## DNA Microarray Analysis of the Mouse Adrenal Gland for the Detection of Hypothermia Biomarkers: Potential Usefulness for Forensic Investigation

Masataka Takamiya,<sup>1</sup> Kiyoshi Saigusa,<sup>2</sup> and Koji Dewa<sup>1</sup>

We analyzed the adrenal gland transcriptome of mice killed by hypothermia using DNA microarray technology. A total of 4051 significantly expressed genes were identified; 2015 genes were upregulated and 2036 were down-regulated. The FBJ osteosarcoma oncogene was the most upregulated, whereas stearoyl coenzyme A desaturase 3 was the most downregulated. Validation by quantitative polymerase chain reaction revealed that results obtained by both methods were consistent. In the gene set analysis, significant variations were found in nine pathways, and we suggest that transforming growth factor  $\beta$  and tumor necrosis factor  $\alpha$  would be involved in the pathogenesis of hypothermia. Gene functional category analysis demonstrated the most overexpressed categories in upregulated and downregulated genes were cellular process in biological process, binding in molecular function, and cell and cell part in cellular component. The present study demonstrated acute adrenal responses in hypothermia, and we suggest that understanding adrenal mRNA expression would be useful for hypothermia diagnosis. Furthermore, the present microarray data may also facilitate development of immunohistochemical analysis of human cases. In forensic practice, the combination of macroscopic and microscopic observations with molecular biological analyses would be conducive to more accurate diagnosis of hypothermia. Although this study is aimed at forensic practice, the present data regarding more than 20,000 genes of the adrenal gland would be beneficial to inform future clinical hypothermia research. From the viewpoint of adrenal gene activity, they could contribute to elucidating the pathophysiology of hypothermia.

## Introduction

HYPOTHERMIA IS CLASSICALLY DEFINED as a core body temperature of less than 35°C. Hypothermia develops when the adaptive mechanism is overwhelmed (Ulrich and Rathlev, 2004), and it is generally understood that hypothermia is a common and widespread danger even in temperate climates, outside and indoors (Saukko and Knight, 2004). Numerous hypothermia cases are reported every year in areas that are typically considered to have warm weather, such as Florida, Texas, California, and Alabama (Ulrich and Rathlev, 2004).

Forensic pathologic diagnosis of hypothermia involves some difficult issues. Diuresis (Paton, 1983) and hypoglycemia (Di-Maio and DiMaio, 2001) occur in the early phase of hypothermia. Peripheral vasoconstriction is the main cause of frostbite (Saukko and Knight, 2004). Hypothermia may cause all of the following: bright pink lividity; hemorrhagic pancreatitis; erosions and hemorrhages in the gastric mucosa, ileum, and colon; bronchopneumonia; acute tubular necrosis; cardiac muscle degeneration (DiMaio and DiMaio, 2001); pulmonary edema; deep vein thrombosis (Saukko and Knight, 2004); and hemorrhage in muscles (Aghayev *et al.*, 2008). These autopsy findings are not specific to hypothermia. Therefore, diagnosis must be based partly on exclusion and by relying on historical information, and

it is thought that molecular biological analyses could provide more valuable information (Hirvonen and Huttunen, 1982). Some hormonal changes of the adrenal gland were reported in hypothermia (Hirvonen and Lapinlampi, 1989; Hirvonen and Huttunen, 1995), and we considered it worthwhile to analyze the transcriptome. In this study, the transcriptome of the adrenal gland in hypothermia was analyzed, to evaluate its utility for the diagnosis of hypothermia. Although this study is aimed at forensic practice, the present gene expression analysis would be beneficial for use in clinical hypothermia research.

## Materials and Methods

## Tissue samples

The water bath model (Okuda *et al.*, 1986) was adapted. Male ddY mice, 7 weeks of age, weighing  $35.4\pm5.6$  g, were housed under controlled lighting (lights on at 7:00 am and off at 7:00 pm) and given free access to food and water. The mice were anesthetized by sevoflurane inhalation, and confined in a metallic restraint cage which was kept in a water bath at 10°C, so that the neck was immersed. The animals were sacrificed by continuous exposure to cold water ( $41.4\pm10.6$  minutes). The left adrenal gland was resected (n=4 for DNA microarray, n=4 for internal standard gene selection, n=10

Departments of <sup>1</sup>Forensic Medicine and <sup>2</sup>Biology, Iwate Medical University, Iwate, Japan.

