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A cardinal symptom of major depressive disorder (MDD) is the dis-
ruption of circadian patterns. However, to date, there is no direct
evidence of circadian clock dysregulation in the brains of patients
who have MDD. Circadian rhythmicity of gene expression has been
observed in animals and peripheral human tissues, but its presence
and variability in the human brain were difficult to characterize.
Here, we applied time-of-death analysis to gene expression data
from high-quality postmortem brains, examining 24-h cyclic pat-
terns in six cortical and limbic regions of 55 subjects with no history
of psychiatric or neurological illnesses (“controls”) and 34 patients
with MDD. Our dataset covered ∼12,000 transcripts in the dorso-
lateral prefrontal cortex, anterior cingulate cortex, hippocampus,
amygdala, nucleus accumbens, and cerebellum. Several hundred
transcripts in each region showed 24-h cyclic patterns in controls,
and >100 transcripts exhibited consistent rhythmicity and phase
synchrony across regions. Among the top-ranked rhythmic genes
were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1
(REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2). The phas-
ing of known circadian genes was consistent with data derived
from other diurnal mammals. Cyclic patterns were much weaker
in the brains of patients with MDD due to shifted peak timing and
potentially disrupted phase relationships between individual circa-
dian genes. This transcriptome-wide analysis of the human brain
demonstrates a rhythmic rise and fall of gene expression in
regions outside of the suprachiasmatic nucleus in control subjects.
The description of its breakdown in MDD suggests potentially im-
portant molecular targets for treatment of mood disorders.
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Circadian patterns are 24-h rhythms in physiology and behavior
sustained by a biological timekeeping capability that has

evolved in most life on earth (1). In mammals, these rhythms are
controlled by a hierarchy of cellular oscillators, at the top of
which are pacemaker cells in the suprachiasmatic nucleus (SCN)
in the hypothalamus (2). Local oscillators throughout the body
coordinate daily cycles by integrating signals from the SCN with
other internal and external time cues. Within cells, rhythmicity
is maintained by transcriptional and posttranslational feedback
loops involving a set of “clock genes” (a brief overview is pro-
vided in SI Summaries and Discussions, Mammalian Circadian
Molecular Machinery). Recently, transcriptome-wide analyses
from animal tissues, such as blood, brain, liver, kidney, skeletal
muscle, and heart (3–6), have revealed that many genes beyond
the core clock genes undergo daily variations in expression levels.
The engagement of these additional circadian genes likely
reflects tissue-specific functional needs. Genetic and epidemio-
logical evidence suggests that disruption of circadian rhythms in
humans can lead to many pathological conditions, including
depression, metabolic syndrome, and cancer (7, 8).
Circadian control in the human brain is generally presumed

based on parallels with other mammalian brains. Indeed, sleep,
along with other cyclic events is among the most fundamental
processes regulated by the CNS and provides the backdrop for

all aspects of its function and dysfunction. Mood disorders rep-
resent a compelling example of dysregulation of circadian func-
tion, with many studies describing abnormal circadian rhythms in
hormonal, body temperature, sleep, and behavioral patterns in
major depressive disorder (MDD) (9). For example, patients
who have MDD show persistent shortening of rapid eye move-
ment (REM) latency (10), increased REM density, and decrea-
ses in total sleep time and sleep efficiency (11). In addition,
chronotherapeutic interventions can often alleviate depressive
symptoms (9, 12, 13).
However, direct demonstration of the molecular basis of cir-

cadian control in the human brain presents many unique chal-
lenges. Compared with in vitro systems or animal models, human
studies lack control of genetic or environmental variables, and
they pose major difficulties in collecting biologically relevant
samples. Previous analyses of human tissues involved easily ac-
cessible oral mucosa (14), skin biopsies (15), hair follicle cells
(16), and cultured cell lines (17, 18). Some human postmortem
brain studies have focused on a limited number of candidate
clock genes (19–21), but the overall orchestration of circadian
regulation of gene expression in the human brain and its po-
tential dysregulation in major depression remained unknown.
We addressed this problem by analyzing postmortem brain

tissues from subjects ordered around a 24-h cycle based on their
time of death (TOD), effectively treating the independently sam-
pled data points, one for each subject, as a pseudo-time series
spanning one cycle (Fig. 1A and Fig. S1). Our dataset covers
∼12,000 transcripts for each of six brain areas for 55 carefully
screened normal “controls” and 34 patients with MDD (di-
agnosed in accordance with the Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition).

