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Researchers collaborate on scientific projects that are often mea-
sured by both the quantity and the quality of the resultant peer-
reviewed publications. However, not all collaborators contribute to
these publications equally, making metrics such as the total number
of publications and the H-index insufficient measurements of in-
dividual scientific impact. To remedy this, we use an axiomatic ap-
proach to assign relative credits to the coauthors of a given paper,
referred to as the A-index for its axiomatic foundation. In this
paper, we use the A-index to compute the weighted sums of
peer-reviewed publications and journal impact factors, denoted
as the C- and P-indexes for collaboration and productivity, respec-
tively. We perform an in-depth analysis of bibliometric data for 186
biomedical engineering faculty members and from extensive simu-
lation. It is found that these axiomatically weighted indexes better
capture a researcher’s scientific caliber than do the total number of
publications and the H-index, allowing for fairer and sharper evalu-
ation of researchers with diverse collaborative behaviors.

Collaboration among researchers is on the rise (1), reflecting
the increased complexity of interdisciplinary research and

improving the quantity and quality of the resultant publications.
The more researchers involved in a project, the more compli-
cated it is to quantify their individual contributions. It becomes
desirable and necessary to account for the bias of the established
metrics such as the H-index (2, 3) that ignore collaboration or
assume equal contribution of each coauthor. In his foundational
paper (2), Hirsch remarks that the H-index is best used when
comparing researchers with a similar scientific age, and highly
collaborative researchers may have an inflated H-index. He sug-
gests normalizing the H-index on the basis of the average number
of coauthors, but this fails to take into account their relative
contributions.
A collaboration effect on scientific output has been investigated

(4–8), and techniques have been proposed to measure credit
shares but they frequently rely on subjective assumptions such
as inflated or fractional counting methods (9, 10). The method
proposed in (8) always assigns full credit share to the first and
corresponding authors. This ignores that the first author of a
paper with few coauthors likely contributed much more than the
first author of a paper with many coauthors. Most importantly,
these methods fail to acknowledge the stochastic behavior of a
coauthor’s contribution. For example, two first authors of dif-
ferent papers with the same number of coauthors may have very
different contributions because of many factors. Without a spe-
cific credit share provided by the coauthors themselves, our goal is
to derive a credit share system from minimal assumptions.
In this paper, we propose some axioms that allow us to view

relative credit shares among coauthors as random vectors from a
uniform distribution under two constraints. Because true credit
shares are unreported in publications, we predict them using the
expected random vector from the derived distribution. For a re-
searcher and an associated publication, we denote his/her cor-
responding component in the expected credit vector as his/her

A-index (11). We then use the A-index to produce weighted sums
of publications and journal impact factors (JIFs), henceforth
referred to as the collaboration and productivity indexes (C-
and P-indexes) respectively. Recently, metrics based on the A-
index were successfully applied (12) to revisit a high-profile
study by Ginther et al. (13, 14) in which the probability of re-
ceiving a US National Institutes of Health (NIH) R01 award was
analyzed with respect to the applicants’ race/ethnicity. This pa-
per details the methodology of these A-index–based metrics
and demonstrates their superior ability to identify quality re-
searchers compared with conventional measures, including the
popular H-index.

Measures of Scientific Impact
A researcher’s N-index is defined as his/her total number of pub-
lications. Although it is easy to calculate, the N-index completely
ignores the scientific impact of each paper and implicitly assumes
all coauthors are equally important. TheH-index is an established
bibliometric that takes into account the scientific impact via the
number of citations. A researcher has an H-index value h if h of
his/her papers have at least h citations each and their other papers
are less frequently cited. Although generally more informative
than the N-index, there are many situations where the H-index
inadequately summarizes a researcher’s qualification. For exam-
ple, suppose two researchers have two publications each but the
publications for one researcher have 100 citations each whereas
the others have only 2 citations. Unfortunately, both researchers
receive an H-index of 2. This example points out that the H-index
performs poorly for young academics with few publications, which
has been well documented (15).
Assume a given publication has n coauthors who can be divided

into m≤ n groups. Let ci denote the number of coauthors in the
ith group and assume that each of the ci coauthors in the group
have the same credit. Define the credit vector to be x′= ðx1;
x2; . . . ; xmÞ, where xi is the credit assigned to each of the ci mem-
bers in group i and x′ denotes the transpose of x. The A-index is
derived from the following three axioms:

Axiom 1. Ranking Preference. Elements of x satisfy x1 ≥ x2 ≥ . . . ≥
xm > 0.

