individual-SNP analysis.

Numerous multi-SNP or multi-marker tests have thus emerged as promising alternatives to 

individual-SNP analysis. Having selected a set of SNPs to be analyzed, e.g., based on genes, 

haplotype blocks, pathways, etc., one common approach for evaluating significance of the 

set of markers is to use methods based on individual SNP analysis and then adjust for 

multiple testing across multiple markers within the SNP set to control the false-positive rate 

[e.g., Moskvina and Schmidt, 2008; Gao et al., 2008; Conneely and Boehnke, 2007; Liu et 

al., 2010]. Omnibus or global tests in regression-type analysis for multiple markers avoid the 

problem of multiple testing within the set by testing all markers simultaneously [e.g., Schaid 

et al., 2002], but can be plagued by a large number of degrees of freedom [Wu et al., 2010, 

2011]. A third class of methods attempts to address both of these issues by using notions of 

pairwise similarity [e.g., Wessel and Schork, 2006; Tzeng et al., 2009, 2011; Mukhopadhyay 

et al., 2010; Han and Pan, 2010]. The so-called ‘kernel-based’ methods of Kwee et al. 

[2008] and Wu et al. [2010] also fall into this class, as they rely on kernel functions that 

measure the pairwise similarity between subjects based on the genotypes of the SNPs within 

the set, and result in a single variance component test for each set. In a genome-wide setting, 

this type of analysis can improve power not only by reducing the number of hypotheses 

being tested, but also borrowing strength and information from correlated SNPs (i.e., SNPs 

in linkage disequilibrium (LD)) in the set by combining weak effects of individual SNPs for 

larger joint effects. The latter power gains will be realized when there are multiple SNPs in 

moderate to high LD with the causal variant(s). Thus, this approach is particularly appealing 

in situations where the true causal SNPs are not genotyped on a chip, but multiple typed 

SNPs in at least moderate LD with the true causal SNPs are available; hence the typed SNPs 

together can serve as a good surrogate for the untyped causal SNPs. The kernel machine 

models [Kwee et al., 2008; Wu et al., 2010] easily allow for adjustment of covariate effects, 

such as principal components to account for population stratification [Price et al., 2006], and 

flexible modeling of the functional relationship between SNPs in the set and outcome. Pan 

[2009] considered a similar SNP set test assuming linear SNP effects.

The aforementioned kernel-based methods are applicable to studies of independent subjects. 

For family-based subjects, such as those in the Genetic Epidemiology Network of 

Arteriopathy (GENOA) study [FBPP Investigators, 2002; Daniels et al., 2004], appropriate 

SNP set association analysis needs to account for within-family correlation. One objective of 

the GENOA study is to investigate the genetic effects on C-Reactive Protein [Ridker et al., 
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2008; Dehghan et al., 2011]. Measures of several risk factors and a large number of 

polymorphisms are available for the sibships involved in the GENOA study. While the 

analyses as implemented in the popular family-based software FBAT may be viewed as 

multi-marker tests [e.g., Rakovski et al., 2007], these tests also may also suffer from a large 

number of degrees of freedom and consequently lose power by not efficiently accounting for 

LD structure. Furthermore, the FBAT approach assesses both linkage and association.

To accommodate association analysis of related subjects in multiple independent families 

such as those in the GENOA study, we propose extending the SNP set kernel machine (KM) 

framework of Kwee et al. [2008] by including a random family-specific polygenic effect to 

account for within-family correlation. Similar polygenic effects have been considered in the 

individual-SNP based framework [Abecasis et al., 2000; Atkinson and Therneau, 2009], as 

well as in kernel-based regression for estimation and prediction [Gianola and van Kaam, 

2008]. As we will show, the proposed family-based kernel machine testing approach allows 

for flexible modeling of SNP set effect, such as joint effects of multiple SNPs and linear and 

nonlinear SNP-SNP interactions (epistatic effects); the capability for covariate adjustment; 

and the improved power over individual-SNP based testing. The test itself is a score-based 

variance component test that results from exploiting the connection between kernel machine 

and mixed modeling theory. While the original model explicitly posits a functional 

relationship between SNPs in a set with the outcome, the model can be re-expressed as a 

linear mixed model. In contrast to previous kernel machine SNP set analyses for 

independent subjects [e.g., Liu et al., 2007, 2008; Wu et al., 2010, 2011], the null model 

used to derive the score test is a mixed model in order to incorporate the family-specific 

polygenic random effects.

The remainder of the manuscript is organized as follows. In the next section, we describe the 

proposed model and SNP set analysis framework. Then we present simulation results 

comparing our testing approach to individual-SNP based analysis. Finally, we apply our 

method using data from the GENOA study, and conclude with a brief discussion.

2 Model and Method

Let the data consist of a response variable yij for the jth family member (j = 1,…,ni) of the ith 

family (i = 1,…,m), a p × 1 covariate vector xij associated with fixed effects, and an r × 1 

vector sij of SNP genotypic values comprising a SNP set. Strategies for constructing SNP 

sets are discussed further in Section 2.1. Typically, we assume an additive genetic model 

with sijt ∈ {0,1,2},t = 1,…,r, representing the number of copies of the minor allele at SNP t; 
dominant and recessive models can also be considered. The response yij is assumed to be a 

normally distributed continuous outcome, which depends on xij and sij through the following 

model:

(1)

where α is a p × 1 vector of regression coefficients, bij is a random effect that is normally 

distributed with mean 0 and variance  to model within-family correlation, εij is the random 
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error that is normally distributed with mean 0 and variance , and the SNPs, sij1,…, sijr, 

influence yij through a general function h(·). As in Liu et al. [2007] and Kwee et al. [2008], 

we assume h(·) is an arbitrary function that has a form defined only by a positive definite 

kernel function K(·,·), i.e., h(·) ∈ , the function space generated by a K(·,·). Further details 

on the choice of K(·,·) can be found in Section 2.2.