Author contributions: J.Z.L., J.D.B., A.F.S., E.G.J., R.M.M., S.J.W., H.A., and W.E.B. designed
research; J.Z.L., D.M.W., M.P.V., S.J.E., P.V.C., P.C., E.G.J., S.J.W., and H.A. performed re-
search; J.Z.L., F.M., D.M.W., E.G.J., R.M.M., and W.E.B. contributed new reagents/analytic
tools; J.Z.L., B.G.B., F.M., and M.H.H. analyzed data; and J.Z.L., B.G.B., M.H.H., S.J.W., H.A.,
and W.E.B. wrote the paper.

Conflict of interest statement: The authors are members of the Pritzker Neuropsychiatric
Disorders Research Consortium, which is supported by Pritzker Neuropsychiatric Disorders
Research Fund, LLC. A shared intellectual property agreement exists between the aca-
demic and philanthropic entities of the consortium. The Pritzker Neuropsychiatric Disor-
ders Research Fund had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Freely available online through the PNAS open access option.

Data deposition: The raw and processed data for this complete set of controls have
been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.
gov/geo (accession no. GSE45642) and on our Web site, www.pritzkerneuropsych.org/?
page_id=1196.
1To whom correspondence may be addressed. E-mail: junzli@med.umich.edu or akil@
umich.edu.

2Deceased June 6, 2011.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1305814110/-/DCSupplemental.

9950–9955 | PNAS | June 11, 2013 | vol. 110 | no. 24 www.pnas.org/cgi/doi/10.1073/pnas.1305814110

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305814110/-/DCSupplemental/pnas.201305814SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305814110/-/DCSupplemental/pnas.201305814SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305814110/-/DCSupplemental/pnas.201305814SI.pdf?targetid=nameddest=SF1
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45642
http://www.pritzkerneuropsych.org/?page_id=1196
http://www.pritzkerneuropsych.org/?page_id=1196
mailto:junzli@med.umich.edu
mailto:akil@umich.edu
mailto:akil@umich.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305814110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305814110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1305814110


Results
We first characterized circadian gene expression in the control
human brain. Experimental procedures are described in Materials
and Methods. At P < 0.05, there were 922 transcripts in the dor-
solateral prefrontal cortex (DLPFC), 417 in the amygdala (AMY),
444 in the cerebellum (CB), 565 in the nucleus accumbens
(NAcc), 566 in the anterior cingulate cortex (AnCg), and 659
in the hippocampus (HC). Fig. 1B shows a heat map of the 922
cyclic genes in the DLPFC, with the genes ordered by peak time
and the samples ordered by TOD. For each gene, the pattern
across samples (rows) has a characteristic phase. Meanwhile,
for each sample, the pattern across genes (columns) has a rise-
and-fall phase relationship typical of the subject’s TOD. Such
a TOD-specific pattern across cyclic genes can serve as the
basis of expression-based prediction of TOD for samples of
unknown TOD.
Many core clock genes, including aryl hydrocarbon receptor

nuclear translocator-like (brain and muscle Arnt-like protein-1)
[ARNTL (BMAL1)]; three Period homolog (PER1–3) genes;
nuclear receptor subfamily 1, group D, member 1 [NR1D1(REV-
ERBα)]; D-site of albumin promoter binding protein (DBP); and
basic helix–loop–helix family gene member e40 (deleted in
esophageal cancer 1) [BHLHE40 (DEC1)] and member e41
[BHLHE41(DEC2)], were among those showing the strongest
cyclic patterns (six examples are shown in Fig. 1C). They
accounted for the 5 highest ranked cyclic genes summarized over
six regions and 11 of the top 50 (highlighted in yellow in Fig.
2A). Notably, the top-ranked gene across all six brain regions was
ARNTL (BMAL1), a central component in the clock gene ma-
chinery (Fig. S2). Pathway analyses using several databases con-
sistently identified “circadian patterns” or “biological rhythms” as

the top pathways enriched among top cyclic genes (SI Summaries
and Discussions, Pathway Analysis, and Table S1).
Our data uncovered a staggered phase relationship between

the three Period genes, with PER1 peaking soon after sunrise,
PER3 peaking during midday, and PER2 peaking in the after-
noon (Fig. 2B). This stagger is highly characteristic of Period
genes in the SCN of rodents (Fig. S3) [e.g., mice (22), Arvicanthis
ansorgei (23), Octodon degus (24)], but it has not been demon-
strated in brain regions outside of the SCN, although it has long
been predicted (25). The detection of small phase differences in
this study was enabled by the sampling density of our pseudo-
time series data, because such subtle shifts may not be evident
when samples are collected at fixed, multihour intervals.
The strength of cyclic variation was consistent across brain