Axiom 2. Credit Normalization. The sum x′c= 1, where c′= ðc1;
c2; . . . ; cmÞ.
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Axiom 3. Maximum Entropy. The credit vector x is uniformly dis-
tributed in the domain defined by Axioms 1 and 2.
It follows that the fairest estimation of credit assignment for

a coauthor in group i is the expectation with respect to all per-
missible credit vectors. In Formulation and Simulation of Scien-
tific Impact, this expectation is shown to be

EðxiÞ= 1
m

Xm

j= i

1
Pj

k= 1ck
;

which we define as the A-index for the authors in group i. If no
coauthors claim equal contribution, then ci = 1, m= n, and

EðxiÞ= 1
n

Xn

j= i

1
j
: [1]

One appealing feature of the A-index is the rigorous framework,
which is lacking in all other coauthor credit metrics. The A-index
is also more flexible than other metrics because it allows multiple
coauthors in a given rank. Axiom 1 is the basis for all coauthor
metrics but the current lack of a universally accepted coauthor
ranking system compromises their power. Adoption of a ranking
system would also benefit the collaboration process because it
would encourage collaborators to clarify individual expectations.
Axiom 2 is also typically assumed for most coauthor metrics,

ensuring that the A-index measures relative contribution. Clearly,
a researcher achieves an A-index of 1 if and only if he/she is the
sole author of the publication, which differs from inflated meth-
ods such as those in (8).
The motivation for Axiom 3 requires more discussion. Of course,

to derive an expected credit share we must assume x comes from
some probability distribution. Axiom 3 essentially postulates ev-
ery scenario is equally possible between a coauthor doing his/her
very best or the bare minimum. For instance, the consensus is the
first-ranked group is the most important to the publication, but
the actual relative importance can vary from paper to paper. A
uniform distribution under the constraints set by Axioms 1 and 2
has been chosen due to the lack of prior information of relative
credit and is consistent with the maximum entropy principle (16).
However, we could modify Axiom 3 if there were information
suggesting the uniform distribution was inappropriate.
To demonstrate the versatility of the A-index, we look at com-

mon collaboration scenarios and the resulting A-indexes. Let n
denote the total number of coauthors. If every coauthor assumes
equal contribution, then A= 1

n for every coauthor. This scenario
is more likely when there are few coauthors, say two or three. At
the other end of the spectrum, we assume unequal credit for all
coauthors and calculate the A-indexes using [1]. Table 1 com-
pares these two scenarios for up to six coauthors. By including
additional coauthors, credit is transferred from the higher-
ranked authors and distributed among the lower-ranked authors.
Of the cases considered, the first author receives approximately
twice as much credit as any other coauthor, but his/her individual
credit dips below 0.5 when there are five or more coauthors. This
is a more realistic assignment than metrics that assign nearly full

credit to the highest-ranked authors regardless of the total num-
ber of coauthors.
Assigning unequal contributions to all coauthors is an inter-

esting task, especially when there are many coauthors. Table 2
demonstrates the behavior of the A-index with and without equal
contribution groups in the case of this paper. Two coauthors were
assigned rank 1 and three were assigned rank 2. For comparison
we provide the credit shares from the fractional, the harmonic,
and Zhang’s (8) methods. There is a strong similarity between the
unequal Ai (assuming ci = 1) and the harmonic credit assignment.
Zhang’s method also has similar scoring for the coauthors in rank
2 or higher, but it assigns full credit to the first and the corre-
sponding author.
The A-index is a single-paper metric and bounded above by 1

(sole authorship). Hence, the sum of A-indexes for a particular
researcher is then a weighted count of publications. We call this
the C-index, which is clearly bounded above by the N-index. We
also consider a weighted sum of the corresponding JIFs, on the
basis of the idea that the JIF is the expected number of citations
for a given publication. Weighting the JIF by the corresponding
A-index meaningfully describes the expected scientific impact of
the researcher in terms of his/her share of expected citations.
We call this the productivity index, or P-index. Formally, let a re-
searcher have K publications, with corresponding A-index Ak,
where the kth paper came from a journal with an impact factor
JIFk. Then, we define the researcher’s P-index as

P=
XK

k= 1

Ak JIFk: [2]

We acknowledge that the JIF can inaccurately measure a specific
impact of a paper (17), but we can use the A-index to weight any
other scientific impact metric, such as the actual number of cita-
tions of the publication. We used the JIF to calculate the P-index
for this study because our data are from recent publications, and
generally citations take time to accumulate.