TABLE 1. UPREGULATED GENES OF THE ADRENAL GLAND ARRANGED BY DECREASING FOLD CHANGE

| Probe name    | Signal intensity<br>in hypothermia | Fold change | Description                                                                     | Symbol                  | RefSeq                     |
|---------------|------------------------------------|-------------|---------------------------------------------------------------------------------|-------------------------|----------------------------|
| A_52_P262219  | 5521.219425                        | 33.69810362 | FBJ osteosarcoma oncogene                                                       | Fos                     | NM_010234                  |
| A_55_P2054261 | 1270.285775                        | 11.82976984 | C2 calcium-dependent domain containing 4B                                       | C2cd4b                  | NM_001081314               |
| A_51_P415395  | 1512.015738                        | 9.380546663 | C2 calcium-dependent domain containing 4B                                       | C2cd4b                  | NM_001081314               |
| A_51_P260683  | 474.996815                         | 6.745736195 | Regulator of G-protein signaling 1                                              | Rgs1                    | NM_015811                  |
| A_51_P430900  | 4371.102825                        | 6.465845343 | Dual specificity phosphatase 1                                                  | Dusp1                   | NM_013642                  |
| A 55 P2011106 | 437.44096                          | 6.416245306 | Jun-B oncogene                                                                  | Iunb                    | NM 008416                  |
| A 51 P367866  | 18185,9535                         | 5,489176391 | Early growth response 1                                                         | Egr1                    | NM 007913                  |
| A 55 P2181341 | 423.2009575                        | 4.483405844 | Endothelin converting enzyme-like 1                                             | Ecel1                   | NM 021306                  |
| A 51 P252859  | 1538.858175                        | 4.395378178 | Cysteine rich protein 61                                                        | Cur61                   | NM 010516                  |
| A 51 P212782  | 391,7808825                        | 4.119763443 | Interleukin 1 beta                                                              | II1b                    | NM 008361                  |
| A 52 P31543   | 4632 8834                          | 4 071461048 | B-cell translocation gene 2 anti-proliferative                                  | Bto?                    | NM_007570                  |
| A 55 P2181191 | 189 892655                         | 4 033899105 | B-cell translocation gene 1 anti-proliferative                                  | Bto1                    | NM_007569                  |
| A_55_P2408588 | 1335.50504                         | 3.961004115 | Aryl hydrocarbon receptor nuclear<br>translocator-like                          | Arntl                   | NM_007489                  |
| A 51 P140710  | 405.8231625                        | 3.803014132 | Chemokine (C-C motif) ligand 3                                                  | Ccl3                    | NM 011337                  |
| A 55 P2031272 | 105 2809935                        | 3 534519497 | LIM homeobox protein 3                                                          | Lhr3                    | NM_001039653               |
| A 55 P2351193 | 130 6831425                        | 3 1072758   | Small nucleolar RNA H/ACA box 47                                                | Snora47                 | NR 034043                  |
| A 51 P245796  | 29637 41075                        | 2 834485718 | DNA-damage-inducible transcript 4                                               | Ddit4                   | NM 029083                  |
| A 66 P116173  | 178 1135225                        | 2.80506208  | Interleukin 23 recentor                                                         | 1123r                   | NM 144548                  |
| A 51 P264605  | 2077 4311                          | 2.00500200  | Crystallin mu                                                                   | Crum                    | NM 016669                  |
| A_55_D2147807 | 2077.4311                          | 2.745770415 | C2 calcium dependent domain containing 1A                                       | Clynt                   | NM 001163143               |
| A_51_D407205  | 200.70002                          | 2.004440055 | Ly6/Plaur domain containing 1                                                   | $C_2 cu \pm u$<br>Lund1 | NM 145100                  |
| A_51_F497595  | 209.0730273                        | 2.033749094 | Lyb/ Flaur domain containing 1                                                  | Lypu1<br>Dew1           | NIVI_143100                |
| A_31_F100039  | 1015.009025                        | 2.031710000 | Faraoxonase 1                                                                   | PON1<br>Lau2            | NIVI_011134                |
| A_31_F200400  | 117 741(045                        | 2.049214941 | Chamalina (C.Y.C. matif) liand 1                                                | Iers<br>Cual1           | NIVI_155002                |
| A_51_P303187  | 117.7410943                        | 2.64447233  | Chemokine (C-X-C motif) ligand 1                                                | Cxcl1                   | INIVI_008176               |
| A_52_P608495  | 872.8185                           | 2.575860386 | Alanyi-tKINA synthetase 2, mitochondrial (putative)                             | Aars2                   | NM_198608                  |
| A_55_P2112642 | 315.61053                          | 2.501941401 | Thyroid stimulating hormone receptor                                            | Tshr                    | NM_001113404,<br>NM_011648 |
| A_51_P315904  | 13396.8485                         | 2.458968067 | Growth arrest and DNA-damage-inducible 45 gamma                                 | Gadd45g                 | NM_011817                  |
| A_55_P2113051 | 360.0429375                        | 2.458243622 | FBJ osteosarcoma oncogene B                                                     | Fosb                    | NM_008036                  |
| A_52_P80944   | 209.3950225                        | 2.453644777 | Zinc finger protein 36                                                          | Zfp36                   | NM_011756                  |
| A_55_P2073248 | 563.57966                          | 2.434264777 | Solute carrier family 25, member 34                                             | Slc25a34                | NM_001013780               |
| A_55_P2163028 | 443.7092425                        | 2.432368649 | Immediate early response 2                                                      | Ier2                    | NM_010499                  |
| A_55_P1985693 | 188.4100325                        | 2.39929641  | FH2 domain containing 1                                                         | Fhdc1                   | NM_001033301               |
| A_52_P536494  | 888.75921                          | 2.367826545 | v-myc myelocytomatosis viral related<br>oncogene, neuroblastoma derived (avian) | Мусп                    | NM_008709                  |
| A 55 P1972659 | 92.167643                          | 2.336336372 | Sperm acrosome associated 1                                                     | Spaca1                  | NM 026293                  |
| A 51 P428372  | 159.3257                           | 2.296582165 | Pro-platelet basic protein                                                      | Ppbp                    | NM 023785                  |
| A 51 P383270  | 42 49928125                        | 2 178292966 | Fraser syndrome 1 homolog (human)                                               | Fras1                   | NM 175473                  |
| A_52_P1197913 | 6474.23205                         | 2.169410999 | Growth arrest and DNA-damage-inducible<br>45 beta                               | Gadd45b                 | NM_008655                  |
| A 52 P387884  | 127.717615                         | 2.168260055 | Predicted gene 7455                                                             | Gm7455                  | NM 001167923               |
| A_55_P2106106 | 131.802971                         | 2.165893492 | G protein-coupled receptor 77                                                   | Gpr77                   | NM_001146005,              |
|               |                                    |             |                                                                                 |                         | NM_176912                  |
| A_55_P2109857 | 53454.46025                        | 2.135840036 | Regulator of G-protein signaling 2                                              | Rgs2                    | NM_009061                  |
| A_51_P480190  | 130.0384485                        | 2.109213448 | Sperm acrosome associated 1                                                     | Spaca1                  | NM_026293                  |
| A_55_P2021187 | 361.9790825                        | 2.107422241 | Metastasis associated lung adenocarcinoma<br>transcript 1 (non-coding RNA)      | Malat1                  | NR_002847                  |
| A_52_P208649  | 552.684095                         | 2.097820589 | CART prepropeptide                                                              | Cartpt                  | NM_001081493,<br>NM_013732 |
| A_52_P300730  | 144.9705025                        | 2.095584651 | High mobility group AT-hook 2                                                   | Hmga2                   | NM_010441                  |
| A_55_P2165011 | 147.165                            | 2.067882339 | Fucosyltransferase 10                                                           | Fut10                   | NM_001012517,<br>NM 134161 |
| A_51_P408703  | 335.1278625                        | 2.046457775 | Ring finger protein 138 pseudogene                                              | 1700045<br>I19Rik       | NR_003640                  |
| A 52 P156775  | 84.5671665                         | 2.041447265 | Secretoglobin, family 1C. member 1                                              | Scgb1c1                 | NM 001099742               |
| A_51_P520849  | 277.521115                         | 2.028629638 | Secreted frizzled-related protein 2                                             | Sfrp2                   | NM_009144                  |