To account for correlation between family members, we assume

where 2Φi is the ni × ni matrix with (j, j′) element 2φi(j,j′), which is defined as the expected 

proportion of genes shared identical by descent (IBD) by relatives j and j′ within family i 
[Jacquard, 1974]. Note that φi(j,j′) is known as the kinship coefficient for subjects j and j′, 
and that 2φi(j,j) = 1. We emphasize that the covariance matrix 2Φi depends on the family 

index i, as the covariance will not necessarily be the same (in dimension or matrix entries) 

for all families. We further assume that bij and εij are mutually independent for all i and j.

While testing is the main focus of this work, it is helpful to briefly consider the estimation 

problem to motivate the connection between kernel machine and mixed modeling theory. A 

more thorough development for estimation may be found in Gianola and van Kaam [2008]. 

Let n denote the total number of subjects,  and let k index the (i, j)th subject so 

that k = 1,…,n. Write h = (h1,…,hn)T and let K be the n × n matrix with (k,k′) element equal 

to K(sk,sk′). Following Liu et al. [2007] and using the Representer Theorem [Kimeldorf and 

Wahba, 1970; Schölkopf et al., 2001], we can show that estimation of α and h can proceed 

by maximizing the penalized loglikelihood

(2)

where y = (y11,y12,…,y1n1, …, ym1,…,ymnm)T is the n × 1 vector of outcomes, X is the n × p 

covariate matrix, V = blockdiag(Vi, i = 1,…,m) with , and λ is the penalty 

parameter. Simple calculations show that the solution (α̂, ĥ) corresponds to the linear mixed 

model equations for the model

(3)

where h is an n ×1 vector of random effects from a general distribution with mean 0 and 

covariance λ−1K (e.g., N(0, λ−1K)),  where n × n matrix D = 

blockdiag(2Φi i = 1,…,m), and  where In denotes the n × n identity matrix. 

Comparison of model (3) with model (1) indicates that the two models have the same form, 
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except now h is treated as a vector of random effects with variance component τ = λ−1. 

Thus, testing for a SNP set effect H0 : h(·) = 0 is equivalent to testing the null hypothesis 

H0 : τ = 0, as described in Section 2.3.

2.1 Constructing SNP sets

Wu et al. [2010] suggested several ways for constructing SNP sets. While any grouping of 

SNPs will yield a valid test in the sense that the type I error rate will be protected, certain 

SNP groupings based on prior biological knowledge can lead to additional power gains. The 

use of SNP sets can be advantageous in that it allows us to (i.) capture joint effects of 

multiple SNPs, (ii.) capitalize on LD between SNPs to improve power, and (iii.) incorporate 

other biological information or prior knowledge about how SNPs may collectively affect 

phenotype. Natural grouping strategies could include taking all SNPs located in or near a 

gene, or SNPs within LD blocks (e.g., using Haploview). For example, one could group all 

SNPs between the start and end of transcription, as well as regulatory regions up- and down-

stream of the gene, into a single SNP set. One could also consider pathway-based SNP set 

analysis, where SNPs located within a gene pathway could comprise a SNP set. While 

grouping neighboring SNPs together is generally desirable in order to harness correlation 

(i.e., LD), grouping neighboring SNPs from multiple genes based on pathways may 

additionally help capture epistatic effects. Other grouping strategies that allow complete 

coverage of the genome, such as by moving window or by recombination hot-spots, may 

also be beneficial. For illustration purposes, we will form SNP sets based on genes or LD 

blocks.

2.2 Choice of kernel function, K(·,·)

The choice of kernel function K(·,·) defines the underlying basis for the nonparametric 

function h relating the SNPs in the SNP set to the phenotype; thus, by selecting different 

kernel functions, we can specify different models. It is conceptually useful to think of 

K(sk,sk′) as a function that measures the similarity between the two subjects k and k′, based 

on their genotypes of SNPs within the SNP set. A few popular choices considered for SNP 

data are linear: , weighted linear: ; 

Identical By State (IBS): ; and 

weighted IBS: . The linear 

kernel corresponds to assuming linear SNP effects as in the linear mixed model (4). As 

indicated in Wu et al. [2011], for additively coded autosomal genotype data, the (weighted) 

IBS kernels can be equivalently expressed by replacing {2I(skt = sk′t) + I(|skt − sk′t| = 1)} 

with (2 − |skt − sk′t|). In situations where imputed SNPs involving dosages are considered, 

the latter form of the (weighted) IBS kernel would be more appropriate. Notably, both the 

IBS and weighted IBS kernels allow for epistatic effects, as the implied function h allows 

for nonlinear SNP effects. Other examples of kernel functions can be found in Wessel and 

Schork [2006]; Lin and Schaid [2009]; Mukhopadhyay et al. [2010]; Han and Pan [2010]; 

Wu et al. [2011].
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The weights w = (w1,…,wr), if desired, can be specified in a number of ways. Each weight 

wt reflects the relative contribution of the tth SNP, with weights closer to zero providing 

smaller contributions. Advantageous choices could thus include defining weights as a 

function of predicted functionality [e.g., Ramensky et al., 2002; Kumar et al., 2009] or allele 

frequency [Wu et al., 2011]. A common and flexible class of weights based on allele 

frequency can be specified by setting , the Beta density function 

with shape parameters α1 and α2 evaluated at the minor allele frequency (MAF) of SNP t. 
Note that α1 = α2 = 1 corresponds to equally weighted variants wt = 1, while α1 = α2 = 0.5 

corresponds to weight wt proportional to the inverse-variance of the tth SNP genotype: 

. For analysis with only common variants (e.g., MAF> 5%), 

unweighted analysis can be performed. Wu et al. [2010] also suggested considering 

 for common variants. As all simulations and analysis considered in this 

work involve common variants, we considered both the unweighted and weighted versions 

of the linear and IBS kernels with this choice of weight.

We remark here on model (1) with choice of linear kernel to provide further insight. 