Data and Analysis Methods
The primary goal of this analysis was to show that for interdisciplinary re-
searchers, traditional bibliometrics used to measure individual scientific out-
put, like the H- and N-indexes, although informative, may be biased because
they assume equal contribution among the coauthors and ignore the number
of coauthors. We focused on biomedical engineering (BME) researchers be-
cause it is an interdisciplinary field and we anticipated observing a wide
range of collaborative tendencies. The analysis compared these two tradi-
tional metrics to the C- and P-indexes, demonstrating that accounting for
collaboration can change the estimated individual scientific impact. We first
describe the sampling procedure and its potential biases and then discuss the
analysis methods.

Researchers were randomly selected from 10 BME departments of the top
50 in the 2011 US News rankings of BME departments (18). The 10 departments
covered the entire rank range (Table 3). For each department we sampled
50% of their assistant, associate, and full professors as designated on the
department’s webpage of core faculty. For each faculty member in the

Table 1. A-index for equal/unequal contributions

No. coauthors Equal A A1 A2 A3 A4 A5 A6

1 1.000 1.000
2 0.500 0.750 0.250
3 0.333 0.611 0.278 0.111
4 0.250 0.521 0.271 0.146 0.063
5 0.200 0.457 0.257 0.157 0.090 0.040
6 0.167 0.408 0.242 0.158 0.103 0.061 0.028

Table 2. Ranking groups and A-indexes for this publication

Coauthor Rank Ai Unequal Ai Fractional Harmonic Zhang (8)

J.S. 1 0.208 0.314 1.000 0.353 1.000
G.W. 1 0.208 0.203 0.500 0.177 1.000
E.V. 2 0.124 0.148 0.333 0.118 0.229
J.Y. 2 0.124 0.111 0.250 0.088 0.200
M.W.V. 2 0.124 0.083 0.200 0.071 0.171
J.L. 3 0.091 0.061 0.167 0.059 0.143
L.P. 4 0.063 0.042 0.143 0.050 0.114
L.D. 5 0.039 0.026 0.125 0.044 0.086
I.Y. 6 0.019 0.012 0.111 0.039 0.057
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stratified sample, we identified every publication indexed in the Web of
Science (19) for 2006–2010, using an advanced search that included both
the researcher’s name and the department to ensure correct identification.
We calculated the H-index for each researcher on the basis of his/her 2006–
2010 publications, as it is intended to be calculated over longer periods of
time (15). To calculate the A-index we collected detailed paper information
only for papers in 2010. If we could not obtain an electronic copy of a paper,
we assumed that the first author was the primary author and the last author
was the corresponding author, which is common in the BME field. We
searched for a total of 186 researchers; 38 searches returned no 2010 pub-
lications indexed in the Web of Science. Analysis included only those re-
searchers with at least one publication; the total number of faculty sampled
and those with at least one publication are provided in Table 3. Overall, 39
assistant professors, 41 associate professors, and 68 full professors were in-
cluded in the analysis.

The data contained minor bias, primarily due to restricting the search
to papers that reference a researcher’s current BME department. However,
doing this significantly reduced the possibility of overcounting papers. Clearly,
publications from researchers not associated with their current universities
were ignored as were publications that did not reference their specific
BME departments. For Virginia Polytechnic Institute and State University
professors, we searched for “Blacksburg, VA” because of the multiple names
associated with the university. Professors from other universities were searched
by the name of the school alone. As a reasonable approximation for this
study, we assumed an implicit ranking system where authors other than
those indicated to be cofirst or corresponding authors were listed by their
ranks. For example, suppose there were five coauthors on a paper: A, B, C, D,
and E. If A and B were cofirst authors and E was the corresponding author,
then A and B were ranked as 1, E was 1, C was 2, and D was 3.