for quantitative polymerase chain reaction [PCR]). Control mice were killed by inhalation of carbon dioxide, and the left adrenal glands were examined (n=4 for DNA microarray, n=4 for internal standard gene selection, n=10 for quantitative PCR). The isolated tissue was quickly soaked in 1.5 mL RNA later solution (Applied Biosystems, Carlsbad, CA).

## DNA microarray

Total RNA was extracted from the tissue using an RNeasy Mini Kit (Qiagen, Valencia, CA). The quality of RNA was determined by electrophoresis on a 1% agarose gel and ethidium bromide staining. All the microarray analysis procedures described here were performed at Tohoku Chemical Research Institute of Bio-system Informatics (Morioka, Japan), by following the manufacturer's instructions. The quality of RNA was confirmed with 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA) in which the 18S and 28S ribosomal bands were clearly visible. Gene expression profiles were determined using the Mouse GE 4x44K v2 Microarray Kit (four arrays; Agilent Technologies). Quality control. Quality control of the feature was performed using the settings recommended by Agilent Technologies. The background was subtracted, and the signal intensity of each gene was globally normalized using locally weighted scatterplot smoothing. The following flag parameters were used, "Feature is saturated"; "Feature is not uniform"; "Feature is not positive and significant"; "Feature is not above background"; "Feature is a population outlier"; "Is control type." To these parameters, the following words were applied:

Detected: The data are reliable. Not detected: The quality of data are undetermined. Compromised: The data are unreliable.

Thereafter, to each spot (four spots per gene), the following words were applied:

Detected: All the parameters are "Detected."

Not detected: The parameters are combinations of "Detected" and "Not detected."

Compromised: One of the parameters is "Compromised." For further analyses, we used genes whose spots in all four

arrays were judged "Detected" or "Not detected."

