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Subjective well-being (SWB) is a major topic of research across the
social sciences. Twin and family studies have found that genetic
factors may account for as much as 30–40% of the variance in
SWB. Here, we study genetic contributions to SWB in a pooled
sample of ≈11,500 unrelated, comprehensively-genotyped Swed-
ish and Dutch individuals. We apply a recently developed method
to estimate “common narrow heritability”: the fraction of variance
in SWB that can be explained by the cumulative additive effects of
genetic polymorphisms that are common in the population. Our
estimates are 5–10% for single-question survey measures of SWB,
and 12–18% after correction for measurement error in the SWB
measures. Our results suggest guarded optimism about the pros-
pects of using genetic data in SWB research because, although the
common narrow heritability is not large, the polymorphisms that
contribute to it could feasibly be discovered with a sufficiently
large sample of individuals.
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Subjective well-being (SWB)—most commonly measured by
survey questions about a respondent’s happiness or life sat-

isfaction—is a major topic of research across the social sciences
(1, 2). SWB is conceptualized to include a continuous spectrum
of positive feelings and subjective life assessments (3–5). In
contrast to standard economic indicators, which focus on con-
sumption of material goods, responses to SWB survey questions
additionally convey information regarding a broad range of other
determinants of well-being, including physical and mental health,
social relationships, leisure, and subjective states, such as emotions
and mental engagement (6, 7). Because SWB measures may rep-
resent a relatively comprehensive assessment of an individual’s
feelings of well-being, much research aims to understand indi-
vidual differences in SWB (8). Most of the literature examines
social, economic, and psychological influences on SWB (4, 9), but
there has also been recent interest in understanding how genetic
factors influence SWB.
To date, most of these papers on the genetics of SWB are twin

or family studies (10–17). These studies draw indirect inferences
about the contribution of genes to SWB by contrasting the re-
semblance of relatives with different degrees of environmental
and genetic similarity. The literature concludes that a moderate
share, typically 30–40%, of the cross-sectional variation in SWB
is accounted for by variation in genes.
Recently it has become possible to directly and inexpensively

assay human genetic polymorphisms, segments of DNA that
differ across individuals. For medical geneticists studying health
outcomes, the availability of such data has ushered in a new
era, as researchers are discovering an ever-increasing number of
polymorphisms related to diseases and physical traits (18).
So far, however, the few attempts to find genetic poly-

morphisms associated with SWB have been unsuccessful (see ref.
19 for the earliest effort we know of). One study reported an

association (20), but follow-up work on an augmented sample
from the same data did not replicate the finding (21). This lack of
success is not surprising, given the lessons that have emerged
from genetics research across a range of medical and social-sci-
ence traits. Among the central challenges for complex traits, such
as height and probably even more so SWB, is that the heritability
of these traits appears to be comprised of a huge number of
tiny genetic effects. Consequently, large samples of individuals—
several orders of magnitude larger than those used to date in gene-
discovery work in the social sciences—are needed for adequate
statistical power to identify specific genetic polymorphisms (22, 23).
Nevertheless, anticipating that polymorphisms related to SWB

will soon be discovered, SWB researchers have expressed ex-
citement about the transformative potential of genetic data for
social-science research (21), which complements what can be
learned from twin and family studies (22–24). Most directly,
knowing the functions of the relevant genes could shed light on
the biological pathways that matter for SWB. If a set of poly-
morphisms were found to be sufficiently predictive, then they
could be used in social-science research as control variables.
More speculatively, such polymorphisms could be used as in-
strumental variables (25, 26), in effect treating the Mendelian
randomization that occurs at conception as a natural experiment
to learn about the causal effects of SWB [which may be espe-
cially credible when used in family samples (27); for a critical
perspective, see ref. 28]. Finally, the discovery of polymorphisms
associated with SWB could catalyze the study of how genetic
sources of individual differences are amplified or dampened by
environmental factors and, conversely, how environmental effects
are modulated by genetic pathways.
For evaluating the extent to which these promises of genetic

data can be realized, a critical question is: How much of the var-
iation in SWB will eventually be predictable using molecular ge-
netic data? In this article, we provide empirical evidence on a
quantity—the “common narrow heritability,” explained below—
that may help calibrate reasonable expectations about the answer to
this question. We also discuss the inferences that can and cannot
legitimately be drawn from this estimate as well as from herita-
bility estimates in general. For example, we scrutinize the logical
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coherence of invoking estimates of a trait’s heritability to draw
conclusions about its responsiveness to environmental interventions.
The estimates of 30–40% mentioned above likely overstate the