Concerning the generality of conclusions, another potential source of bias
is differences in departments. Whereas all of the departments are in top
universities, each has its own expectations and tendencies in terms of col-
laboration and publications. For example, although we sampled BME pro-
fessors from Virginia Tech, their department is actually named the Virginia
Tech–Wake Forest University School of Biomedical Engineering and Sciences.
Because their department is so large, we might expect to see more collab-
oration among these researchers. Of the 21 sampled Virginia Tech professors,
only 11 had a 2010 publication, whereas all other sampled universities
retained approximately 75% of their researchers for the analysis. This may
have been caused by the more specific search criteria for Virginia Tech pro-
fessors mentioned previously. To assess the sensitivity of our results to the
peculiarities of the 10 departments we randomly sampled, we repeated our
analyses 10 times, once with each of the departments’ faculty removed from
the sample.

The first stage of the analysis compared the C- and P-indexes to the N- and
H-indexes, because the latter metrics are widely used but do not account
for collaboration. We paid close attention to the relationship between the
C-index and the N-index because any discrepancy between the two metrics is
directly attributable to collaboration. Researchers were split into two classes
on the basis of the P-index and we compared their different collaborative
behaviors, as well as their H-indexes. We used bivariate scatterplots and
Kendall’s τb correlation coefficients to assess the level of association between
the metrics. To assess the sensitivity of the results to the particular researchers
in our sample, we repeated the analysis on the basis of random draws with

replacement of 50% and 200% of the researchers in the original sample.
The two researchers with the highest P-indexes were highlighted. Then,
we discussed their different collaborative behaviors. To further understand
different situations that may lead to a high P-index, we conducted a simula-
tion study that created 16 different types of virtual researchers based on four
categories.

Results and Discussion
The scatterplot matrix of the four metrics (Fig. 1) shows a fairly
positive relationship present in all pairings, with lower values
having a stronger linear relationship than higher values. For ex-
ample, the correlation between the C-index and the N-index
appeared stronger forN-index ≤ 5 whereas the variability of the
C-index was much higher for larger N-index values. Perhaps it
is not until some threshold value is reached that the differences
in collaboration behaviors take effect. This phenomenon was
most easily seen in the P-index scatterplots. Hence, we split
researchers into two groups on the basis of their observed
P-index values. For the 148 researchers with at least one publi-
cation, the median and mean P-indexes were 2.60 and 5.67, re-
spectively. Therefore, the researchers with P-index <5 were
classified as “normal” researchers; otherwise they were classified
as “high-impact” researchers. The cutoff value was a compromise
between the median and the mean, as the distribution for the
P-index was right skewed and we did not want to classify 50% of
the researchers as high impact. Of the 148 researchers, 100 (68%)
were normal researchers, and 48 (32%) were high-impact re-
searchers, giving a good size for both groups. A correlation anal-
ysis focused on Kendall’s τb correlations because it is a better
measure of association for nonlinear data and when many ties are
present, which is the case for the N- and H-indexes. Table 4 con-
tains the overall estimated Kendall’s and Pearson’s correlations of
themetrics, as well as those for the two performance groups. It also
provides 95% confidence intervals that were calculated from a
bootstrap resampling procedure.
The overall N- and H-indexes had a moderate Kendall’s τb of

0.56, meaning that larger 2010 N-indexes are typically associated
with larger 5-y H-indexes. This was expected because researchers
who publish frequently have a greater chance of publishing an
article with a high number of citations. When we focused only on

Table 3. BME departments sampled and corresponding 2011 US
News rankings

School or university
US News
rank

Faculty
sampled

Included in
analysis

Johns Hopkins University 1 19 15
Duke University 4 18 15
Stanford University 8 15 12
Northwestern University 15 24 22
Cornell University 20 20 18
California Institute of Technology 23 12 9
Carnegie Mellon University 29 23 19
Texas A&M University 35 19 16
Drexel University 43 15 11
Virginia Polytechnic Institute

