

Biomineralization toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomes

In an interesting work published recently in PNAS, Drake et al. (1) presented a proteomic study of the skeleton from the stony coral Stylophora pistillata. This study identified proteins that are associated to the mineral phase (i.e., that potentially contribute to shape the skeleton). In other words, this set of proteins is supposed to represent the so-called "biomineralization toolkit." Although some of the 36 proteins reported in Drake et al. (1) appear as genuine extracellular matrix (ECM) proteins related to biomineralization, such as coral acid-rich proteins or carbonic anhydrase, some others are obvious intracellular contaminants that should not be considered as skeletal organic matrix proteins (SOMPs).

Indeed, Drake et al. (1) observed proteins from the cytoskeleton, such as actins, tubulins, and myosin. These proteins are intracellular components and should not be named SOMPs: as far as we know, there is no scientific evidence that they interact directly with the growing biomineral. We consider that the integration of intracellular components to the growing list of calcifying-matrix proteins is misleading and detrimental to our understanding of biocalcification mechanisms and to the elaboration of molecular models, and this problem needs to be carefully appreciated.

In our hands, when similarly investigating SOMPs from the coral *Acropora millepora*, we observed cytoskeletal proteins that were contaminants from calicoblastic cellular debris (Fig. 1 and Table 1). These contaminants

could be simply removed by extensive and appropriate cleaning of the biomineral (Fig. 1). By using two types of sample treatment, we demonstrated convincingly that the presence of cytoskeletal proteins indicates an inadequate cleaning of the biomineral structures, which typically hold superficial contamination from skeleton-neighboring tissues (Table 1).

According to the most commonly accepted view, the formation of metazoan calcified skeletons results from the secretion of an acellular matrix that remains occluded within the biomineral phase once precipitated. During this extracellular process, cellular contaminants can be entrapped in void structures (such as the microcavities present inside all the aragonitic skeleton of stony corals), and need to be removed by thorough incubation of skeleton fine powder (< 200 μ m) in concentrated sodium hypochlorite [10% (vol/vol), 5 h] before extraction and further proteomic analysis of the biomineralization proteins. This simple treatment removes most-if not all-cellular debris, leaving intact the skeleton-associated proteins, the true SOMPs that are part of the biomineralization toolkit.

We are convinced by our previous experiments (2–4)—which are reproducible and coherent with the current understanding of biomineralization processes—that a careful and appropriate cleaning of biominerals is crucial for generating accurate proteomic data and further correctly interpreting the results.

Paula Ramos-Silva^{a,b}, Frédéric Marin^b, Jaap Kaandorp^a, and Benjamin Marie^{c,1} ^aSection Computational Science, Informatics Institute, Universiteit van Amsterdam, 1098 XH, Amsterdam, The Netherlands; ^bUnité Mixte de Recherche 6282, Centre National de Recherche Scientifique, Biogéosciences, Université de Bourgogne, 21000 Dijon, France; and ^cUnité Mixte de Recherche 7245, Centre National de Recherche Scientifique, Molécules de Communications et d'Adaptations des Micro-organismes, Muséum National d'Histoire Naturelle, 75005 Paris, France

4 Marie B, et al. (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. *Proc Natl Acad Sci USA* 109(51): 20986–20991.

Author contributions: P.R.-S., F.M., J.K., and B.M. wrote the paper. The authors declare no conflict of interest.

¹ Drake JL, et al. (2013) Proteomic analysis of skeletal organic matrix from the stony coral *Stylophora pistillata*. *Proc Natl Acad Sci USA* 110(10):3788–3793.

² Joubert C, et al. (2010) Transcriptome and proteome analysis of *Pinctada margaritifera* calcifying mantle and shell: focus on biomineralization. *BMC Genomics* 11:613.

³ Marie B, et al. (2013) The shell-forming proteome of *Lottia gigantea* reveals both deep conservations and lineage-specific novelties. *FEBS J* 280(1):214–232.

¹To whom correspondence should be addressed. E-mail: bmarie@ mnhn.fr.

Fig. 1. Removal of organic contamination of *A. millepora*'s skeleton. (*A*) Comparison of the proteins identified by proteomics on the skeletal organic matrix of *A. millepora* in two different conditions. "Simple bleaching" consisted in treating the skeletal fragments with sodium hypochlorite solution once [5% (vol/vol), 72 h], and "extended bleaching" consisted in the simple bleaching followed by cleaning the skeletal sieved powder (< 200 μ m) with sodium hypochlorite solution [10% (vol/vol) 5 h]. The asterisk represents similar proteins to those reported as ECM proteins in Drake et al.'s study (1). (*B*) SEM image from polished transversal section of *A. millepora* skeleton with focusing a pore covered with residual soft tissue that remained after cleaning the fragments by simple bleaching.