amount of predictive power that can be obtained from molecular
genetic data for two distinct reasons. First, the numbers refer to
what is known as “broad heritability,” but “narrow heritability” is
more germane and is necessarily smaller. Narrow heritability is
the fraction of variance that can be accounted for in aggregate by
the cumulative additive effects of all genetic polymorphisms.
Narrow heritability can be understood as the R2 from a pop-
ulation regression of SWB on its best linear genetic predictor;
that is, a predictor in which each polymorphism enters additively,
and the effect of each polymorphism is constrained to be linear
in the number of reference alleles. Broad heritability, which is
necessarily larger, is the fraction of variance in SWB that can be
explained in aggregate by all genetic factors. Broad heritability
can be understood as the R2 from a population regression of
SWB on its best genetic predictor, allowing not only for linear
and additive effects but also for interactions among different
polymorphisms (“epistasis”) and nonlinear effects of specific
polymorphisms (“dominance”). In a seminal report drawing to-
gether evidence from various twin and family comparisons, Lykken
(29) proposed that for SWB (along with several other traits in-
cluding personality), most—if not all—of the genetic influences
stem from higher-order epistatic interactions among genetic
polymorphisms. Lykken called this phenomenon the “emergenesis
hypothesis” (for a recent and related discussion, see ref. 30). If
true, then the narrow heritability of SWB is much smaller than its
broad heritability. Several recent, large-scale, twin-family studies,
including both twin and sibling pairs, have indeed documented
evidence for the importance of both additive and nonadditive
genetic effects in explaining individual differences in SWB (14, 16).
Narrow heritability is more relevant than broad heritability for

evaluating the predictive power that will be attainable using
molecular genetic data because most interaction effects between
polymorphisms are going to be extremely challenging to pin-
point. For genetically complex traits, we are not aware of a
credible method for restricting the set of hypotheses about epi-
static interactions that could be postulated. The number of
possible combinations of polymorphisms that could be tested is
therefore staggering, and this multiple hypothesis testing, in turn,
necessitates imposing extremely stringent P-value thresholds.
For a given sample and P-value threshold corrected for multiple
testing, detecting even two polymorphisms whose interaction
explains a given fraction of variance would require a sample size
several orders of magnitude larger than the sample required to
detect a single polymorphism that accounts for the same fraction
of variance. As the order of the interaction increases, the req-
uisite sample size quickly outstrips the number of people on
the planet.
Second, even narrow heritability is likely to overstate the

fraction of variance that discoverable polymorphisms are likely
to capture. Estimates of narrow heritability from twin-family
studies include additive variance attributable to any poly-
morphism, regardless of whether the polymorphism is common
or rare among individuals. However, individual polymorphisms
related to SWB that are rare in the population—which may
collectively contribute much of the narrow heritability—will be
much more difficult to reliably detect than polymorphisms that
are common in the population.
In our empirical analysis, we estimate a parameter that cannot

be estimated from twin or family data and that is necessarily
smaller than narrow heritability, namely common narrow heri-
tability: the fraction of variance that can be accounted for in
aggregate by the cumulative additive effects of genetic polymor-
phisms that are common in the population (typically defined as
minor allele frequency >1%). To do so, we use a recently devel-
oped method (31, 32) called genomic-relatedness-matrix restricted

maximum likelihood, or GREML. We apply GREML to SWB,
pooling data from two large datasets, TwinGene [TG; the geno-
typed subsample of the Swedish Twin Registry (33)] and the
Rotterdam Study (RS) (34), both datasets in which dense SNP
genetic data have been collected. GREML has previously been
used to estimate the common narrow heritability of height (31),
intelligence (35, 36), personality traits (37), several common
diseases (38), schizophrenia (39), economic and political prefer-
ences (22), as well as smoking, glucose levels, and depression (40).
GREML has not previously been applied to SWB.
GREML estimates a heritability parameter by examining how,