TABLE 2. DOWNREGULATED GENES OF THE ADRENAL GLAND ARRANGED BY INCREASING FOLD CHANGE

| Probe name    | Signal intensity<br>in control | Fold change | Description                                            | Symbol            | RefSeq                        |
|---------------|--------------------------------|-------------|--------------------------------------------------------|-------------------|-------------------------------|
| A_55_P2131060 | 168.3795875                    | 0.178329922 | RIKEN cDNA 9530053H05 gene                             | 9530053<br>H05Rik | XR_035210,<br>XR_035293       |
| A_55_P2099594 | 824.53906                      | 0.307055213 | Stearoyl-coenzyme A desaturase 3                       | Scd3              | NM_024450                     |
| A_52_P494622  | 2017.130193                    | 0.330/1158/ | member 2 Nuclear receptor subfamily 4, group A,        | Nr4a2             | NM_001139509,<br>NM 013613    |
| A_55_P2032079 | 32104.70025                    | 0.35226682  | D site albumin promoter binding protein                | Dbp               | NM_016974                     |
| A_51_P258493  | 99.82523375                    | 0.358234304 | Period homolog 3 (Drosophila)                          | Per3              | NM_011067                     |
| A_51_P453909  | 1126.981645                    | 0.361199024 | Cytochrome P450, family 2, subfamily f, polypeptide 2  | Cyp2f2            | NM_007817                     |
| A_51_P285097  | 61.15388375                    | 0.382524007 | WD repeat domain 38                                    | Wdr38             | NM_029687                     |
| A_55_P2279807 | 416.3360175                    | 0.382598282 | RIKEN cDNA 6720427I07 gene                             | 6720427<br>I07Rik |                               |
| A_55_P2032081 | 25812.0535                     | 0.39276457  | D site albumin promoter binding protein                | Dbp               | NM_016974                     |
| A_55_P2057283 | 375.8735675                    | 0.413693444 | 1 01                                                   | ,                 | _                             |
| A_55_P2336173 | 240.99968                      | 0.419199325 | miRNA containing gene                                  | Mirg              | NR_028265                     |
| A_55_P2276224 | 35.5700205                     | 0.424322034 | RIKEN cDNA 9330175E14 gene                             | 9330175<br>E14Rik | NR_015514                     |
| A_55_P2042600 | 31.76226                       | 0.424427694 |                                                        |                   |                               |
| A_51_P483576  | 579.4216775                    | 0.427562195 |                                                        |                   |                               |
| A_55_P1998781 | 489.6958875                    | 0.448673039 | Zinc finger, CCHC domain containing 16                 | Zcchc16           | NM_001033795                  |
| A_52_P70796   | 49.50055725                    | 0.449355635 | Chemokine (C-X-C motif) receptor 5                     | Cxcr5             | NM_007551                     |
| A_51_P141546  | 1110.49385                     | 0.451334792 | Orosomucoid 2                                          | Orm2              | NM_011016                     |
| A_55_P1993723 | 31.07631925                    | 0.456494379 | Acyl-CoA synthetase bubblegum family<br>member 2       | Acsbg2            | NM_001039114                  |
| A_66_P126254  | 57.31831925                    | 0.463060628 | Growth differentiation factor 7                        | Gdf7              | NM_013527                     |
| A_55_P2145224 | 460.22919                      | 0.46928739  |                                                        | 5                 | _                             |
| A_55_P2045007 | 297.637785                     | 0.471485269 | Histamine receptor H1                                  | Hrh1              | NM_008285                     |
| A_52_P223809  | 1032.715463                    | 0.476333823 | DEXH (Asp-Glu-X-His) box polypeptide 58                | Dhx58             | NM_030150                     |
| A_51_P272066  | 249.033675                     | 0.476399003 | RIKEN cDNA 2010109103 gene                             | 2010109<br>I03Rik | NM_025929                     |
| A_55_P2032553 | 29.48496325                    | 0.483244729 | RIKEN cDNA 9430024F10 gene                             | 9430024<br>F10Rik | XM_001475368,<br>XM_001477010 |
| A_51_P501844  | 325.4883775                    | 0.483703037 | Cytochrome P450, family 26, subfamily b, polypeptide 1 | Cyp26b1           | NM_001177713,<br>NM 175475    |
| A 55 P1976097 | 1322.081375                    | 0.490770113 | 1 / 1 1                                                |                   |                               |
| A_51_P489903  | 382.17449                      | 0.493797658 | 8-Oxoguanine DNA-glycosylase 1                         | Ogg1              | NM_010957                     |
| A_52_P483336  | 190.7524985                    | 0.496741195 | Membrane-spanning 4-domains,<br>subfamily A, member 1  | Ms4a1             | NM_007641                     |