Consider the linear mixed model

(4)

where β = (β1,…,βr)T is the vector of regression coefficients for the r SNPs in the set, and the 

rest of the terms are defined as in (1). Under (4), we may assess the effect of the SNPs in the 

set on outcome, adjusting for covariates, by testing the null hypothesis H0 : β = 0 which 

typically requires an r degree of freedom test. A more powerful alternative would assume 

each βt follows an arbitrary distribution with mean 0 and variance τ. Letting S be the n × r 
matrix with (k,t) element being the genotype of SNP t of subject k, then 

 and the relevant null hypothesis H0 : τ = 0 can be tested using a 

variance component score test. This conveniently only requires fitting the null linear mixed 

model . Note that SST corresponds to the kernel matrix K using a linear 

kernel function. Thus, by selecting alternative choices of kernel function K(·,·) we may 

model more complex, nonlinear functional relationships between the SNPs in the set and the 

outcome. The most advantageous kernel function would be the kernel that best captures the 

functional form of the joint effects of SNPs on the outcome, i.e., the association between 

genetic similarity and phenotypic similarity between subjects. In particular, if the 

relationships are linear, then the test using the (weighted) linear kernel will have the highest 

power. If interactions are present, a test using the (weighted) IBS kernel could improve 

power.
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2.3 KM Score Test

Using form (3), the test of the SNP set effect can be formulated as H0 : τ =0. Denote 

 and . Following Lin [1997] and Zhang and Lin [2003], one 

can show that the individual variance score statistic of τ for testing H0 : τ = 0 is

(5)

where ϕ̂ is the maximum likelihood estimator (MLE) of ϕ under null parametric model

(6)

Note that statistic (5) can be simply computed, as ϕ̂ can easily be estimated under null linear 

mixed model (6). In particular, the efficient function lmekin within R packages kinship or 

coxme can be used to find the MLE; modifications of this function allow for computation of 

the restricted maximum-likelihood (REML) estimator. Note that unlike the independent data 

setting [Liu et al., 2007; Kwee et al., 2008], the null model (6) is a linear mixed model with 

covariates alone, instead of a simple linear regression.

To study the asymptotic distribution of the score statistic Q under τ = 0, write

(7)

where α̂ = (XTV−1X)−1XT V−1y and PVP = P for projection matrix P = V−1 − 

V−1X(XTV−1X)−1XT V−1 for V evaluated under the null model. Using the results in the 

Appendix, it can be shown that

(8)

where z = (z1,…,zq)T, q ≤ n, and zi ~ iidN(0,1); eigenvalues λi are defined in the Appendix. 

Thus,  is a mixture of chi-squared distributions, each with one degree of 

freedom.

The distribution of Q can be approximated using Satterthwaite’s method by a scaled chi-

squared distribution  where the scale parameter κ and degrees of freedom ν are 

calculated by moment matching. Expression (7) has mean and variance μ̃ = tr(PK)/2, and 

= tr((PK)2)/2, respectively, for known V. In contrast to previous KM-based tests for 

independent subjects [e.g., Liu et al., 2007, 2008; Wu et al., 2010, 2011], the inclusion of the 
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random effect for family structure requires modifying  to account for estimation of 

variance component . Further details are provided in the Appendix.

For test sizes of α near 0.05, Satterthwaite’s approximation is quite good, and is known to be 

accurate except in the extreme right tail. However, for much smaller α appropriate for 

GWAS, we use the Davies method [Davies, 1980] to compute the p-value of a mixture of 

chi-square variates, as in (8), by inverting the characteristic function of the mixture. Davies 

exact method is performed within R package CompQuadForm and our implementation using 

estimates from lmekin of  and  under the null model works very well in simulation (see 

Section 3). Further details on implementation are included in the Appendix, and an R 

package allowing for both Satterthwaite and Davies p-value computation is available upon 

request.

We remark that the score test, which operates under the null hypothesis, results in valid tests 

(in terms of protecting type I error) irrespective of the kernel (and weights) used, and that 

the choice of kernel (and weights) affects power. These results are verified in simulations, 

summarized in Section 3 below.

3 Simulations

To validate the proposed method in terms of appropriate type I error and power, we carried 

out simulations based on realistic patterns of LD among SNPs observed in genotyped 

samples from the International HapMap Project [HapMap; Altschuler et al., 2005]. We first 

investigated the size and power of the score test in which the SNP set is generated based on 

the LD structure of a single gene. We considered a similar set-up to that in Wu et al. [2010], 

based on ASAH1 and FGFR2 representing genes with high and low LD structure, 

respectively. In particular, we based our gene-specific simulations on the LD structure using 

HAPGEN [Spencer et al., 2009] and the CEU sample from HapMap. For ASAH1, we also 

investigated the performance of our test when families were non-randomly ascertained based 

on a disease outcome that was weakly associated with the trait of interest. Finally, we 

evaluated the size and power of our approach over a range of LD settings across randomly 

selected gene-defined SNP sets for genes along chromosome 10.

3.1 Candidate Gene Simulations

To verify that the score test properly controls the type I error rate, we conducted simulations 

under the null linear mixed model for m families with

(9)

which is just (1) with h(sij) = 0. Here, xij is the vector of simulated covariates that are 

independent of the simulated genotype data. Specifically, we simulated two covariates 

corresponding to standardized age and gender, generated with a standard normal distribution 

and Bernoulli(0.5) distribution, respectively. We considered two different family structures 

and the use of the linear (LIN), IBS, weighted linear (wLIN), and weighted IBS (wIBS) 
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kernels. We generated 5000 replicate datasets using HAPGEN. Specifically, we used 