across pairs of individuals, phenotypic similarity relates to genetic
similarity, after controlling for observables (in our case: age, sex,
20 principal components of the variance-covariance matrix of the
genotypic data, and an indicator for dataset) (Materials and
Methods). However, unlike in twin-family studies, where expected
genetic similarity (inferred from the family pedigree) is used,
GREML proceeds by first estimating the realized genetic simi-
larity between pairs of unrelated individuals using the dense SNP
data. To be more precise, realized genetic similarity is estimated
using the sample covariance matrix of the individuals’ genotypes.
Because the genotypic data contains over half a million SNPs, this
matrix is estimated very precisely. Because the covariance is
a linear operator, the GREML method picks up the fraction of
variance explained by the linear, additive action of the SNPs (i.e.,
the part of narrow heritability that is a result of the measured
polymorphisms). Hence, GREML does not require the assump-
tions—about the degree of environmental and genetic re-
semblance between relatives and about the specific form of
genetic effects (e.g., additive or dominance)—that tend to incite
controversy when twin or family data are used to estimate narrow
heritability. Because the current genotyping platforms from which
our dense SNP data are obtained do not measure polymorphisms
that are rare but do tag most of the genetic variation that is com-
mon in the population (41), GREML, as applied to these genotypic
data, yields an estimate of common narrow heritability.
The key identifying assumption in GREML is that genetic

similarity is uncorrelated with similarity in uncontrolled-for en-
vironmental factors that are exogenous to genotype (as defined
by ref. 42). This assumption might be violated if the sample
includes members of a shared extended family, such as siblings or
close cousins. Therefore, it is standard to include in the sample
only one individual from each family (in our case, one twin from
a pair) and to drop individuals whose estimated genetic re-
latedness lies outside a small interval around zero. Because there
is more random variation in the realized degree of genome
sharing relative to the expected degree as the expected re-
latedness declines (43), uncontrolled-for environmental con-
founding factors are less likely to drive estimates that are based
on realized relatedness among individuals whose expected re-
latedness is negligible.
We measure SWB in the TG and RS samples using responses

to the two items from the Center for Epidemiologic Studies
Depression Scale positive affect subscale that are available in
both studies, namely responses regarding how frequently “Dur-
ing the past week, I was happy” and “During the past week, I
enjoyed life.” We refer to these questions, respectively, as Happy
and Enjoy. Responses are elicited using a four-point Likert scale
ranging from “Rarely or none of the time (less than 1 day)” to
“Most or all of the time (5–7 days).” Combined is a composite
measure of the two variables. Because a substantial majority of
responses to Happy and Enjoy are either in the highest-frequency
category or the second-highest category (as is common with SWB
survey measures), and because the software GCTA (genome-
wide complex trait analysis) (32) that we use for the GREML
analysis cannot presently handle multinomial variables, we con-
verted the responses to binary variables (for details, seeMaterials
and Methods).
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Results
Table 1 reports the GREML estimates. For each sample, TG
and RS, we report the fraction of variance explained by the
measured SNPs for each of the two questions and for the com-
bined SWB measure. We also report estimates with the TG and
RS results pooled. In the TG sample, the GREML estimate for
Happy is 0.10 (SE 0.10); for Enjoy, 0.06 (SE 0.10); and for
Combined, 0.08 (SE 0.10). The corresponding figures in RS are
0.06 (SE 0.10), 0.04 (SE 0.10), and 0.08 (SE 0.10). Fig. 1 shows
the estimates and SEs for the pooled sample. These estimates
are of course more precise. For two of the three SWB measures,
Happy (h2SNP = 0.10; SE 0.05) and Combined (h2SNP = 0.09; SE
0.05), the estimates are statistically distinguishable from zero at
the 5% level.
These estimates are attenuated by measurement error in SWB.

Moreover, because our measures of SWB are based on only two
questions, the attenuation is probably more severe compared with
what is typically observed for lengthier personality batteries. We
estimated reliability using data on 105 Screening Across the
LifespanTwin study (SALT) respondents who answered the SALT
survey twice, with 2 wk between the measurement occasions. Our
estimates are 0.55 (SE 0.12), 0.41 (SE 0.15), and 0.61 (SE 0.12) for
Happy,Enjoy, andCombined, respectively. Although there are also
individuals in the RS study who participated in multiple waves and
for whom two or more responses are available, these responses are
at least 2 y apart in time, and thus more of the change in measured
SWB is likely to reflect true changes in SWB; nonetheless, for
completeness, we also report the RS estimates in Table 1.
A simple adjustment for attenuation is to divide the herita-