and State University
47 21 11

Total 186 148

Fig. 1. Scatterplot matrix of metrics.
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researchers with an N-index between 3 and 7, we saw a wider
range of H-indexes between 1 and 12 with τb = 0:16, which had a
95% confidence interval of ð−0:04; 0:34Þ. Hence, it appears that
large N-indexes were associated with large H-indexes, but there
was less correlation with the H-index among researchers with a
smaller 2010 N-index.
The correlation between C- and N-indexes was relatively strong

with a τb of 0.65. As seen in Fig. 1 the disparity between the two
metrics grew as the N-index increased. This was also expected
because the N-index is the upper bound of the C-index, and re-
gardless of a researcher’s A-index for a paper, the C-index will in-
crease when a publication is added. There were clear cases where
the N-index misrepresented the scientific output of a researcher
because it failed to acknowledge relative contributions. For ex-
ample, one researcher had 21 publications but a C-index of only
2.06. One should not assess a researcher’s collaborative behavior
through the C-index alone, but rather alongside his/her N-index.
The P-index correlations for all researchers were moderate to

high. Kendall’s correlation between the P- and H-indexes was
0.42 but was higher for the C- and N-indexes: 0.70 and 0.59, re-
spectively. The high correlation with the C-index was not sur-
prising because the A-index was used to calculate both metrics,
but there are clear cases that do not follow the trend. Differences
between the P- and C-indexes at larger values of the P-index were
explained by the skewed distribution of the average JIF (Fig. 2).
Based on [2], the P-index will be similar to the N-index when JIFs
are relatively small (approximately 5). It is when we observe larger
JIFs that the P-index begins to differentiate from the other
metrics. This further motivated our investigation of the two sub-
groups of normal and high-impact researchers.
For the two researcher performance groups, we saw some in-

teresting changes in the relationship between metrics. Recall that
the two groups were split on the basis of the 2010 P-index, where
the high-impact group had a P-index of 5 or higher. Monte Carlo
permutation tests based on 100; 000 permutations were used to
assess the significance of the Kendall’s correlation differences
(20). These tests required minimal assumptions about the data,
and their type I error rates were closer to the significance level

than tests based on incorrect assumptions (such as normality or
constant variance), which are more likely to falsely reject.
However, these tests are known to be less powerful in detecting
differences because of the minimal distribution assumptions.
Because of the lower power and small amount of data, we
chose α= 0:10.
Table 5 contains the P values for the observed differences in

Kendall’s correlations between the normal and high-impact re-
searcher groups. Two significant differences at α= 0:10 were ob-
served between the P- and C-indexes and the P- and N-indexes.
Kendall’s correlation for the P- and C-indexes was 0.64 for the
normal researcher group vs. 0.30 for the high-impact group. For

Table 4. Kendall’s τb and Pearson’s correlations for metrics (researchers with at least one 2010
publication)

Researcher category Index P-index C-index H-index

Overall
n= 148 C-index 0.70* (0.63, 0.75)

†

— —

0.64 ð0:51; 0:78Þ — —

H-index 0.42 (0.31, 0.52) 0.37 (0.26, 0.47) —

0.65 ð0:49; 0:78Þ 0.55 ð0:40;0:68Þ —

N-index 0.59 (0.52, 0.66) 0.65 (0.59, 0.71) 0.56 (0.47, 0.64)
0.65 ð0:44; 0:81Þ 0.77 ð0:69;0:86Þ 0.79 ð0:69;0:86Þ

Normal researcher
n= 100 C-index 0.64 (0.54, 0.72) — —

0.77 ð0:67; 0:86Þ — —

H-index 0.29 (0.17, 0.41) 0.23 (0.11, 0.35) —

0.38 ð0:23; 0:52Þ 0.28 ð0:14;0:42Þ —

N-index 0.50 (0.40, 0.60) 0.56 (0.47, 0.64) 0.48 (0.37, 0.58)
0.61 ð0:47; 0:74Þ 0.70 ð0:61;0:79Þ 0.60 ð0:47;0:71Þ

High-impact researcher
n= 48 C-index 0.30 (0.12, 0.47) — —

0.32 ð0:04; 0:61Þ — —

H-index 0.34 (0.14, 0.53) 0.26 (0.04, 0.46) —

0.55 ð0:28; 0:75Þ 0.32 ð0:02;0:60Þ —

N-index 0.28 (0.05, 0.50) 0.50 (0.35, 0.64) 0.52 (0.34, 0.68)
0.46 ð0:05; 0:76Þ 0.59 ð0:39;0:79Þ 0.77 ð0:57;0:88Þ

*Values in boldface type indicate Kendall’s τb correlations.
†Ninety-five percent confidence intervals based on 10; 000 bootstrap samples.