HAPGEN to generate the parents of the m families, and randomly created the desired 

number of offspring from the generated parental haplotypes; only the offspring were used in 

subsequent analysis presented below. Since the genomic regions are relatively small, 

recombination would be extremely rare and hence was not considered in the creation of the 

offspring genotypes. For the different family structures, we considered (i.) m = 300 families 

consisting of all sib trios (ni = 3 for all i = 1,…,m) and (ii.) m = 410 families consisting of 

different sized sibships. For the latter, we mimicked the ‘mixed sibship’ structure in the 

GENOA dataset [FBPP Investigators, 2002; Daniels et al., 2004], which copntained a total 

of 881 subjects with each subject having anywhere from 0 to 8 siblings in the dataset. Note 

that HAPGEN generates genotype information for all HapMap SNPs in the specified region, 

but we only applied the testing approach to those SNPs which were typed by the array. For 

example, using the Affymetrix 6.0 platform with the ASAH1 gene, there are 39 HapMap 

common (MAF> 5%) SNPs total in the interval specified, but only 18 of these exist on the 

array; thus, the 18 typed SNPs form the SNP set. In other words, we grouped the typed 

SNPs for the given gene (ASAH1 or FGFR2) as a SNP set, and computed a p-value 

evaluating the effect of the SNPs in the set while adjusting for covariates in xij. We 

considered variance due to polygenic effects of  and , which 

corresponds to polygenic heritability values . The 

empirical size of the test was calculated as the proportion of p-values less than or equal to α.

To compute the empirical power of the SNP set test, we generated datasets with m = 300 sib 

trios under the alternative model:

(10)

where  is the genotype for the “causal SNP”, βc is the effect for the causal SNP, and xij is 

again the vector of simulated covariates that are independent of the simulated genotype data 

and  (e.g., age, gender). Note that under each simulation configuration we allowed only 

one causal SNP. We restricted attention to common SNPs with MAF greater than 0.05. Each 

of the common HapMap SNPs was set to be the “causal” SNP in turn, and we fixed βc = 0.2 

in an additive genetic model so that heritability due to the ”causal” SNP, 

, remained less than 2% for chosen  and . The 

combinations thus led to three SNP heritability levels, referred to henceforth as LOW, MED, 

and HIGH.

For each of the causal SNPs (HapMap common SNPs), we generated 1000 datasets with the 

testing approach applied only to the group of typed SNPs. Thus, in most configurations the 

causal SNP was actually unobserved. For each configuration, we computed the power of the 

proposed variance component test for the SNP set (i.e., the gene) as the proportion of p-

values less than or equal to α = 0.05.
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For comparison, we also performed a SNP set approach based on individual-SNP analysis. 

More specifically, we calculated the minimum p-valued based SNP set test, which involves 

testing the significance of each of the typed SNPs separately and then calculating the 

minimum p-value of the individual p-values in the SNP set, while adjusting for the same 

covariates using lmekin. To control for the type I error rate in the minimum p-value based 

test, we use one of three multiple-testing corrections that account for the between-SNP 

correlation: PCA [Gao et al., 2008], Keff [Moskvina and Schmidt, 2008], and Pact [Conneely 

and Boehnke, 2007]. The first two procedures involve finding the effective number of tests 

and making a modified Bonferroni adjustment. The third method of correction involves 

adjusting the raw p-values based on estimation of the overall type I error rate using 

multivariate normal theory. Taking the minimum adjusted p-value as the comparable SNP 

set p-value, we similarly defined power as the proportion of minimum adjusted p-values less 

than or equal to 0.05. The power of all three individual-SNP methods were very much 

concordant, and thus we only report the Conneely and Boehnke [2007] results in Section 4. 

Note that this individual-SNP based test gave the correct size when simulating under the null 

model (results not shown). Analogous size and power simulations were also conducted 

including the parents, in addition to the sib trios (i.e., ni = 5 for all i = 1,…,m = 300). The 

results from these simulations were similar to those based on just siblings, and are thus 

presented in the Supporting Information.

3.2 Influence of Ascertainment

Often families observed in association studies are not randomly selected from the 

population, but instead ascertained according to certain traits (e.g., disease status) for some 

family members. When interested in studying genetic association with so-called ‘secondary 

traits’ (i.e., traits other than disease status), one must be mindful that the ascertained sample 

does not constitute a random sample from the population. For example, in the GENOA data 

analysis discussed in Section 5, the goal is to assess genetic association with a continuous 

measure of chronic inflammation in a collection of sibships ascertained according to 

hypertension status. This non-random sampling from the population can in principle lead to 

inflated type I error rate for tests of association between genetic markers and a secondary 

trait that ignore or improperly account for ascertainment. It has been shown in case-control 

studies that ascertainment bias tends to be quite small in most situations, particularly when 

the disease is common and if both the secondary phenotype and genetic marker are not 

associated with disease [Monsees et al., 2009]. We chose to examine the performance of the 

KM test under this scenario in simulation for family data, as our data analysis in Section 5 

fits into this framework with a disease prevalence of ~ 1/3 [Fields et al., 2004] and a weak 

association of secondary phenotype (chronic inflammation) with disease (hypertension) after 

adjusting for known risk factors (p = 0.161). We thus performed a simulation similar to that 

for ASAH1 described above, but implemented a sampling scheme based on disease status. 

Specifying , we generated yij under a null model using model (9) and under an 

alternative model (10) with βc = 0.2 for the size and power simulations, respectively. The 

trios were created as before using parental haplotypes generated from HAPGEN. We then 

generated disease status with disease prevalence π = 1/3 to be weakly associated with yij in a 

logistic regression framework using the same effect size as observed in the GENOA data, 
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appropriately scaled for the medium (MED) SNP heritability level (βD = 0.065). For each 

simulation, we simulated 5000 sib trios and selected m = 300 families with at least one 

sibling having the disease. For evaluating size, we performed 5000 runs and computed 

empirical size as described in Section 3.1. For evaluating power, we performed 1000 runs 

and computed the power as a function of the causal SNPs as described in Section 3.1. To 

assess the influence of ascertainment, we compare the results under non-random 

ascertainment to those in which families were randomly sampled from the population.