TABLE 3. UPREGULATED GENES OF THE ADRENAL GLAND ARRANGED BY DECREASING SIGNAL INTENSITY IN HYPOTHERMIA

| Probe name                                                                                                        | Signal intensity<br>in hypothermia                                                                 | Fold change                                                                                         | Description                                                                                                                                                                               | Symbol                                                       | RefSeq                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| A_55_P2186672<br>A_55_P2100241<br>A_55_P2155397<br>A_55_P2075479<br>A_55_P2005081<br>A_65_P06061<br>A_55_P1957204 | 156486.4275<br>153603.9675<br>124816.2675<br>119471.2265<br>115094.861<br>113780.865<br>113700.391 | 1.488810051<br>1.426390105<br>1.191423235<br>1.120064513<br>1.16827317<br>1.128924293<br>1.16674735 | Ribosomal protein S14<br>18S ribosomal RNA<br>Ribosomal protein S8<br>Ribosomal protein L37a<br>Ribosomal protein 10<br>Ribosomal protein L37<br>60S ribosomal protein L37a<br>pseudogene | Rps14<br>Rn18s<br>Rps8<br>Rp137a<br>Rp110<br>Rp137<br>Gm4613 | NM_020600<br>NR_003278<br>NM_009098<br>NM_009084<br>NM_052835<br>NM_026069<br>XM_001480907,<br>XM_003086576 |
| A_55_P2031407<br>A_55_P1968606                                                                                    | 112166.954<br>110572.7025                                                                          | 1.118366638<br>1.143552761                                                                          | Synergin, gamma                                                                                                                                                                           | Synrg                                                        | NM_001115009,<br>NM_194341                                                                                  |
| A_55_P2017774                                                                                                     | 109469.8235                                                                                        | 1.05123966                                                                                          | Tumor protein, translationally-<br>controlled 1 pseudogene                                                                                                                                | Gm6790                                                       | 14141_171011                                                                                                |
| A_55_P2149020<br>A_55_P2051047<br>A_55_P2069955                                                                   | 104690.6775<br>104395.0235<br>102331.1875                                                          | $\begin{array}{c} 1.216695405\\ 1.223220678\\ 1.254554522\end{array}$                               | Ribosomal protein L35<br>Ribosomal protein S10<br>Predicted gene 10063                                                                                                                    | Rpl35<br>Rps10<br>Gm10063                                    | NM_025592<br>NM_025963<br>XM_001472702,<br>XM_001479052                                                     |
| A_55_P2029344<br>A_55_P1956063                                                                                    | 101309.1715<br>97570.2825                                                                          | $\frac{1.327089867}{1.201758644}$                                                                   | Ribosomal protein L23<br>Phenazine biosynthesis-like                                                                                                                                      | Rpl23<br>Pbld1                                               | NM_022891<br>NM_026701                                                                                      |
| A_55_P2032600                                                                                                     | 97392.31625                                                                                        | 1.146596023                                                                                         | Ribosomal protein S24                                                                                                                                                                     | Rps24                                                        | NM_207634,<br>NM_207635,<br>NM 011297                                                                       |
| A_55_P2121543<br>A_55_P2036380                                                                                    | 95240.2825<br>94962.8675                                                                           | 1.163873748<br>1.106775996                                                                          | Ribosomal protein S20<br>Predicted gene 6440                                                                                                                                              | Rps20<br>Gm6440                                              | NM_026147<br>XM_001475978,<br>XM_001480472                                                                  |
| A_55_P2036317                                                                                                     | 94943.79                                                                                           | 1.088073172                                                                                         | Predicted gene 12508                                                                                                                                                                      | Gm12508                                                      | XM_001476155,<br>XM_003086360                                                                               |
| A_55_P1985519<br>A_55_P1972841<br>A_55_P1963080<br>A_55_P2147816                                                  | 94799.48875<br>93821.40375<br>93032.637<br>92060.589                                               | $\begin{array}{c} 1.193554736\\ 1.10473156\\ 1.156605654\\ 1.11752971 \end{array}$                  | Ribosomal protein S28<br>Ribosomal protein S12<br>Predicted gene 4945                                                                                                                     | Rps28<br>Rps12<br>Gm4945                                     | NM_016844<br>NM_011295<br>XM_140042,<br>XM_911987                                                           |
| A_55_P1955059                                                                                                     | 90800.6125                                                                                         | 1.136032289                                                                                         | Ribosomal protein L38                                                                                                                                                                     | Rpl38                                                        | NM_001048058,<br>NM_023372,<br>NM_001048057                                                                 |
| A_55_P2090953<br>A_55_P2137773                                                                                    | 90086.0225<br>89968.943                                                                            | 1.124439929<br>1.158127307                                                                          | Ribosomal protein S24, pseudogene 3                                                                                                                                                       | Rps24-ps3                                                    |                                                                                                             |
| A_55_P1969197<br>A_55_P2091308                                                                                    | 89632.935<br>89180.44                                                                              | 1.06923572<br>1.137855913                                                                           | Ribosomal protein L38                                                                                                                                                                     | Rpl38                                                        | NM_001048058,<br>NM_023372,<br>NM_001048057                                                                 |
| A_55_P2027640<br>A_55_P2070913<br>A_55_P1971513<br>A_55_P2186787                                                  | 89123.50375<br>88047.0175<br>87544.2835<br>87360.4375                                              | 1.062687562<br>1.11888157<br>1.198585213<br>1.142197047                                             | Ribosomal protein L14<br>Predicted gene 3649<br>Ribosomal protein L29,                                                                                                                    | Rpl14<br>Gm3649<br>Rpl29-ps5                                 | NM_025974<br>XM_001477499                                                                                   |
| A_51_P488673                                                                                                      | 85356.04                                                                                           | 1.162644159                                                                                         | Guanine nucleotide<br>binding protein<br>(G protein), beta<br>polypeptide 2 like 1                                                                                                        | Gnb2l1                                                       | NM_008143                                                                                                   |
| A_55_P2081885<br>A_55_P2152246<br>A_55_P2081168<br>A_55_P2020962<br>A_55_P2020962                                 | 84246.58525<br>83867.6<br>83536.6075<br>83157.31325<br>81956.07625                                 | 1.183050952<br>1.105824247<br>1.233369179<br>1.086690232<br>1.103668786                             | 60S ribosomal protein L19-like<br>Ribosomal protein L7                                                                                                                                    | LOC100045367<br>Rpl7                                         | XM_001472605<br>NM_011291                                                                                   |
| A_55_P2149049<br>A_55_P1977422                                                                                    | 81568.18625<br>81566.75425                                                                         | $1.212224184 \\ 1.15275634$                                                                         | Ribosomal protein L32                                                                                                                                                                     | Rpl32                                                        | NM_172086                                                                                                   |