regions: P values for top genes were largely similar across the six
brain regions (Fig. 2A) and were quantitatively correlated (SI
Summaries and Discussions, Correlation of Statistical Signifi-
cance Across Regions and Fig. S4). To identify genes with
consistent cyclic patterns in six regions, we combined the P
values across regions using Fisher’s method (Materials and
Methods). The resulting “meta”-P values of the top 100–200 genes
were smaller P values than those expected under a uniform dis-
tribution, with 169 genes having a Benjamini–Hochberg false
discovery rate of <0.5 (Fig. 3A). Peak times (acrophase) for 445
transcripts with evidence of rhythmicity (P < 0.05) in at least two
regions were similar across regions (Fig. 3B). The estimated peak
hours for the top 50 genes are provided in Fig. S5. Similarly, the
amplitude of the cyclic pattern, defined as the difference between
the highest and the lowest points in the fitted sinusoidal curves,
was consistent across regions (Fig. 3C and Fig. S6).
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Fig. 1. Discovery of cyclic gene expression in the human brain: examples from the DLPFC. (A) TOD distribution in the controls (n = 52) and patients with MDD
(n = 33 in the DLPFC). TODs (zeitgeber time, ZT) were individually adjusted by sunrise time. (B) Heat map of expression levels for top (P < 0.05) cyclic genes (n =
922) in DLPFC samples of 52 control subjects. Genes are shown in the vertical direction and ordered by inferred phase, and samples are shown along the
horizontal direction and ordered by ZT across the 24-h day, where sunrise time is ZT = 0. Expression levels for each gene are rescaled by its observed SD. The
color scale represents 0.25-fold to fourfold of SD. Red indicates higher expression, and blue indicates lower expression. (C) Expression (Exp) levels of six known
circadian genes in samples ordered by TOD. P values and peak times are indicated above each panel. The red lines depict the best-fitting sinusoidal curves.
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Our dataset represents the largest transcriptome-wide re-
source to date for studying brain circadian patterns in any di-
urnal (day-active) species. We therefore compared our results
with those previously reported in animal studies, especially on
the nocturnal mouse. Yan et al. (5) performed a metaanalysis of
gene expression data from 14 mouse tissues and identified 41
common circadian genes. Among the 27 of these genes that were
found to be rhythmic in the mouse brain outside of the SCN (5)
and that were analyzed in our study, 8 (30%) overlapped with the
top 50 genes shown in Fig. 2 (marked with an asterisk). Four
more genes, TFRC (transferrin receptor), USP2 (ubiquitin

specific peptidase 2), NR1D2 (nuclear receptor subfamily 1,
group D, member 2), and CLOCK (circadian locomotor output
cycles kaput), ranked among the top 7% in our study. In all, 17
(63%) of the 27 genes were rhythmic (P < 0.05) in at least one
human brain region. A comparison of P values across the >5,000
genes that overlapped between our data on human subjects and
the mouse data from 14 tissues (5) showed that the greatest level
of concordance was found in canonical clock genes (SI Summaries
and Discussions, Comparison with Results from Animal Models and
Fig. S7). To identify human-mouse differences in phasing of
circadian genes, we compared peak times for genes reported
as rhythmic in mouse prefrontal cortex or in the whole brain
by Yan et al. (5) with those that had P < 0.01 in our study. The 7
top genes showed a linear relationship (Pearson’s r = 0.88, cir-
cular correlation coefficient = 0.61) between the human and
mouse data, but the phase in the mouse was delayed by ∼6.5 h

Symbol DLPFC AnCg HC AMY NAcc CB
ARNTL* 0.0005 0.0005 0.001 0.001 0.0005 0.0005
PER2* 0.001 0.0005 0.0005 0.005 0.008 0.0005
PER3* 0.0005 0.0005 0.0005 0.094 0.0005 0.001
NR1D1* 0.0005 0.0005 0.0005 0.102 0.0005 0.008
DBP* 0.0005 0.0005 0.003 0.066 0.002 0.001
SFPQ 0.0005 0.152 0.013 0.134 0.001 0.029
ITIH5 0.0005 0.021 0.009 0.577 0.007 0.027
LDLR 0.001 0.002 0.004 0.014 0.561 0.204
PER1* 0.0005 0.005 0.008 0.559 0.044 0.071
INSIG1 0.007 0.003 0.001 0.025 0.727 0.183