3.3 SNP Sets along Chromosome 10

We also evaluated size and power under a variety of LD settings across randomly selected 

gene-defined SNP sets. Specifically, we generated 10000 SNP sets using HAPGEN where 

each SNP set is based on a gene on chromosome 10. This allowed for 660 possible SNP sets 

(sampled with replacement for simulation) with the Affymetrix 6.0 SNPs. Within each 

sampled SNP set, we randomly selected one HapMap SNP to be the causal SNP, and again 

generated datasets with m = 300 sib trios under the null model (9) (i.e., βc = 0) for size or the 

alternative model (10) with βc = 0.2 for power, both under an additive genetic model. 

Treating the SNPs on the Affymetrix array as typed as before, we tested the significance of 

the SNP set using the family-based kernel machine approach, this time using only the linear 

kernel. For comparison, we also applied the individual-SNP analysis testing procedure 

described in Section 3.1.

4 Simulation Results

4.1 Candidate Gene Simulations

Table 1 shows the empirical size results at α = 0.05 using both the Satterthwaite and Davies 

methods and confirms that the kernel machine based tests maintain the correct type I error 

rate, regardless of kernel and strength of polygenic effects. Results for the Satterthwaite and 

Davies method are quantitatively similar and qualitatively identical at this size. Using the 

same candidate gene simulation set-up, but with 107 replicate datasets, Davies method can 

maintain the correct type I error rate for much lower sizes; size estimates start to deteriorate 

for the Satterthwaite method at α = 0.001 (see Figure 1).

In the top, left portion of Figure 2, we see the power results for gene FGFR2 where the data 

were generated under an additive genetic model. Results from simulated data generation 

under a dominant genetic model are illustrated on the right for comparison (βc fixed at 0.3). 

Power is plotted as a function of causal SNP, where the causal SNPs are ordered by genomic 

location. Note that we display power results using p-values computed only from Davies 

method henceforth, as the power results at the 0.05 threshold using Davies method and 

Satterthwaite’s approximation are nearly identical. The MAF of the SNPs is plotted 

immediately below each power plot; the causal SNPs with low MAF are largely responsible 

for the sudden power drops in Figure 2 across all methods. These SNPs often have low LD 

with neighboring SNPs. The LD plots on the bottom indicate that power for the KM 

methods is related to the amount of correlation among the SNPs. To see this, recall that only 

the genotypic information from the typed SNPs (i.e., SNPs on the Affymetrix 6.0 chip, 

indicated by an ‘x’ on the bottom of the plots) is used to compute the KM test statistics, but 
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each HapMap SNP (regardless of being typed) is treated as causal in turn. Thus, in situations 

where the causal SNP is not typed, we rely on the correlation of the causal SNP with the 

observed typed SNPs in the set to help gain statistical power. For example, focus attention 

to, say, SNP 32 in Figure 2; SNP 32 is most correlated with the SNPs around it (R2 > 0.5 

with SNPs 27, 30, and 33). However, SNP 32’s neighbors (i.e., SNPs 24–39) are not typed 

and cannot be used to compute the KM test, so they cannot help to boost power for the KM 

test when SNP 32 is simulated as causal. The displayed results are also consistent with other 

studies that have observed when there is only a single true causal SNP that is typed and 

tested (or one SNP in high LD with the causal SNP that is typed and tested) but is not in 

strong LD with other typed SNPs, the individual-SNP based approach may lead to higher 

power than the KM method [e.g., Lin et al., 2011]. In contrast, in regions where the SNPs 

are more correlated with observed typed SNPs in the set (particularly toward the right of the 

plots at SNPs 46–61), the KM-based methods have higher power.

Figure 3 shows the analogous results for gene ASAH1. Note again that power is influenced 

by the MAF of the causal SNP. In particular, SNPs 1 and 28 in the top panel of Figure 3 

have the lowest MAFs (0.083 and 0.058, respectively) causing them to have low power 

across all methods. The LD plots at the bottom indicate that the SNPs have much higher 

correlation as compared to FGFR2. To help see how power is affected by this correlation, 

the plots in Figure 4 show the same information as the top row of Figure 3, but with SNPs 

on the x-axis sorted by increasing median R2 value. Here, median R2 is defined as median 

squared correlation of the causal SNP with the SNPs in the SNP set. As this measure of 

correlation increases, so does the power of the kernel-based methods.

While the results in Figures 2, 3, and 4 depict the simulation involving the MED SNP 

heritability level (max(h2)=1%), the results are similar for both the LOW (max(h2)=0.5%) 

and HIGH (max(h2)=2%) SNP heritability scenarios, with the power curves shifting down 

and up, respectively. Focusing on only the kernel based methods in Figures 2–4, the linear 

and weighted linear kernels achieve the highest power when the data are generated under the 

linear additive genetic model, while the IBS and weighted IBS kernels achieve highest 

power when the SNP effects are generated under the dominant (nonlinear) model. 

Additionally, power for the weighted and unweighted versions of the same kernel type are 

similar, but there tends to be a slight gain in power for the weighted version when the causal 

SNP has low MAF.

Finally, we remark on the impact of including all HapMap SNPs (as opposed to just typed 

SNPs) in the SNP set to better understand the effect of the size (r) of the SNP set. Using all 

HapMap SNPs in the region, power can remain the same, increase, or decrease from that 

found using only ‘typed’ SNPs in the set (see Figure 4 in the Supporting Information). 