#### DNA MICROARRAY ANALYSIS OF ADRENAL GLAND IN HYPOTHERMIA

67

TABLE 4. DOWNREGULATED GENES OF THE ADRENAL GLAND ARRANGED BY DECREASING SIGNAL INTENSITY IN CONTROL MICE

| Probe name     | Signal intensity<br>in control | Fold change     | Description                                  | Symbol          | RefSeq                    |
|----------------|--------------------------------|-----------------|----------------------------------------------|-----------------|---------------------------|
|                | 105/00 /055                    | 0 000 ( 1 ( 150 |                                              |                 |                           |
| A_55_P1976754  | 135680.6275                    | 0.903646452     | Peptidylprolyl isomerase A                   | Рріа            | NM_008907,<br>VP_105422   |
|                |                                |                 |                                              |                 | XR_106634                 |
| A 55 P2145879  | 130507.28                      | 0.966409459     | Tumor protein, translationally-controlled 1  | Tnt1            | NM 009429                 |
| A 55 P2164221  | 116394.2215                    | 0.936017092     | Tumor protein, translationally-controlled 1  | Tvt1            | NM 009429                 |
| A_55_P2083649  | 112980.2575                    | 0.644204481     | Aminolevulinic acid synthase 1               | Álas1           | NM_020559                 |
| A_55_P2020577  | 103924.789                     | 0.897106009     | Procollagen C-endopeptidase enhancer protein | Pcolce          | NM_008788                 |
| A_55_P1970596  | 93686.65625                    | 0.926328958     |                                              |                 |                           |
| A_51_P406020   | 90533.96375                    | 0.8467639       | Abhydrolase domain containing 4              | Abhd4           | NM_001205181,             |
|                |                                |                 |                                              |                 | NM_134076                 |
| A_51_P401958   | 86200.02975                    | 0.708742786     | Transaldolase 1                              | Taldo1          | NM_011528                 |
| A_55_P2128224  | 81730.9485                     | 0.899824361     |                                              |                 |                           |
| A_55_P2154132  | 78857.0075                     | 0.900185505     | Tubulin, alpha 1B                            | Tubalb          | NM_011654                 |
| A_55_P2005343  | 75403.6565                     | 0.878915735     |                                              | Class           | NIN 01140E                |
| A_52_P165654   | 74943.8125                     | 0.759726779     | Steroidogenic acute regulatory protein       | Star<br>Bulu0   | NM_011485                 |
| A_55_P1970800  | 73840.303                      | 0.867125076     | Ribosomal protein, large, PU                 | Kpip0           | NIVI_007475               |
| A_55_P2125743  | 75101.505                      | 0.845233141     | Prodicted gape 8842                          | Cm8842          | XM_001003664              |
| A_55_1 2125745 | /1400.7710                     | 0.045255141     | Tredicted gene 0042                          | Giii0042        | XM 001004356              |
| A 55 P2009588  | 70942 98575                    | 0 94324249      | Ribosomal protein L13                        | Rnl13           | NM 016738                 |
| A 55 P2053456  | 66709.12625                    | 0.960983337     | Eukarvotic translation elongation factor 1   | Gm6548          | NR 003363                 |
|                |                                |                 | alpha 1 pseudogene                           |                 |                           |
| A 55 P2074776  | 62393.11925                    | 0.905969075     | Predicted gene 8894                          | Gm8894          | XM 993473                 |
| A_55_P2154173  | 61721.538                      | 0.886727012     | Predicted pseudogene 5526                    | Gm5526          | XM_484859,                |
|                |                                |                 |                                              |                 | XM_905351                 |
| A_55_P2095000  | 61561.15425                    | 0.949181745     |                                              |                 |                           |
| A_55_P1988328  | 61501.83525                    | 0.925325395     |                                              |                 |                           |
| A_55_P2093483  | 60268.91525                    | 0.907875661     |                                              |                 |                           |
| A_55_P2146749  | 59694.05475                    | 0.947401171     | Ribosomal protein S13                        | Rps13           | NM_026533                 |
| A_55_P2027969  | 59355.21275                    | 0.918401863     | Myosin, light polypeptide 6, alkali, smooth  | Myl6            | NM_010860                 |
| A EE D100/E41  |                                | 0.00000000      | muscle and non-muscle                        | C 0000          | XXX 00145005(             |
| A_55_P1986541  | 59095.67525                    | 0.963033232     | Ribosomal protein S11 pseudogene             | G <i>m</i> 9808 | XM_001473056,             |
| A 55 D2011227  | 58786 22025                    | 0.012051500     |                                              |                 | XIVI_003083817            |
| A_55_P2139665  | 57145 60575                    | 0.912931309     | 105 ribosomal protein S2-like                | 100639606       | XM 003084649              |
| A_00_12107000  | 57145.00575                    | 0.000047704     | 405 Hoosoniai protent 52-like                | LOC055000       | XM 917948                 |
| A 55 P2171047  | 56251                          | 0 916720258     | Ornithine decarboxylase antizyme 1           | Oaz1            | NM_008753                 |
| A 55 P2081133  | 55989.5425                     | 0.837152024     | Glyceraldehyde-3-phosphate dehydrogenase     | Gavdh           | NM 008084                 |
| A 55 P2114994  | 55602.03975                    | 0.895901246     |                                              |                 |                           |
| A_55_P1990859  | 55241.465                      | 0.917703232     | Ribosomal protein L6                         | Rpl6            | NM_011290                 |
| A_55_P1995210  | 55040.7595                     | 0.94155868      | Predicted gene 11849                         | Ġm11849         | XM_001474209,             |
|                |                                |                 | Ũ                                            |                 | XM_001475013              |
| A_55_P2140955  | 54853.09275                    | 0.868671223     |                                              |                 |                           |
| A_51_P237752   | 53759.53325                    | 0.88600706      | Polymerase I and transcript release factor   | Ptrf            | NM_008986                 |
| A_55_P2038077  | 53105.72875                    | 0.866228347     | Ribosomal protein SA                         | Rpsa            | NM_011029                 |
| A_55_P2081482  | 52454.42925                    | 0.880517981     | ATP synthase, H+ transporting, mitochondrial | Atp5g2          | NM_026468                 |
| A FE DO011005  | F202( 01F                      | 0.00001505      | FU complex, subunit C2 (subunit 9)           | D11.2           | NIN ( 01 (720             |
| A_55_P2011235  | 52026.015<br>51076 149         | 0.860201797     | Ribosomal protein L13<br>Predicted game 5528 | крі13<br>Ст5520 | INIVI_U16738              |
| A_00_F2000927  | 019/0.148                      | 0.920282329     | r reulcieu gene 5526                         | G1110028        | AIVI_40400U,<br>XM_010525 |
| Δ 55 P1993629  | 50949 8695                     | 0.815733383     |                                              |                 | AIVI_910020               |
| A 55 P2042481  | 50073 191                      | 0.90505848      | Ribsomal protein S2 pseudogene               | Gm10653         | NR 003965                 |
|                | 2007 0.171                     | 0.70000010      | rasseniai protein oz pocudogene              | 5               | 1.11_000700               |

Selection of significantly regulated genes. For selecting significantly regulated genes, the one sample Student's *t*-test was performed. p Values of 0.05 or less were considered statistically significant. The correction for multiple tests (Benjamini-Hochberg method) was not performed, because we thought that the selected genes would be extremely few in number.

Gene set analysis. Using the GenMAPP pathway database and previously published methods (Kim and Volsky, 2005), gene set analysis was performed. The mean of fold changes among all significantly regulated genes, and the fold change of each gene set, were compared. *Z* scores of fold changes were calculated, and statistical analyses with standard normal distribution were performed. *p* Values of 0.05 or less were considered statistically significant.