SLC39A14 0.007 0.0005 0.029 0.067 0.077 0.262
NFIL3* 0.011 0.0005 0.104 0.181 0.03 0.198
SNTB2 0.023 0.038 0.17 0.001 0.013 0.368
PDZRN3 0.002 0.001 0.037 0.333 0.207 0.195
BHLHE40* 0.0005 0.014 0.147 0.42 0.02 0.127
BHLHE41 0.005 0.003 0.997 0.751 0.051 0.003

HLF 0.124 0.06 0.464 0.0005 0.152 0.008
ETV5 0.019 0.059 0.014 0.083 0.01 0.213
TNIP2 0.601 0.003 0.023 0.0005 0.297 0.545
ESYT1 0.094 0.299 0.032 0.022 0.088 0.003
ZNF394 0.035 0.016 0.0005 0.301 0.17 0.456
PION 0.005 0.023 0.302 0.273 0.01 0.128
GPR6 0.005 0.0005 0.769 0.717 0.644 0.02

TIMM8A 0.132 0.007 0.001 0.089 0.346 0.654
GPR116 0.0005 0.508 0.014 0.481 0.192 0.058
FLRT1 0.297 0.017 0.069 0.219 0.002 0.145

CSGALNACT1 0.001 0.246 0.071 0.074 0.018 0.958
WDR41 0.111 0.231 0.007 0.338 0.001 0.369
APOLD1 0.036 0.021 0.032 0.187 0.007 0.796
RHOB 0.002 0.057 0.031 0.673 0.035 0.303
SCML1 0.043 0.003 0.065 0.103 0.047 0.726
SPRY4 0.0005 0.022 0.079 0.49 0.097 0.832
MTR 0.063 0.01 0.007 0.164 0.165 0.304

PLSCR1 0.252 0.017 0.061 0.124 0.01 0.117
EXOC1 0.029 0.04 0.059 0.221 0.011 0.246
KLF11 0.005 0.006 0.068 0.918 0.088 0.259

SLCO4A1 0.345 0.037 0.001 0.089 0.046 0.826
SOCS2 0.0005 0.05 0.032 0.684 0.104 0.769

C10orf116 0.006 0.203 0.014 0.615 0.876 0.005
ZNF286A 0.358 0.036 0.053 0.86 0.001 0.08
GAS2 0.023 0.262 0.424 0.001 0.029 0.639

UNC13A 0.006 0.273 0.19 0.29 0.004 0.148
ATP4A 0.206 0.096 0.182 0.08 0.401 0.0005
RFC3 0.739 0.044 0.001 0.105 0.248 0.072

ACOT13 0.009 0.016 0.023 0.362 0.15 0.344
C7orf68 0.127 0.019 0.004 0.288 0.048 0.475
SYNM 0.044 0.005 0.308 0.027 0.369 0.094
HCRTR2 0.119 0.161 0.013 0.863 0.314 0.001
ZW10 0.001 0.933 0.456 0.986 0.372 0.0005
NPAS2 0.143 0.227 0.355 0.821 0.018 0.0005
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Fig. 2. Characterization of the top cyclic genes in the human brain. (A)
Comparison of statistical significance for the top cyclic genes across regions.
Shown are P values of the top 50 genes across six regions, with the genes
ordered by the average logged P value across the six regions. The 11 gene
symbols that are highlighted in yellow were annotated as being part of the
circadian rhythm pathway in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) or the Protein Information Resource (PIR). Among the 41 “core cir-
cadian genes” reviewed by Yan et al. (5), 38 were on the microarray plat-
form used in our study and 8 (marked by *) overlapped with the 50 genes
shown here. In addition, 5 genes among the 38 (TFRC , NAMPT, USP2,
NR1D2, and CRY1) ranked among the top 5% in our study (ranked at 0.7%,
0.7%, 1.3%, 1.6%, and 4.2%, respectively). (B) Peak time of expression for
PER genes in our study follows what might be predicted by the animal lit-
erature. PER1 expression peaks 0–2 h after sunrise, PER2 peaks in the af-
ternoon, and PER3 peaks in the interval between PER1 and PER2 in all six
brain regions.
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Fig. 3. Top cyclic genes show consistent rhythmicity, phasing, and ampli-
tude across brain regions. (A) More than 100 genes exhibit consistently
significant rhythmicity. The quantile–quantile plot compares the distribution
of the combined P values across the six brain regions (using Fisher’s method)
and a uniform distribution, showing that 100–200 genes had smaller com-
bined P values than expected. The top 100 genes were colored in red, and
the next 100 genes were colored in green. Gray lines indicate the sorted
original P values in the six individual brain regions. The dotted red line indi-
cates uniformly distributed P values. (B) Phasing of the top cyclic genes is
consistent across brain regions, as indicated by a heat map of peak times.
Genes are ordered from top to bottom by mean peak time. Genes of non-
significant (P > 0.1) cyclic patterns in a given region were shown as missing
(gray) because their peak times could not be accurately determined. (C) Am-
plitude of rhythms is similarly consistent across brain regions, as indicated by
a heat map of the amplitude for 445 transcripts with P < 0.05 in at least two of
six regions. Genes are ordered from top to bottom by mean amplitude. (D)
Phasing of the top cyclic genes differs between species with different
chronotypes (day-active human vs. night-active mouse). Shown is a compar-
ison of peak times for genes that overlapped between a metaanalysis of
circadian gene expression in the mouse (5) and our study (P < 0.01 in con-
trols). The y axis shows the peak time in the mouse prefrontal cortex (PFR) or
whole brain (WB). The line in the plot models a linear relationship using the
7 top genes (highlighted in red). When fit with robust linear modeling, they
revealed a shift of 6.51 h and a slope of 1.18 (r = 0.88).
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(Fig. 3D), consistent with the idea that clock genes in non-SCN
regions (“local oscillators”) reflect the behavioral chronotype
of the species.
The identification of cyclic genes in controls allowed us to ask