Indeed, the change in power depends on several factors, including whether the causal SNPs 

are genotyped, the level of LD between the causal SNPs and the typed SNPs, and the 

number of untyped SNPs that are null SNPs. For example, power for detecting untyped 

causal SNPs tends increase when all HapMap SNPs are used to define the SNP set, but the 

amount of improvement is much more drastic for FGFR2 than ASAH1. This is because the 

typed SNPs in ASAH1 already well-captured the nearby untyped SNPs, whereas the typed 

SNPs in FGFR2 did not. This observation in ASAH1 is consistent with the results found in 
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Lin et al. [2011] based on including imputed SNPs, in addition to typed SNPs, in the SNP 

set. However, if the additional SNPs in the set are null SNPs with little to no correlation with 

the causal SNP, power of the kernel-based tests could decrease when using all HapMap 

SNPs in the set. Furthermore, the change in power for individual-SNP based analysis is also 

influenced by the (effective) number of additional SNPs, due to the adjusted p-value 

computation accounting for more multiple tests; i.e., gains in power by including causal 

SNPs could be offset by including too many additional SNPs in the set.

4.2 Influence of Ascertainment

Regarding the influence of ascertainment, the empirical size estimates for the kernel-based 

tests are reported in Table 2. As expected, with weak association of disease and secondary 

trait, the size estimates have negligible bias in type I error rate. While the distributions for 

the regression coefficients α under the null model were essentially the same, regardless of 

sampling mechanism, there were small differences in the null estimates of the variance 

components. Figure 5 displays the distribution of the variance component estimates under 

the null model for both non-random (solid histogram) and random selection (dashed 

histogram) of families. Under non-random ascertainment,  tends to be slightly 

underestimated while  tends to be slightly overestimated. In terms of power, the relative 

ordering of the curves under non-random ascertainment remained the same as under random 

family selection. In addition, the differences in power resulting from non-random 

ascertainment and random selection of families is generally small, as observed in the top 

portion of Figure 6. Interestingly, the largest differences (~0.15 in magnitude) occur at SNPs 

3, 18 and 21, where there are few typed SNPs available in the set.

4.3 SNP Sets along Chromosome 10

For the simulations involving SNPs sets based on different genes on chromosome 10, we 

ultimately computed 10000 p-values for significance under the null and alternative models 

for both the kernel machine and individual-SNP based multiple-testing corrected tests. To 

summarize these results, we computed empirical size across all 10000 simulations, as well 

as by binning the 10000 simulations into three groups based on SNP set size (r): r ≤ 10, 10 < 

r ≤ 20, and r > 20. The results in Table 3 reveal that the size estimates from the kernel-based 

test for theoretical size 0.05 remain accurate. We computed power after binning the 10000 

simulations based on SNP set size (r), and then also by the median R2 between the causal 

and typed SNPs. In particular, we split the simulations again into the three groups: r ≤ 10, 10 

< r ≤ 20, and r > 20. We then further divided each of the three groups into subgroups by 

sorting the simulated SNP sets based on median R2, and splitting the group into 50 evenly 

sized subgroups. Within each subgroup, we estimated the power as the proportion of p-

values less than α = 0.05. For each of the groups, we plot lowess-smoothed power against 

median R2 in Figure 7. A similar approach was used in Wu et al. [2010], where it was noted 

that the categorization by SNP set size (r) is needed because distantly located SNPs tend to 

be uncorrelated so that median R2 tends to decrease with increasing r. As expected, power 

for both the kernel- and individual-SNP-based methods increases as heritability due to SNP 

(h2) increases. Also, under a variety of LD structures, we tend to see improved power for the 

kernel-based method over the individual-SNP based multiple testing method as the 
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correlation, as measured by median R2, increases, even when simulating under the additive, 

single-causal SNP model given in (10).

5 Data Analysis

One long-term objective of the GENOA study is the elucidation of genetic susceptibility to 

atherosclerotic complications involving the heart. It is widely accepted that high levels of C-

Reactive Protein (CRP), a heritable marker of chronic inflammation, are associated with 

increased risk of mortality and major diseases such as coronary heart disease [e.g., Dehghan 

et al., 2011]. At least two GWAS studies [Ridker et al., 2008; Dehghan et al., 2011] have 

implicated SNPs near the region of the genome encoding the leptin receptor (LEPR) as 

affecting levels of CRP, with both studies requiring a relatively large number of samples 

(>4000 and >66000 subjects, respectively) to identify SNPs reaching genome-wide 

significance at α = 5 × 10−8. We sought to replicate this finding in a much smaller dataset 

from the family-based GENOA study. Eligibility of families for the GENOA study requires 

that a sibship has two individuals diagnosed with essential hypertension before the age of 60 

years; any normotensive siblings within the eligible sibships were also included. In 

particular, genotyped SNPs near and within the LEPR gene, as well as measures of CRP, are 

available for 881 subjects of European ancestry from 410 independent families.

Using both measured (Affymetrix 6.0) and imputed SNPs [MACH, Li et al., 2009], we 

examined the haplotypic block of SNPs that included the previously implicated ‘lead’ SNPs 

from Ridker et al. [2008] and Dehghan et al. [2011]. Figure 8 (left) shows the Haploview 

LD plot for the desired region using the CEU samples within HapMap. This block contains 

106 common SNPs (15 were genotyped in the GENOA study and the rest were imputed) 

located near or within the LEPR gene (on 1p31) which will compose our SNP set. As the 

SNPs in the region are quite correlated (Figure 8), the multiple-SNP KM-based analysis has 

the potential to be more powerful than the individual-SNP based approach. As observed in 

Section 4.1, the additional correlation gained by including the imputed SNPs will likely be 

advantageous to the kernel-based analysis if the imputed SNPs are correlated with the 

unknown causal variant(s). We performed both SNP set tests, the KM SNP set test and the 

individual-SNP-based minimum p-value test adjusting for multiple comparisons, with 

response log(CRP) and covariates age, gender, body mass index, and smoking status. Note 

that after adjusting for these covariates, hypertension status and log(CRP) levels were not 

significantly associated (p = 0.161).

Individual-SNP analysis using lmekin revealed 17 SNPs with unadjusted p-values <0.01 

(Figure 8, right; with previously implicated ‘lead’ SNPs depicted by solid, filled-in circles). 