Gene functional category analysis. Gene functional category analyses were performed. The number of genes corresponding to each Gene Ontology term among all genes was compared to the number among significantly regulated genes using Fisher's Exact Test. *p* Values of 0.05 or less were considered statistically significant.

## Quantitative PCR

To validate selected aspects of microarray results, three upregulated genes, shown on Table 1 (FBJ osteosarcoma

oncogene: *Fos*, C2 calcium-dependent domain containing 4B: *C2cd4b*, regulator of G-protein signaling 1: *Rgs* 1) and three downregulated genes, shown on Table 2 (stearoyl coenzyme A desaturase 3: *Scd* 3, nuclear receptor subfamily 4, group A, member 2: *Nr4a2*, D site albumin promoter binding protein: *Dbp*) were selected for measurement by quantitative PCR.

RNA extraction and reverse transcription. Total RNA was extracted from tissues using an RNeasy Mini Kit (Qiagen). The quality of RNA was evaluated using electrophoresis on a 1% agarose gel and staining with ethidium bromide. The RNA was treated with TURBO DNase (Applied Biosystems). cDNA was synthesized using a High Capacity cDNA reverse

| Table 5. | Gene Set | ANALYSIS | OF THE | Adrenal | Gland |
|----------|----------|----------|--------|---------|-------|
|----------|----------|----------|--------|---------|-------|

|                                                                   | Number   |             | Fold change |         |
|-------------------------------------------------------------------|----------|-------------|-------------|---------|
| GenMAPP                                                           | of genes | p-Value     | average     | Z score |
| Mm_Smooth_muscle_contraction                                      | 41       | 5.76E-08    | 0.327       | 5.426   |
| Mm_TGF_Beta_Signaling_Pathway                                     | 13       | 3.49E-06    | 0.491       | 4.640   |
| Mm_MAPK_signaling_pathway_KEGG                                    | 40       | 2.86E-05    | 0.258       | 4.184   |
| Mm_TGF-beta-Receptor_NetPath_7                                    | 51       | 3.77E-05    | 0.227       | 4.121   |
| Mm_Selenium-metabolism_Selenoproteins                             | 12       | 1.26E-04    | 0.424       | 3.834   |
| Mm_GPCRDB_Class_A_Rhodopsin-like                                  | 13       | 7.23E-04    | 0.361       | 3.381   |
| Mm_Calcium_regulation_in_cardiac_cells                            | 31       | 1.76E-03    | 0.221       | 3.128   |
| Mm_TNF-alpha-NF-kB_NetPath_9                                      | 56       | 1.36E-02    | -0.112      | -2.466  |
| Mm_Ribosomal_Proteins                                             | 63       | 2.69E-02    | 0.115       | 2.213   |
| Mm_ESC_Pluripotency_Pathways                                      | 30       | 0.058539123 | 0.140       | 1.892   |
| Mm_B_Cell_Receptor_NetPath_12                                     | 40       | 0.060173826 | -0.100      | -1.880  |
| Mm_T-Cell-Receptor_NetPath_11                                     | 28       | 0.063005168 | 0.142       | 1.859   |
| Mm_IL-6_NetPath_18                                                | 22       | 0.073984526 | 0.153       | 1.787   |
| Mm_Regulation_of_Actin_Cytoskeleton_KEGG                          | 32       | 0.075333233 | -0.106      | -1.778  |
| Mm_Alpha6-Beta4-Integrin_NetPath_1                                | 24       | 0.081785532 | 0.144       | 1.740   |
| Mm_EGFR1_NetPath_4                                                | 42       | 0.085953468 | 0.110       | 1.717   |
| Mm_Insulin_Signaling                                              | 47       | 0.096395054 | 0.102       | 1.663   |
| Mm_Apoptosis                                                      | 20       | 0.121537908 | -0.118      | -1.548  |
| Mm_IL-7_NetPath_19                                                | 12       | 0.135364454 | -0.150      | -1.493  |
| Mm_p38_MAPK_signaling_pathway                                     | 11       | 0.187818954 | -0.137      | -1.317  |
| Mm_Integrin-mediated_cell_adhesion_KEGG                           | 27       | 0.202880461 | -0.080      | -1.273  |
| Mm_IL-3_NetPath_15                                                | 23       | 0.230323616 | -0.082      | -1.200  |
| Mm_Proteasome_Degradation                                         | 31       | 0.236472278 | -0.068      | -1.184  |
| Mm_G13_Signaling_Pathway                                          | 15       | 0.248969427 | -0.100      | -1.153  |
| Mm_Adipogenesis                                                   | 19       | 0.262757145 | 0.107       | 1.120   |
| Mm_Delta-Notch_NetPath_3                                          | 20       | 0.277918303 | -0.079      | -1.085  |
| Mm_Androgen-Receptor_NetPath_2                                    | 38       | 0.374440936 | -0.042      | -0.888  |
| Mm_ld_NetPath_5                                                   | 14       | 0.38062277  | 0.099       | 0.877   |
| Mm_IL-2_NetPath_14                                                | 15       | 0.424082909 | -0.066      | -0.799  |
| Mm_Wnt_NetPath_8                                                  | 40       | 0.427676548 | 0.058       | 0.793   |
| Mm_RNA_transcription_Reactome                                     | 15       | 0.448815321 | -0.062      | -0.757  |
| Mm_Circadian_Exercise                                             | 20       | 0.493625081 | 0.068       | 0.685   |
| Mm_mRNA_processing_binding_Reactome                               | 145      | 0.514750248 | -0.009      | -0.651  |
| Mm_G_Protein_Signaling                                            | 24       | 0.517853774 | 0.060       | 0.647   |
| Mm_Focal_adhesion_KEGG                                            | 41       | 0.565007006 | -0.022      | -0.575  |
| Mm_Wnt_Signaling                                                  | 18       | 0.56524677  | 0.062       | 0.575   |
| Mm_Cell_Cycle_KEGG                                                | 17       | 0.574692992 | 0.062       | 0.561   |
| Mm_Translation_Factors                                            | 27       | 0.576961178 | -0.029      | -0.558  |
| Mm_IL-5_NetPath_17                                                | 16       | 0.884339019 | 0.025       | 0.145   |
| Mm_IL-4_NetPath_16                                                | 14       | 0.915237134 | 0.001       | -0.106  |
| Mm_Fas_Pathway_and_Stress_Induction<br>of_HSP_Regulation_Biocarta | 11       | 0.927751985 | 0.001       | -0.091  |
| Mm_Cell_Cycle-G1_to_S_control_Reactome                            | 15       | 0.943787969 | 0.018       | 0.071   |
| Mm_IL-1_NetPath_13                                                | 12       | 0.962413047 | 0.006       | -0.047  |
| Mm_Kit-Receptor_NetPath_6                                         | 11       | 0.964151772 | 0.016       | 0.045   |