whether these genes were also cyclic in patients with MDD. We
found that most of the top cyclic genes in controls were not
significant in MDD. Indeed, among the top 16 genes, 11 had P <
0.05 in four or more regions in controls (Fig. 2A), yet only 2 had
P < 0.05 in more than one region in patients with MDD and
none had P < 0.05 in more than three regions (Fig. 4A). In a
Fisher’s metaanalysis, P values in MDD were not appreciably
different from a uniform distribution (Fig. 4B), in contrast to the
increased significance of the top 100–200 genes seen in controls
due to between-region consistency. According to Fisher’s P val-
ues, the top 5 ranked genes in controls, ARNTL (BMAL1), PER2,
PER3, NR1D1, and DBP, ranked the 171st, 532nd, 10,191st, 27th,
and 684th, respectively, in patients with MDD. The decrease in
significance was paralleled by the reduction of amplitude of the
best-fitting sinusoidal curves (Fig. S8 A and B), even though the
overall variance for these genes was similar between the MDD and
control groups (Fig. S8C). By testing a subset of controls that (i)
have an equivalent sample size to the MDD group for each brain
region and (ii) have TODs that were matched as closely as possible
between the MDDs and the selected controls, we confirmed that
the weaker signal observed in the MDD group was not due to its
smaller sample size than the control group (SI Summaries and
Discussions, Effect of Sample Size in Comparison of Controls and
MDD Cases and Fig. S8 D and E).