11/16/2012

	Transcript references	BLASTP (above) and SwissProt reference (below)	E value
1*	>gi 379118176 gb JT015846.1	Actin	0.0
		sp P12716.1 ACTC_PISOC	
2	>gi 379125045 gb JT022715.1	Tubulin alpha-1C chain	0.0
		sp P68365.1 TBA1C_CRIGR	
3*	>gi 379099717 gb JR997386.1	Tubulin beta-4	0.0
		sp P30883.1 TBB4_XENLA	
4	>gi 379084254 gb JR981923.1	Tubulin alpha-1C	0.0
		sp Q9BQE3.1 TBA1C_HUMAN	
5	>gi 379076599 gb JR974268.1	Tubulin alpha	6e-85
		sp P10872.1 TBA_TETPY	
5	>gi 379089391 gb JR987060.1	Tubulin alpha	4e-161
		sp P41351.1 TBA_TETTH	
7*	>gi 379122351 gb JT020021.1	Tubulin beta-4B	0.0
		sp P68371.1 TBB4B_HUMAN	
3	>mf105_rep_c206	ATP synthase beta	0.0
		Ssp Q4FP38.1 ATPB_PELUB	
Э	>gi 379098186 gb JR995855.1	ATP synthase alpha	0.0
		sp Q5R546.1 ATPA_PONAB	
10*	>gi 379075456 gb JR973125.1	Myosin heavy chain	4e-06
		sp P24733.1 MYS_AEQIR	
11	>gi 379082904 gb JR980573.1	Myocilin	7e-29
		Ssp 070624.1 MYOC_MOUSE	
12	>gi 222798399 gb EZ026787.1	Histone H2A	1e-26
		sp P35061.2 H2A_ACRFO	
13	>gi 379114242 gb JT011912.1	Histone H2B	2e-76
		sp P35067.1 H2B_ACRFO	
4	>gi 379095792 gb JR993461.1	Histone H4;	2e-65
5		sp P35059.2 H4_ACRFO	
	>kb8_rep_c51392	Heat shock protein 90;	0.0
6		sp O44001.1 HSP90_EIMTE	
	>kb8_rep_c29387	Heat shock protein 90	0.0
		Ssp O44001.1 HSP90_EIMTE	
7	>gi 379104815 gb J1002485.1	Heat shock protein 90	0.0
_		sp 057521.2 HS90B_DANRE	
8	>kb8_rep_c63048	Heat shock protein 70	3e-66
_		sp Q9S9N1.1 HSP/E_ARATH	
9	>gi 3/90/3448 gb JR9/111/.1	Heat shock protein 70	0.0
	11.0 40000	sp/P63018.1/HSP/C_RAI	
20	>kb8_c48899	Heat shock protein 70	0.0
		sp P11144.2 HSP70_PLAFA	4 75
1	>gi 379105500 gb J1003170.1	Zinc transporter ZIP14	1e-75
		sp Q75N73.1 S39AE_MOUSE	
2	>gi 379096620 gb JR994289.1		0.0
_		sp 035920.1 CAN9_RAI	0.0
23	>gi 379108785 gb J1006455.1	Photosystem II precursor	0.0
24		sp P49472.1 PSBC_ODOSI	F 422
	>gi 222803727 gb E2032115.1	voltage-dep. channel protein 2	5e-122
F		SSPIP81004.1/VDAC2_XENLA	o 400
5	>gi 379104892 gb J1002562.1		9e-100
~		spipuceso. TiprdxT_CHICK	2. 65
o	>gi 222782586 gb E2011257.1	Succinate Denydrogenase	26-65
27		splq72VF3.2 DHSA_DANRE	0.0
	>g1 379122454 gb J1020124.1		0.0
00*		SPIQ66HDU.2 ENPL_KAI	0.40
5^	>g1 3/90/9965 gb JK9//634.1		0.49
20		Sp P16144.5 IIB4_HUMAN	F 4
29	>g1 222/9940/ gb E202//95.1		5.4
	14.0 -20060 from 2	SPIBOJNZ3. I IAL_HELPZ	
50	>KUo_COUOOU_ITAIIle-3	INO THE	_

 Table 1. List of the 30 proteins identified in the samples from coral skeleton treated by simple bleaching, which were further removed by extended bleaching

*Similar proteins to those reported as ECM proteins in Drake et al.'s study (1).

PNAS PNAS