Taking into account multiple testing for correlated SNPs using the method described in the 

simulations, the minimum adjusted [Conneely and Boehnke, 2007] individual-SNP based p-

value was 0.039. For the KM SNP set analysis, we chose the weighted IBS kernel as there is 

a range of MAF values and the IBS kernel tends to perform well in both linear and more 

complex genetic models in simulation. The KM SNP set analysis p-value for the set using 

this choice of kernel was 0.010. For comparison, the KM SNP set p-values obtained using 

the linear, weighted linear, and IBS kernels were 0.013, 0.014, and 0.011, respectively. 

Indeed, regardless of the kernel function used, the KM-based analysis yields a lower p-value 
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than that from the multiple testing-adjusted individual-SNP based analysis, as the KM test 

was able to borrow information across multiple correlated SNPs within the SNP set.

6 Discussion

We have proposed a kernel machine based framework for SNP set analysis for continuous 

outcomes when the subjects come from multiple different families. The underlying model 

can incorporate families of various sizes and relationships within the same association 

analysis. The proposed test is a score based-variance component test, which relies only on 

fitting the null linear mixed model (which needs only to be computed once for a GWAS 

dataset) to compute the test statistic. Notably the p-values are computed analytically, 

without the need for permutation, as we have shown that these values are accurate for even 

very small α levels. Furthermore, our simulations verify that when the causal SNP is 

correlated with multiple typed SNPs, the KM-based tests have improved power over the 

individual-SNP based analysis based on minimum adjusted p-values.

Like the SNP set based tests for independent subjects, the approach takes advantage of prior 

biological knowledge to group the SNPs into sets and each set is tested as an easily 

interpretable single entity. This not only has the potential to improve power by decreasing 

the number of tests in a genome-wide setting, but also by borrowing strength and 

information from correlated SNPs grouped together. Additionally, the KM approach allows 

for flexible modeling the SNP set effects on phenotype by specifying different kernel 

functions. The proposed methodology is valid irrespective of the selected kernel and SNP 

sets, but the power of the approach will be affected by the choice of kernel and choice of 

grouping. The best choice of kernel in terms of the most power improvement is an open 

question, but we have found that the (weighted) IBS kernel performs quite well in most 

simulated settings in that it loses little power when the effect of the SNP is linear, but can 

gain power when the effects of the SNPs are more complex.

Using the IBS kernel, our approach incorporates information on allele sharing among 

individuals within and between families to construct an appropriate test statistic of 

association. With pedigree data, we also possess information on alleles shared IBD within 

families. An open question then becomes whether we can use this IBD information to 

construct an association test similar to our existing IBS-based test. However, due to the fact 

that pairs of individuals from different families are unrelated and by definition share 0 

alleles IBD, we believe a variance-component score test using an IBD kernel is not a test of 

association in a population of related subjects (since it ignores information from alleles 

shared across families) but rather is a test of linkage within families. To support this idea, 

we note that application of model (3) using a kernel matrix K derived from the proportion of 

alleles shared IBD at a gene will lead to the same variance-component model previously 

used for linkage analysis of quantitative traits [Amos, 1994; Almasy and Blangero, 1998].

The choice of SNP grouping will also influence power, as the amount of information 

available to borrow across SNPs depends on the SNPs present in the set. In particular, the 

KM based SNP set test improves power over the individual SNP based minimum p-value 

test when there is at least moderate LD among the SNPs in a SNP set, or in the presence of 
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multiple causal variants within the set. If there are only a few causal SNPs (or few SNPs in 

LD with the causal SNP) in a set of predominantly null SNPs, power gains may not be 

realized. In the simulations and data analysis, we grouped SNPs based on either their 

proximity to a gene, or on the basis of LD structure in order to take advantage of the 

correlation of nearby SNPs. As previously mentioned, while we have the ability to model 

joint effects of multiple causal SNPs and epistatic effects, using the above strategies will 

only be able to identify these multiple SNP effects if they are located close enough to one 

another to be placed in the same SNP set. While it is not clear what the best strategy is for 

capturing the effects of multiple distantly-located SNPs, forming SNP sets based on gene 

pathways or networks can potentially help capture these effects.

The simulations and data analysis considered in this paper both focused on common variant 

SNP effects. However, the family-based KM approach can also easily be applied in 

sequencing association studies for rare variant effects. In these situations, it is often 

desirable to up-weight rare variants [e.g., Kryukov et al., 2007]. This can naturally be 

accommodated by appropriately specifying weights, w, in the kernel function. For example, 

if rarer variants (e.g., MAF ≤ 5%) are expected to be more likely to have larger effects, Wu 

et al. [2011] recommend setting 0 < α1 ≤ 1 and α2 ≥ 1 in  to up-

weight rarer variants and down-weight common variants (e.g., α1 = 1, α2 = 25) for 

sequencing association studies. Such analyses could be beneficial in family-based data, for 

example, if members within the same family carry the same rare mutation while other 

families may carry different mutations within the same gene (SNP set).

The simulations also examined the influence of ascertainment on the KM test when the 

families were selected based on the presence of disease, but association between disease and 

continuous phenotype was weak. Under this scenario, our simulations confirmed that there 

is little to no inflation in type I error rate. These results are consistent with those in Monsees 

et al. [2009] regarding case-control ascertainment: when the association between secondary 

outcome and primary outcome (disease) is weak, ascertainment bias is negligible. In the 

context of case-control studies, Monsees et al. [2009] found in simulation that ascertainment 

bias is generally quite small except when both the genetic marker and secondary outcome 

are associated with disease. In this situation for family-based data, proper accounting for 

ascertainment (e.g., inverse probability weighting) would likely be needed and is an area for 

future research. In addition, our results are also in agreement with those in de Andrade and 

Amos [2000], who examined the impact of ascertainment bias on the testing of variance 

parameters in variance-component linkage analyses of quantitative traits. The authors found 

that the assessing major-gene effect using Wald and Likelihood Ratio tests in a variance-

component model was not affected by ascertainment bias.