bility by the retest reliability. This adjustment assumes that any
change in measured SWB between one survey occasion and the
next is because of classic measurement error (which is un-
correlated with genotype) and not true change. Using this ad-
justment and the SALT retest reliabilities, we estimate that 18%,
12%, and 15% of the variance in Happy, Enjoy, and Combined
would be accounted for by common SNPs if the SWB variables
were measured without error.
In the SI Text, we report results of additional analyses that ex-

amine how sensitive our baseline results are to the choice of re-
latedness thresholds and to whether relatedness is estimated only
using SNPs available on both platforms (Table S1). Reassuringly,
these estimates are very close to those in our preferred specifica-
tion. We also attempted to compare the GREML estimates to
conventional twin-based estimates, when both are derived from
the Swedish twin sample. The twin estimates, shown in Table S2,
are in the same range as the GREML estimates, but unfortunately
we cannot draw strong conclusions because the twin estimates are
very imprecise.

Discussion
In this article we provide evidence on the common narrow her-
itability of SWB. We find that 5–10% of the variance in responses
to single-question survey measures of SWB is accounted for by
the additive effects of the SNPs measured on presently used gen-
otyping platforms. A correction for measurement error in the SWB
measures raises the point estimates to the range 12–18%.
We interpret our findings as indicating that the common

narrow heritability is smaller than the typical estimates of narrow
heritability from twin-family studies [although one recent, large-
scale twin-family study estimated narrow heritability in the 10–
20% range, as small as our estimates of narrow heritability (16)].
A caveat to this conclusion is that the twin-based heritability
point estimates in our Swedish sample are actually lower than
the GREML estimates, which raises the alternative possibility
that our low GREML estimates are because of anomalously low
“true” heritabilities in the data we happened to study, perhaps
because the SWB measures that were available in our data tap
into recently experienced SWB to a greater extent than do multi-
item dispositional measures of SWB.
There are three reasons why we believe that our interpretation

is more compelling than this alternative. First, the twin-based
estimates that we report, which are only available from the
Swedish sample, are sufficiently imprecise that we have little
confidence in the point estimates. Moreover, with a retest re-
liability of ≈0.5 in the SWB measure, the measurement-error–
adjusted 95% confidence intervals would overlap comfortably
with the consensus estimates from the literature on twin-family
studies. Second, we have relatively more confidence in our
GREML estimates, which are similar across our Swedish and
Dutch samples. Third and relatedly, our interpretation of the
data also fits with the evidence regarding personality, another
complex behavioral trait for which epistatic interactions have
been hypothesized to be important (29). Twin-based analyses
tend to produce heritability estimates for personality around 30–
50% (44, 45), but a recent study finds evidence that a substantial
share of the heritability of Neuroticism, Openness, and Agree-
ableness is due to nonadditive factors (46). Two studies applying
GREML to personality traits have been published to date, with
results remarkably close to those reported here. One study reports
estimates of 9% and 12% for neuroticism and extraversion (37),
respectively, and another report estimates in the range 4–10% for
traits assessed by the Cloninger personality inventory (47).
For SWB, the gap between the common narrow heritability we

estimate and the larger estimates of narrow heritability from twin-
family studies may imply that some of the narrow heritability is
due to rare polymorphisms. For most traits, it is not well un-
derstood to what extent rare polymorphisms with substantial

Table 1. GREML (common narrow heritability) estimates for SWB

Sample No. SNPs

Happy (“...I was happy”) Enjoy (“. . .I enjoyed life”) Combined

n h2
SNP SE P value n h2

SNP SE P value n h2
SNP SE P value

TG 627,011 5,682 0.10 0.10 0.16 5,742 0.06 0.10 0.28 5,670 0.08 0.10 0.22
RS 533,323 5,904 0.06 0.10 0.28 5,919 0.04 0.10 0.35 5,893 0.08 0.10 0.20
Pooled 852,597 11,484 0.10 0.05 0.01 11,558 0.05 0.05 0.19 11,461 0.09 0.05 0.03

SALT retest 105 0.55 0.12 105 0.41 0.15 105 0.61 0.12
RS retest 7,845 0.41 0.03 7,916 0.42 0.03 7,795 0.41 0.03