The weaker cyclic patterns in MDD group could be due to (i)
a flattened or disrupted rhythmicity of the circadian genes in
patients with MDD or (ii) large time shifts of the rhythms in
many patients. In the latter scenario, patients with MDD could
still carry robust cyclic patterns (just as in controls) but their
actual phase at death might have deviated from what is expected
according to their recorded TOD. To test these hypotheses, we
first used the top cyclic genes (n = 108) to calculate sample-
sample correlations in the DLPFC and found a clear pattern of
positive correlations among control samples with similar TODs
and negative correlations between those with opposing TODs
(e.g., noon vs. midnight). This pattern was much weaker be-
tween patients with MDD and controls or among MDD cases
(SI Summaries and Discussions, Sample–Sample Correlations
Suggest Phase Shift in MDD Cases and Fig. S9), suggesting that
biological cycles for many MDD cases may have fallen out of
synchronization with the solar day. Next, we applied the con-
certed rise and fall of the top 100 cyclic genes in a training set of
60 randomly selected subjects, containing both cases and con-
trols (Fig. 1), to predict the likely TOD for each subject in the
remaining test set (Materials and Methods). The absolute devia-
tions of the predicted TOD from the recorded TOD were smaller
for controls than for patients with MDD (Fig. 4C; P = 0.012,
Mann–Whitney test), further suggesting that the circadian rhythms
of MDD cases were not synchronized (“entrained”) normally to
the solar day. Finally, if the cyclic patterns had persisted in
patients with MDD, we would expect in-phase genes to be pos-
itively correlated with each other and out-of-phase genes to
be negatively correlated. Importantly, this analysis of gene-gene
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DLPFC ACG HC AMY NACC CB
ARNTL 0.121 0.072 0.732 0.084 0.005 0.141
PER2 0.015 0.083 0.213 0.342 0.075 0.582
PER3 0.42 0.652 0.432 0.999 0.29 0.531
NR1D1 0.04 0.029 0.285 0.097 0.003 0.111
DBP 0.102 0.236 0.025 0.79 0.121 0.118
SFPQ 0.135 0.124 0.165 0.265 0.047 0.089
ITIH5 0.936 0.47 0.117 0.603 0.15 0.832
LDLR 0.012 0.385 0.315 0.307 0.005 0.028
PER1 0.006 0.21 0.137 0.619 0.124 0.061
INSIG1 0.056 0.534 0.668 0.869 0.318 0.88
SLC39A14 0.641 0.21 0.301 0.393 0.157 0.354
NFIL3* 0.565 0.326 0.633 0.478 0.179 0.617
SNTB2 0.928 0.194 0.123 0.765 0.365 0.293
PDZRN3 0.13 0.003 0.503 0.229 0.075 0.139
BHLHE40 0.19 0.897 0.433 0.963 0.14 0.009
BHLHE41 0.497 0.781 0.754 0.433 0.875 0.246
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Fig. 4. Disruption of cyclic pattern in patients with MDD. (A) Top 16 cyclic genes from controls are not rhythmic in the MDD group. The P values for the genes
are formatted similar to Fig. 2A (ranked by the average logged P value across the six regions in controls). (B) Genes in patients with MDD do not exhibit
consistently significant rhythmicity, as illustrated by a quantile–quantile plot comparing the combined P values across the six brain regions in MDD (using
Fisher’s method) vs. the expected P values in a uniform distribution using the same style as in Fig. 3A. (C) Rhythms of patients with MDD are less synchronized
with the solar day compared with controls. The predicted TOD in 55 controls (Left) and 34 patients with MDD (Right) are shown on the inner circle of a 24-h
clock, and their documented TODs are shown on the outer circle. The deviations were smaller in controls than in patients with MDD (P = 0.012, Mann–
Whitney nonparametric test). (D) Patterns of gene-gene correlations seen in controls (in-phase = positive correlation, out-of-phase = negative correlation) are
only partially present in patients with MDD. Depicted are the correlation coefficients across the top 16 genes, calculated using DLPFC data for 52 controls
(Left) and 33 MDD cases (Right). Genes are ordered by the peak time derived from the control dataset. Examples of gene pairs with significant differences
between controls and patients with MDD are marked with an asterisk.
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correlations across samples should be unaffected by how the sam-
ples were ordered and immune to any desynchronization be-
tween the “internal time” of the patients and the solar day. In
controls, we found that the top cyclic genes showed positive
correlations between genes with similar phases and negative
correlations between genes of opposing phases (an example
for the top 16 genes is shown in Fig. 4D). This pattern was
partially preserved in patients with MDD (Mantel statistic based
on Kendall’s rank correlation: 0.38, P < 0.001), albeit with no-
table alterations (Fig. 4D). Some normally in-phase gene pairs
(e.g., BHLHE40-PER2, DBP-PER3, with large correlations
shown in red) were out-of-phase in patients with MDD,
whereas some normally out-of-phase genes were in-phase in
patients with MDD [e.g., insulin-induced gene 1 (INSIG1)-
BHLHE41]. These results suggest that both scenarios may be in
play in patients with MDD: a disrupted regulatory relationship
among portions of the cyclic genes and shifted timing in
many patients.
The apparent disruption of the circadian clock could be due to

