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BACKGROUND

Currently there is no method of best practice for the nor-
malization of microRNA sequencing data (miRNA-Seq).
Therefore, we read with interest a recent article in RNA by
Garmire and Subramaniam that set out to compare various
normalization strategies specifically for this application
(Garmire and Subramaniam 2012). They compared methods
currently inuse fornormalizationofmessengerRNAsequenc-
ing (mRNA-Seq) data, such as total-depth normalization
(“raw”) and Trimmed Mean of M-values (“TMM”). Addi-
tionally, they compared many methods not used previously
with sequencing data, such as global scaling, and borrowed
from strategies applied tomicroarray studies, such as quantile
normalization (QN). The article attracted our attention for
many reasons, but notably for the claimed poor performance
and “abnormal results” of our TMMmethod (Robinson and
Oshlack 2010). After investigating, we discovered that TMM’s
claimed poor performancewas the result of an error that shift-
ed log-ratios in the wrong direction. Furthermore, we felt that
various practical issues were not satisfyingly discussed; we
comment briefly on these here and provide reproducible re-
analyses to support our claims (see Supplemental Material).

REPRODUCIBILITY

The authors were confused about how to introduce the TMM
normalization factors (private e-mail to usNovember 6, 2010;
code sent privately to us on August 3, 2012).While we did not
answer this question directly in the original exchange, we
pointed them to our online example code where the TMM
normalization factors are introduced to the statistical test.
Importantly, as mentioned in the TMM article (Robinson
and Oshlack 2010), the normalization factors modify the
library size, not the count data. Therefore, Garmire and
Subramaniam’s abnormal TMM results can be attributed
to introducing these factors in the wrong direction (see
Supplemental Note S1 for the correction). We make our R
code publicly available, so others can reproduce our analyses

and test new situations; documentation for applying TMM
in a standard setting is readily available in the edgeR software
package (Robinson et al. 2010). However, it is the user’s re-
sponsibility to ensure correct usage in a nonstandard setting
(e.g., operations on log-ratios instead of differential expres-
sion statistics).
We have reproduced some of the metrics presented in the

Garmire and Subramaniam paper and conclude that the
corrected TMM normalization is an average performer and
represents an improvement over total-depth normalization
(Supplemental Note S2). However, the integration of TMM
normalization factors within an established statistical frame-
work provides a clear path from raw data to interpretable stat-
istical summaries (e.g., P-values), whereas other methods
(e.g., QN)may not, at least in small samples where parametric
models are used. Therefore, we question the validity of some
of Garmire and Subramaniam’s comparisons and also the
overall conclusions of the paper, as discussed below.

MSE AND K-S METRICS ARE NOT APPROPRIATE
IN THIS SETTING

Thepurposeofnormalization is to remove technical biaswhile
maintaining true biological signal. Garmire and Subramani-
am employed mean-squared error (MSE) and the Kolmoro-
gov-Smirnov (K-S) test metrics, among others, to assess
normalization performance. A small MSE or K-S statistic,
applied here to single samples from different biological con-
ditions, was taken by Garmire and Subramaniam to be
evidence of good performance. Unfortunately, this compari-
son gives no consideration to the presence of truly differen-
tially expressed miRNAs, which directly affect these scores.
Low MSE favors normalization that removes all evidence of
differential expression, which is an undesirable property
when true biological differences exist (e.g., here, evidence
from corresponding miRNA qPCR data). Notably, the cited
reference that uses MSE as a performance metric does so
from known (simulated) fold-changes (Xiong et al. 2008). A
more appropriate performance metric would be MSE or
scale-free coefficient of variation between biological replicates
of the same condition, as recently reported for comparing
mRNA-Seq normalization strategies (Dillies et al. 2012).
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The K-S test measures the similarity of two cumulative dis-
tributions. We question the motivation for this, at two levels:
(i) Samples with different “composition” exhibit different
marginal distributions (e.g., comparisons of kidney and liver
tissue; Supplemental Fig. S8 in Additional file 1 of Robinson
and Oshlack 2010); and (ii) QN would always achieve a
zero K-S statistic, were it not for the treatment of ties
(Supplemental Note S3). Therefore, QN is always put in a fa-
vorable light by this comparison, regardless of any nonlinear
effects introduced.

It is worth noting that Garmire and Subramaniam’s perfor-
mance comparisons disregard features that are unobserved in
one of the two conditions (i.e., count of zero), since fold-
changes cannot be computed. However, miRNAs present in
one condition and absent in anothermaybe biologically inter-
esting and should not be ignored, which calls into question
how to applyQN inpractical situations andwhether these per-
formance comparisons are representative of the whole data
set. Discarding data for the purposes of performance evalua-
tion may be permissible, but removing such data in down-
stream analyses is clearly undesirable.

STATISTICAL METHODS FOR COUNT DATA NEED
COUNTS

As mentioned, TMM preserves the count data by introduc-
ing normalization factors as offsets in the statistical model
(Robinson and Oshlack 2010). In contrast, Garmire and
Subramaniam proceeded to use count-based statistical tests
(Fisher exact, Binomial, Poisson, and χ2) to normalized non-
count data. We have two reservations about this approach:
(i) The tests employed do not have the capacity to address bi-
ological variability, which is essential to generalizable conclu-
sions (Hansen et al. 2011); (ii) transforming count data into
nonintegers can distort the mean-variance relationships im-
plied by existing count models (Oshlack and Wakefield
2009). Regardless, clear recommendations of how to apply
normalization in a practical setting are needed.

REFERENCE DATA SETS

In order to make decisive claims about method performance,
“reference” data sets are critical. Such data sets include an in-
dependent truth (e.g., measurements from an independent
platform) that can be used to evaluate the performance of
an algorithm. Garmire and Subramaniam employed receiver
operator characteristic (ROC) curves using miRNA qPCR as
the independent truth to define truly differential (and non-
differential) miRNAs. Our reanalyses of this data set suggest
that ROC results are sensitive to decisions made in determin-
ing the “truth” (Supplemental Note S4). Altogether, we con-
clude that the ROC analysis performed by Garmire and

Subramaniam is not conclusive, without a further sensitivity
analysis of parameters affecting the selection of true positive
and true negatives.

SUMMARY

As developers and users of informatics strategies, we are
keenly interested in the relative merits of competing ap-
proaches. Crucially, there has been relatively little investiga-
tion into normalization strategies for miRNA-Seq data and
the timely article from Garmire and Subramaniam promised
to shed light on this issue. Unfortunately, errors in the imple-
mentation, poor choice of performance metrics (or poor
choice of data set), few details about practical implementa-
tion (e.g., elimination of features containing zero count),
and sensitivity to choices made regarding the reference truth
data set have left many open questions about the best analysis
methods for miRNA-Seq data. In this paper, we have dis-
cussed some of the subtle yet critical parameters that need
to be carefully investigated.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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