This table reports GREML estimates for Happy, Enjoy, and Combined. RS is the three Rotterdam cohorts pooled together; Pooled
combines the TG and RS samples. We estimated the matrix of genetic relatedness after omitting one twin per pair in the Swedish data
and then restricted the analyses to individuals whose relatedness did not exceed 0.025. n is the number of individuals used in the
analyses after the relatedness threshold has been applied. In all analyses we control for sex, age, age-squared, and the first 20
principal components of the variance-covariance matrix of the genotypic data. The P value is from a likelihood ratio test of the null
hypothesis that the fraction of variance explained is equal to zero. SALT retest is the sample of respondents in the SALT study who
answered the survey twice (with 1 wk between survey occasions). RS retest is the retest correlation estimated using RS participants
who answered the relevant questions in at least two different survey waves. These answers are at least 2 y apart in time.
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effects account for the heritable variation (48). Until very recently,
rare polymorphisms were not measured on standard genotyping
platforms, and therefore most hypotheses regarding their role are
based on indirect inferences such as those we make here (49).
Common narrow heritability is the quantity of most direct

interest for assessing the potential contributions of genetic data
to SWB research. Nonetheless, it may also be of interest to
calibrate what our GREML results imply about narrow herita-
bility, given that our GREML estimates do not rely on the same
assumptions as the twin- and family-based estimates of narrow
heritability. Two well-measured and widely studied complex
traits for which reasonably reliable heritability estimates are
available are height and cognitive ability. The twin-based esti-
mates tend to fall in the range 50–80% for adult intelligence (50)
and 80–90% for height (51). These estimates provide an upper
bound on the narrow heritabilities. Other family-member com-
parisons—of full biological siblings, half-siblings, and parents
and their children—suggest that the narrow heritabilities are
unlikely to fall below 50% for adult intelligence (52) and 60%
for height (53). By comparison, the one published GREML
estimate for height is 45% (31), and GREML estimates for
cognitive ability have also been around 45% (35, 36). This evi-
dence suggests that the common narrow heritability that we es-
timate should be adjusted upward by a factor of roughly 1.5 to
recover a ballpark estimate of narrow heritability.
Although our empirical contribution in this article focuses on

estimating the common narrow heritability of SWB, we also
believe it is important to highlight for SWB researchers that the
conclusions that can be drawn from heritability estimates are
more limited than is generally understood (for a related discus-
sion, see ref. 54). Two misconceptions in particular appear to be
widespread. First, some scholars erroneously conclude that
higher heritability implies less variation left over to be explained
by environmental factors. As the authors of the World Happiness
Report (8) put it, twin studies are often misleadingly understood
as “estimating the extent to which happiness depends on geneti-
cally based personality differences rather than differing circum-
stances.”However, as Jencks (42) explained, heritability comprises
any genetic variation that ultimately contributes to phenotypic
variation, regardless of the pathway, and many plausible pathways
are in fact mediated by environmental factors. In the terminology
of econometrics, the population regression of SWB on all genes—
for which heritability is the R2

—is a reduced-form regression, but
the structural equations describing the true relationship between
a gene and SWB may involve many intervening environmental
variables. Although some genes may affect SWB via relatively
direct physical pathways—for example, by affecting baseline se-
rotonin levels or dopamine-receptor density—it also seems likely
that many genes matter for SWB through their effects on

preferences, personality, and abilities, which in turn influence
individuals’ choices about friendships, marriage, fertility, and
occupational choice. Consequently, some of the variance in
SWB explained by genes is the same variance that is explained
by these environmental factors. Because genetic effects may
operate indirectly through environmental variables, the heri-
tability of SWB does not put any bound on the proportion of
variance that could be explained by the full set of relevant
environmental variables.
Second, findings of higher heritability are sometimes mis-

interpreted as demonstrating that there is less scope for inter-
ventions to increase SWB. For example, in their seminal paper,
Lykken and Tellegen (11) conclude that “trying to be happier
[may be] as futile as trying to be taller.” Such a claim may or may
not be true, but it is in no way implied by the finding that SWB is
heritable. The conclusion is incorrect for two distinct reasons.
Related to the point above, some genetic effects may be medi-
ated by modifiable environmental variables. The very same ge-
notype may cause a person to grow to 5 feet or 6 feet tall,
depending on nutritional intake. Furthermore, as Goldberger
(55) pointed out, even if heritability were 100% and the genetic
effects operated entirely through mechanisms that are difficult to
modify, there may still exist powerful environmental inter-
ventions that do not contribute to outcome variance in the cur-
rent population. As Bang (54) emphasized in her discussion of
genetics and SWB, a heritability estimate represents the fraction
of variance explained by genes in a specific population at a spe-
cific point in time. Using econometric terminology, one set of
explanatory variables (in this case, genes) having a high R2 does
not rule out a large coefficient on another variable (an in-
tervention), if the latter explanatory variable varies little across
individuals in the population under study. In Goldberger’s (55)
example, the introduction of eyeglasses dramatically improves
vision even though eyesight is highly heritable.
To summarize what can be concluded from our findings, the