Fig. 2. Average JIF histogram.

Stallings et al. PNAS | June 11, 2013 | vol. 110 | no. 24 | 9683

ST
A
TI
ST

IC
S



the P- and N-indexes, Kendall’s correlation was 0.50 for the nor-
mal researchers and 0.28 for the high-impact researchers. Note
that Eq. 2 allows the P-index to be very sensitive to large JIFs,
which tend to be strong indicators of scientific impact. To explain
the differences, we investigated the distributions of the average
JIFs for researchers in the two groups. Both distributions were
right skewed, and themedian average JIF for the normal researchers
was 3.11 compared with 5.98 for high-impact researchers. More-
over, the standard deviations (SDs) were 1.87 and 5.94 for normal
and high-impact researchers, respectively. This suggested that
the P-indexes for high-impact researchers varied differently be-
cause their JIFs tended to be higher and have more variance, and
their P-indexes relied more on the JIF than on the number of
publications.
The correlation between the P- andH-indexes for the two groups,

although not significantly different, also deserves discussion. Re-
call that the P-index considered only 2010 publications, whereas
the H-index was calculated from 2006 to 2010. For both groups,
the correlation is quite low (0.29 for normal researchers and 0.34
for high-impact researchers), and both estimates have relatively
wide 95% confidence intervals. H-indexes for the normal re-
searchers ranged between 0 and 16 with a median of 5, whereas
for the high-impact researchers it ranged between 2 and 29 with
a median of 10. This suggests that the researchers with a high
H-index can have off years, and those with a high P-index tend to
have a high H-index. Recall that theH-index is based on citations,
and the P-index is based on the JIF or expected citations. It
appears that researchers with a high P-index for a given year are
likely to have a higher career H-index. The P-index is useful when
comparing young researchers whose publications need time to
accumulate citations.
Minimal changes in the correlation analysis were observed

after removing specific universities, and all estimates were well
within the 95% confidence intervals for all of the data. This was
expected because Kendall’s τb is nonparametric and fairly robust
to outliers. One example of the largest change occurred when
Northwestern University was removed. This university had 22
total researchers included in the analysis, 19 of which were clas-
sified as normal researchers. After removing these researchers,
the overall Kendall’s τb between the P- and H-indexes increased
to 0.47, as did the P- and C-index correlation to 0.42. However,
the correlations for the normal researcher group hardly changed,
even though we removed nearly 20% of them. The most notable
change in the analysis occurred when Duke University research-
ers were removed (10 normal and 5 high-impact researchers).
The C- and N-index correlation for the normal research group
increased slightly to 0.58 with a 95% confidence interval of
ð0:49; 0:66Þ, and for the high-impact group it decreased to 0.45
with confidence interval ð0:28; 0:60Þ. The permutation test con-
cluded that these two correlations were significantly different
(P= 0:043). This happened mostly due to two high-impact Duke
researchers that had very high N- and C-indexes. We also re-
sampled 50% and 200% of the original researchers 10; 000 times
and found that the mean of these iterations gave nearly identical
results to those of the original estimates.
The collaborative tendencies of the two groups of researchers

were also investigated by plotting the average A-index vs. the
N-index by researcher group (Fig. 3). Average A-index may be in-

terpreted as typical involvement in a publication. An overall de-
creasing trend was observed, which suggests that researchers with
many publications tend to collaborate more and are less involved
in their projects. When looking at those researchers with an
N-index between 2 and 10, high-impact researchers typically had
higher average A-indexes than normal researchers. If high-impact
researchers were not involved in many projects, they were more
important to the publication than a normal researcher would be.
Therefore, their scientific impact should be higher. Note that the
P-index will always increase with more publications and more
rapidly when papers are published in journals with higher JIFs.
This is one of the best features of the P-index: Large values can be
achieved by publishing many, moderately important papers or a
few impactful papers. Hence, the P-index does a remarkable job of
balancing quantity and quality and is forgiving of either “over-
collaboration” or infrequent publications as long as the research is
published in highly cited journals.
To demonstrate how a high P-index can be achieved in dif-