a number of biological causes, including the mood disorder itself,
the use of antidepressant drugs, or the presence of other non-
therapeutic drugs taken by the subject as ascertained by the toxi-
cology screen of the brains (Table S2). We explored several
variables and found that the TOD deviations of MDD cases were
not significantly different between suicide (n = 20) and nonsuicide
(n = 14) cases, with P = 0.62, or between the witnessed (n = 7)
and nonwitnessed (n = 27) deaths, with P = 0.72. We also examined
a group of patients (n = 10) who were highly homogeneous: They
had all died of suicide, had no known history of antidepressant
treatment (i.e., newly diagnosed for MDD), and had negative
findings on the postmortem toxicology screen. Thus, these patients
represent a “clean” group in which the primary difference from
controls is the diagnosis of MDD with suicide. Because members
of this group all died during the daytime, we compared them not
only with the entire group of controls but with the subset of
controls who died during the same daytime period. The average
TOD deviation for the 10 suicide/toxicology screen-negative
MDD cases is 3.3 h, which is larger than the average deviation
for the entire control group (1.9 h; P = 0.068, Kolmogorov–
Smirnov test) and from the average deviation of the daytime-
only controls (n = 30, 2.1 h; P = 0.038, Kolmogorov–Smirnov
test). These findings support the view that the circadian disruption
observed in this work is partially linked to the disease process itself
rather than being exclusively due to the impact of psychoactive
drugs. Meanwhile, the average deviation between predicted and
recorded TOD in this group (3.3 h) is lower than in the entire
MDD group (3.9 h, n = 34), suggesting that other factors,
including prescription and nonprescription drugs, may contribute
to the observed circadian dysregulation.

Discussion
Cumulatively, these results provide convincing evidence that there
exists a rhythmic rise and fall in the transcriptional activity of
hundreds of genes in the control human brain, initiating or
responding to the regulation of 24-h behavioral and hormonal
cycles. The data presented here are notable for their tran-
scriptome-wide coverage (∼12,000 transcripts) and large
sample size, encompassing 365 RNA samples from controls
isolated from six brain regions with sample sizes of 29–55 per
region and covering the daily cycle, with an average of 1.2–2.3
data points per hour. Despite these strengths, it was conceivable
that no consistently cyclic gene would emerge in our analysis due
to the numerous sources of noise in the independent subjects
design, both biological and technical. Indeed, even though there
was no clinical record regarding the state of consciousness of
control subjects at the TOD, many subjects might have been
awake or experiencing disrupted sleep. Despite these challenges,
over 100 genes showed consistent cyclic patterns across the six
regions (Fig. 3), reflecting the robust, slow-changing nature of
circadian rhythms in extra-SCN regions even in the presence
of environmental disturbances (2). The two regions with the

smallest sample size, the CB and AMY, showed the weakest
significance, suggesting that a larger sample size (≥55) could
reveal additional cyclic genes.
Two lines of evidence support the validity of our observations

in the normal human brain. First, several core circadian genes
essential to the clock machinery ranked as top cyclic genes in
each of the six brain areas, including ARNTL (BMAL1), PER1–3,
NR1D1 (REV-ERBα),DBP, and BHLHE40–41 (DEC1–2). Second,
the phase relationships between core circadian genes resembled
those found in model organisms. Indeed, the order of PER peak
expression (i.e., PER1, PER3, PER2) matched the pattern of PER
expression in the SCN of rodents, demonstrating a consistency in
phase relationships across mammalian species.
In addition to confirming the cyclic patterns of most known

circadian genes, this study revealed additional cyclic genes,
including, for example, LDLR (low-density lipoprotein receptor)
and INSIG1, which are known to be involved in lipid synthesis
and metabolism (26), and the hypocretin receptor, HCRTR2,
which is important for sleep/wake regulation (27). Because DNA
variations in several circadian genes underlie seasonal affective
disorder (28) and familial advanced sleep phase syndrome (29),
the cyclic genes described here may also serve as candidates for
genetic analyses of inherited disorders that involve dysfunction
of the circadian system. Moreover, this study provides the most
complete transcriptomic description to date for the brain of a
diurnal species, and it could serve as the knowledge base for future
efforts to define signaling pathways underlying basic chronotype
generation, a long-standing question in the field of chronobiology.
The present findings also offer empirical evidence of molecular