magnitude of common narrow heritability provides useful in-
formation regarding the potential contributions of genetic data
for research on SWB. Because our estimates are lower than
typical heritability estimates for SWB, our results suggest that
the scope for uses of genetic data that rely on substantial pre-
dictive power—such as using a set of polymorphisms as control
variables, instrumental variables, or moderators in social-science
research—may be more limited than has been assumed. At the
same time, the fact that our estimates of common narrow heri-
tability are nonnegligible suggests that—even if much of the
broad heritability is due to epistatic interactions—some of the
SNPs measured on existing platforms have main effects on SWB.
Therefore, gene-discovery efforts with a large enough sample
size are likely to be successful.

Materials and Methods
Our study combines data from the Swedish Twin Registry (STR) and the
Rotterdam Study. STR is a large, population-based twin registry. Between
1998 and 2002, STR administered to twins born in 1958 or earlier a survey
called the Screening Across the Lifespan Twin study (33). A subsample of SALT
was recently genotyped using the Illumina HumanOmniExpress BeadChip
technology as part of the TwinGene project (22). We refer to these ≈10,000
genotyped SALT respondents as the TG sample. TG participants are all born
between 1911 and 1958.

RS is a large, population-based prospective cohort study of elderly people
ongoing since 1990 in the city of Rotterdam in the Netherlands (34). Ap-
proximately 11,000 subjects in the RS have been genotyped using the Illu-
mina 550 K and 610 K arrays. RS respondents are divided into three cohorts,
which we refer to as RS-I, RS-II, and RS-III.

To minimize the expected relatedness of the individuals in our sample, we
only included one twin per family in the TG sample. If only one twin from
a pair had answered both survey questions, the individual with complete
phenotypic data was included in the analysis. If both twins had complete
phenotypic data, one of them was chosen at random. We then pooled the

0.00

0.10

0.20

0.30

h2
SN

Ps

RS & TG Pooled

Happy Enjoy Combined

Fig. 1. Thisfigure shows the GREML forHappy, Enjoy, and Combined. The error
bars represent the point estimate ± 1 SD. The sample pools the three Rotterdam
cohorts (RS) and the Swedish Twin Registry TwinGene sample (TG).
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resulting sample with the RS sample and used the GCTA software to estimate
the pairwise relatedness between all individuals in the pooled dataset. Fol-
lowing convention, we restricted the sample to individuals whose pairwise
relatedness did not exceed 0.025 in absolute value.

These restrictions brought the sample size to just below 6,000 individuals in
each sample. Our analysis is restricted to individuals with SNP data that passed
quality controls andwho answered both questions. Results in TG are based on
627,011 SNPs; in RS, on 533,323 SNPs. Because of incomplete overlap in the
two samples, the number of SNPs in the pooled sample is larger: 852,597.

To convert the Happy and Enjoy measures to binary variables, we coded
responses as “high” if they were the highest-frequency category and “not
high” otherwise. We also constructed a composite measure of the two
variables, which we call Combined, the value of which is “high” if both
Happy and Enjoy are high and “not high” otherwise. By generating the
binary variables in this way, the fraction coded as high (or equivalently, not
high) is made as close as possible to one half, thereby maximizing the var-
iance and hence statistical power. The distributions of SWB measures before
they were binarized are given in Tables S3 and S4. In the analyses we assume
that each binary variable we observe results from the realization of an un-
derlying, normally distributed random variable for liability falling above or
below some threshold.

Table S5 reports age and sex, as well as the fraction of individuals coded as
high for the three variables. Throughout, we control for sex, age, age-squared,
dummies for each of the three RS cohorts (TG is the omitted category), and to
guard against population stratification, the first 20 principal components of
the genotype data.
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