The proposed methods can be extended for more complicated models. For example, one can 

extend the proposed test to accommodate binary outcomes in family studies. An estimating 

equation based approach is currently being investigated to handle non-normal data, with 

results to be reported in a separate manuscript. Additionally, alternative random effects 

could be considered to model within-family (or generic within-group) correlation structures. 

A key advantage of the proposed methodology is that it allows for flexible modeling of the 
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relationship between SNPs within a set and the outcome of interest. This will become an 

increasingly valuable feature as our understanding of the underlying biological processes, 

and hence our modeling abilities, improves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

To show that Q under τ = 0 can be expressed as a mixture of chi-square distributions, note 

that P = V−1 − V−1X(XTV−1X)−1XT V−1 for V evaluated under the null model can be 

expressed as P = V−1/2MV−1/2 where

is an idempotent matrix. Thus

where MV−1/2y = Mỹ and ỹ ~ N(0,I). Let λ1 ≥ … ≥ λq > 0 be the q ≤ n ordered non-zero 

eigenvalues of  and Λ= diag(λi i = 1,…,q). Let E be the q × n 
matrix of eigenvectors corresponding to λi such that EET = I. Then,
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where z = (z1,…,zq)T = Eỹ and zi ~ iidN(0,1). Thus,  is a mixture of chi-square 

distributions, each with one degree of freedom.

Specifically for the Satterthwaite approximation with , we calculate κ̂ = /2μ̃ 

and ν̂ = 2μ̃2/  where  with

and all terms are evaluated at ϕ̂, which is the ML or REML estimate calculated under the 

null model (6). This leads to the test statistic Q(ϕ̂)/κ̂ with approximate null distribution .

In the implementation of Davies method, we use the eigenvalues of K̄, where the null 

estimates of  and  are used to calculate V, to compute the p-values for test statistic Q(ϕ̂), 

for ϕ̂ again representing the ML or REML estimator under the null model. Note that with a 

small number of covariates, both the ML and REML versions of the statistics perform quite 

similarly when the sample size is decent.
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Figure 1. 
Empirical size for KM test (linear kernel) using Davies and Satterthwaite’s Method and N = 

107 simulated datasets.
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Figure 2. 
Top: Power to detect causal SNP for FGFR2 using additive (left) and dominant (right) 

genetic models under MED heritability due to SNP (max(h2)=1%). SNPs are ordered 

according to genomic location. Lines in gray and blue correspond to KM-based methods, 

whereas different line types and widths differentiate between types of kernels; the red solid 

line corresponds to the multiple testing adjusted individual-SNP based approach. The typed 

SNPs, indicated by an ‘x’ along the bottom of the plot, compose the SNP set. Middle: 

Corresponding MAF for SNPs plotted above. Bottom: Corresponding LD plot for SNPs 

plotted above (grayscale for squared correlation R2: white - R2 = 0, black - R2 = 1).
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Figure 3. 
Power to detect causal SNP for ASAH1 using additive (left) and dominant (right) genetic 

models under MED heritability due to SNP (max(h2)=1%). Legend is the same as Figure 2.
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Figure 4. 
Top: Power to detect causal SNP for ASAH1 using additive (left) and dominant (right) 

genetic models under MED heritability due to SNP (max(h2)=1%). SNPs are ordered 

according to median R2. Legend is the same as Figure 2. Bottom: Corresponding MAF for 

SNPs plotted above.
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Figure 5. 
Distribution of Variance Component Estimates under the null hypothesis of no SNP Set 

effect: histograms with solid, black borders are for estimates computed using non-random 

selection of families (ascertained according to disease status), while the overlaid histograms 

in dashed-blue are for estimates computed using random selection of families. True 

parameter values are indicated by vertical red lines.
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Figure 6. 
Top: Difference in power to detect causal SNP for ASAH1 (additive genetic model under 

MED heritability due to SNP) between simulations where families were randomly selected 

and non-randomly selected based on at least one sibling have a disease. SNPs are ordered 

according to genomic location. Legend is similar to that in Figure 2, except that curves 

represent the subtraction of power using non-random (NR) family selection from power 

using random (R) family selection. Middle: Corresponding MAF for SNPs plotted above. 

Bottom: Corresponding LD plot for SNPs plotted above (grayscale for squared correlation 

R2: white - R2 = 0, black - R2 = 1).
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Figure 7. 
Power from Chromosome 10 simulation, plotted as a function of median R2 for differing 

ranges of total number of SNPs in the SNP set (r). Different line types correspond to LOW, 

MED, and HIGH heritability due to SNP (h2).
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Figure 8. 
LD plot (standard D′/LOD color coding) using HapMap CEU population for the SNPs in the 

SNP set (left) and the individual-SNP analysis −log10 unadjusted p-values for the GENOA 

dataset, ordered by SNP location (right). The solid, filled-in circles, indicate the previously 

published ‘lead’ SNPs.
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Table 2

Empirical size based on candidate gene ASAH1 when sibship trios are ascertained according to disease status 

(at least one sibling must have disease); .

Kernel

LIN wLIN IBS wIBS

Satterthwaite 0.049 0.050 0.053 0.054

Davies 0.049 0.051 0.053 0.053
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Table 3

Empirical size by SNP set size for Chromosome 10 simulation, using the linear kernel for n = 300 sib trios 

under different polygenic effects. Size estimates computed using p-values from Davies method; 

Satterthwaite’s method yields qualitatively and quantitatively similar results.

SNP Set Size # of Sets

v0b

0.25 0.50 0.75

r ≤ 10 4244 0.050 0.055 0.050

10 < r ≤ 20 2831 0.047 0.057 0.052

r > 20 2925 0.046 0.054 0.049

All 10000 0.048 0.055 0.050

*
  is the heritability due to polygenic effects for within-family correlation.

Genet Epidemiol. Author manuscript; available in PMC 2014 March 11.