dysregulation of circadian rhythmicity across six brain regions of
clinically depressed individuals. Our analysis indicates that pa-
tients with MDD exhibit abnormal phasing of circadian gene ex-
pression and potentially disrupted phase relationships between
individual circadian genes. This disruption may have an impact on
the functional regulation of numerous neural processes and
behaviors, consistent with the broad range of symptoms seen in
MDD. A caveat in this analysis is that gene pairs that appeared
significantly disrupted in one region (e.g., DLPFC as shown in
Fig. 4D) are not necessarily disrupted in another region of the
brain of patients with MDD. Rather, some other gene pairs ap-
pear disrupted in that different region. This complexity could arise
from region-specific biological factors, with MDD conferring dis-
tinct patterns of transcriptional dysregulation in different brain
areas. However, the differential effects could also result from
technical factors (e.g., sample processing and microarray experi-
ments conducted separately by region). Thus, it is possible that few
gene pairs in the core machinery of circadian regulation were truly
uncoupled and that phase shifts played a primary role in giving rise
to the apparently dampened cyclic pattern in MDD cases. Finally,
the observed effect may also be due to clinical heterogeneity
among the subjects with MDD, with some patients exhibiting
faulty entrainment of an otherwise normally functioning circa-
dian machinery, whereas others have a more fundamental dis-
ruption of circadian regulation. As such, we can glimpse the
likelihood of multiple patterns of dysregulation within the de-
pressed group. Future studies, with larger MDD sample sizes,
are required to unravel the complex interplay of these factors
fully. Emerging approaches to mimic the biology of human
neural cells, such as induced pluripotent stem cells, together
with appropriate animal models (e.g. refs. 30, 31), may also prove
useful for uncovering molecular cascades associated with mood
dysregulation.
In sum, the current study identifies hundreds of genes in the

human brain that are likely involved in important daily rhythmic
events, including the sleep/wake cycle and metabolism. Using
this knowledge, we discovered that daily rhythms in these genes
are profoundly dysregulated in MDD. Although this disruption
can result from numerous factors, including the disease itself and
the patient’s drug history, we show that the dysregulation can
exist in the absence of any drug exposure. These results pave the
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way for the identification of novel biomarkers and treatment
targets for mood disorders.

Materials and Methods
Sample collection, including human subject recruitment and characterization,
tissue dissection, and RNA extraction, was described previously (32, 33). RNA
samples for different regions came from the same set of brains from 55
control subjects and 34 patients with MDD for whom the recorded hour of
death was available. Sample size varied by region: AnCg (n = 55 controls),
DLPFC (n = 52), CB (n = 34), AMY (n = 29), HC (n = 48), and NAcc (n = 51)
(Table S3). Tables S2 and S4 provide demographic and medical details for the
study subjects, including sex, age at death, ethnicity, agonal factor scores,
brain tissue pH, cause of death, and TOD. The brain tissues were of high
quality: All subjects died rapidly and had an agonal factor score of 0 (34),
with an average pH of 6.87 (SD = 0.23). We ran each sample on at least two
microarrays using Affymetrix U133-A or U133Plus-v2 GeneChips. We applied
robust multiarray analysis (35, 36) to summarize probe set expression levels,
using custom chip definition files, resulting in expression data for 11,912
ENTREZ transcripts. Microarray data for each region were analyzed separately.
All downstream analyses were performed in R (37). Details of the data pro-
cessing, including data cleaning and normalization, are provided in SI Mate-
rials and Methods. After data filtering, 1,424 microarrays remained,
corresponding to 776 unique RNA samples in six regions. The raw data and
processed data for the complete set of controls were deposited in the Na-
tional Center for Biotechnology Information Gene Expression Omnibus data-
base (accession no. GSE45642) and on our Web site (www.pritzkerneuropsych.
org/?page_id=1196).

We adjusted the recorded TOD for each subject by the sunrise time of his/
her date and place of death, and we used this zeitgeber time (ZT) scale for
downstream analysis. In the adjusted scale, sunrise time is ZT = 0, noon is
approximately ZT = 6, and midnight is approximately ZT = 18 (18 h after

sunrise) or −6 (6 h before sunrise). To detect potential cyclic patterns for a
given gene, we fit its TOD-ordered expression values to a sinusoidal function
with a 24-h period, with phase and amplitude as free parameters, and cal-
culated the percentage of variance explained (PVE) as a goodness-of-fit in-
dex. By comparing the observed PVE for each gene with its null PVE
distribution in 1,000 TOD-randomized datasets, we assigned empirical P
values and identified transcripts with small P values as candidate cyclic
genes. To quantify the overall rhythmicity across regions, we combined
the P values from six regions using Fisher’s method (SI Materials and Methods,
Fisher’s P, Phase, and Pathway Analysis). To identify phase, or peak time, we
calculated the correlation coefficient of the actual data series for each gene
with a family of 24 sinusoidal functions that are shifted by 1 h. The maximal
correlation coefficient indicates the estimated peak time. For functional
analyses, we referred to “known circadian genes” as those documented by
KEGG (38) and PIR (39) databases.

Enrichment analysis relied on online tools at the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (40) and Pathway Analysis
Using Logistic Regression (LRpath) (41). Prediction of TOD is described in SI
Materials and Methods, Prediction.
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