ferent ways, we looked at the two researchers with the highest
P-indexes (Table 6), who were an associate professor and a full
professor from two different universities. The largest overall
N-index belonged to the associate professor, but the C-index
was not large, due to the fact that the associate professor was
a corresponding author on 8 of the 21 publications and the ma-
jority of the papers had seven or more coauthors. Moreover, the
papers had multiple cofirst and/or cocorresponding authors. On
the other hand, the full professor had 4 publications with few
coauthors and was either a cofirst or the corresponding author
on three of them. Clearly, these are two different types of re-
searchers in terms of collaboration preferences, but they had

Table 5. Monte Carlo permutation test P values for correlation
differences

Index P-index C-index H-index

C-index <  0:001 — —

H-index 0.676 0.793 —

N-index 0.004 0.392 0.649

Table 6. Metrics for top two researchers

Bibliometric Associate professor Full professor

P-index 48.23 48.49
C-index 2.06 1.36
N-index 21.00 4.00
H-index 29.00 12.00
JIF sum 453.00 140.00

Median no. coauthors 9.00 3.50

Fig. 3. Average A-index vs. N-index.
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high and nearly identical P-indexes. Accounting for collaboration
significantly reduced the JIF sum for the associate professor and
more accurately represented the individual scientific impact.
The full professor was much more involved in projects and so
received the majority share of the JIFs. On the other hand, the
N- and H-indexes gave very different, misleading comparisons of
these two researchers, whereas the P-index concluded that they
had nearly identical scientific impact in 2010. We believe that the
P-index gave a fairer and sharper comparison of the two re-
searchers and was able to do so only by taking into account
collaboration credit via the A-index.
The simulation study generated publication data for 16 dif-

ferent types of virtual researchers based on four different pub-
lishing characteristics: number of publications, JIFs, number of
coauthors, and rank. Each category had a high and low distribution
associated with it. Details of the simulation design are in Formu-
lation and Simulation of Scientific Impact. Not surprisingly, the
virtual researchers that published frequently in journals with high
JIFs had the highest P-index on average. The virtual researchers
that published frequently in low-impact journals, but had few
coauthors and were high ranked, had the fourth highest mean P-
index. The P-index is easily increased by the JIF, but we see here
that a researcher could have high impact as long as he/she can be
prolific with a small group of peers.

Conclusion
This paper provides strong evidence that evaluating researchers
on the basis of metrics like the total number of publications and
the H-index can be misleading and that fairer evaluations of a
researcher’s individual scientific impact can be made by taking
into account collaborative tendencies. Data collected and ana-
lyzed from prestigious BME departments indicate that the
P-index may better classify researchers’ scientific output by simul-
taneously considering both the importance of the paper on its

scientific community (via the JIF) and the relative contributions
of its coauthors via the A-index. Exemplary cases were identified
where neglecting coauthor information inhibited the ability to
distinguish one researcher’s achievements from others and gave
some researchers undue credit. The strength of the P-index lies
in its ability to compare researchers with different collaborative
tendencies, using the A-index to balance quantity and quality of
research. The P-index would be very useful for young research-
ers, whose career H-index would be based on a short time frame.
Using the A-index to weight other metrics of scientific impact
should also be investigated. For example, a weighted H-index
seems attractive (8).
We anticipate that the axiomatic approach of credit assign-

ment will become a main tool in development of academic
assessment or peer review systems (15). Its most appealing fea-
ture is the rigorous foundation including the distribution as-
sumption (Axiom 3) for the credit vector, which gives a fair and
balanced estimate for the true collaboration credit. We acknowl-
edge other metrics exist that attempt to measure collaboration
credit, but believe that the theoretical justification of the A-index
results in a convincing assessment of a researcher’s involvement
in a publication. However, a main criticism of all collaboration
metrics is the lack of a well-defined system of coauthorship
ranking. One must be adopted to maximize the potential of the
A- and P-indexes. Such a system would better define expectations
of the collaborators and improve awareness of assigned credit,
leading to a more efficient collaborative experience.
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