transcription kit with RNase inhibitor (Applied Biosystems), by following the manufacturer's instructions.

Real-time quantitative PCR. TaqMan Gene Expression Assays (Applied Biosystems) were used for the following primers and probe (Fos: Mm00487425\_m1, C2cd4b: Mm01179276\_g1, *Rgs1*: Mm00450170\_m1, *Scd3*: Mm00470480\_m1, *Nr4a2*: Mm00443060\_m1, Dbp: Mm00497539\_m1). For selecting the internal standard gene, the internal standard gene stability value was used (Vandesompele *et al.*, 2002); those of  $\beta$ -actin, glyceraldehyde-3-phosphate dehydrogenase, and 18S ribosomal RNA were 1.55, 1.89, and 1.95, respectively. Therefore,  $\beta$ -actin was employed as the internal standard. The  $\beta$ -actin primers and probe were supplied with TaqMan Gene Expression Assays (Mm00607939\_s1, Applied Biosystems). Real-time quantitative PCR was performed using PRISM 7500 sequence detector (Applied Biosystems). A 50 µL reaction mixture containing TaqMan Gene Expression Master Mix (Applied Biosystems) was used, and thermal cycler conditions given in the manufacturer's instructions were followed. All samples were analyzed in triplicate. The relative expression of the target gene was calculated by the  $\Delta\Delta$  Ct method, as described by the manufacturer (Applied Biosystems). Differences in gene expression between control and hypothermic adrenal glands were analyzed using the Student's t test, and p values of 0.05 or less were considered statistically significant.

The research described in this report was conducted in accordance with the guidelines for animal experimentation, Iwate Medical University.

#### Results

#### DNA microarray

Quality control. From 39,429 genes on the microarray plate, we selected 23,905 genes for further analysis.

Selection of the significantly regulated genes. We identified a total of 4051 significantly expressed genes; 2015 were upregulated, and 2036 were downregulated, in hypothermic mouse adrenal gland tissue. Of the upregulated genes, 36 genes increased >2-fold, 6>4-fold, 3>6-fold, 1>8fold, and 2>10-fold. *Fos* was the most upregulated gene, with a 33.7-fold increase. Of downregulated genes, compared to levels in control mice, 19 were <0.5-fold, 8<0.4fold, and 1<0.2-fold. *Scd3* was the most downregulated gene, with a 0.307-fold reduction. Upregulated genes and downregulated genes were arranged in descending and ascending orders of fold change, respectively. Table 1 lists 48 genes having a more than two-fold change, and the 28 genes that had a less than 0.5-fold change are shown in Table 2.

In addition, upregulated and downregulated genes were also arranged in descending order of signal intensity. Table 3



**FIG. 1.** Transforming growth factor  $\beta$  (TGF- $\beta$ ) signaling pathway in hypothermia. *Fos*, which is the most upregulated gene, is found in this pathway.

shows 40 upregulated genes that had a signal intensity of more than 80,000 in hypothermia, whereas 40 downregulated genes that had a signal intensity of more than 50,000 in controls are listed in Table 4.

Gene set analysis. The significantly enriched gene sets that were upregulated or downregulated are summarized in Table 5. A total of nine significant pathways (p < 0.05) were identified, and transforming growth factor- $\beta$  (TGF- $\beta$ ), and tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ) could be involved in the pathogenesis of hypothermia. In addition, the pathway through which TGF- $\beta$  would induce *Fos*, the most upregulated gene in the present study, was identified by this analysis (Fig. 1).

Gene functional category analysis. To investigate the biological functions involving the discriminating genes, we performed Gene Ontology category analysis. For increased (Table 6) and decreased genes (Table 7), the top 10 categories of biological process, molecular function, and cellular component were demonstrated. The most overexpressed categories in upregulated and downregulated genes were cellular process, binding, and cell and cell part.

# Validation of gene expression results by quantitative PCR

Validation by quantitative PCR of three upregulated (Fig. 2) and three downregulated (Fig. 3) genes was performed. Results obtained by DNA microarray and quantitative PCR were consistent, although levels of differences detected by the two methods were not exactly the same. Of the downregulated genes, *Dbp* was decreased to a greater extent than was *Nr4a2*.

## Discussion

In association with hypothermia, molecular biological analyses have revealed inductions of mRNA in the hypothalamus (Umehara *et al.*, 2011), lung, heart, liver, and kidney (Cullen and Sarge, 1997). In addition, studies have been carried out concerning adrenal hormones in hypothermia. It was demonstrated that plasma noradrenaline and adrenaline values were significantly lower in the hypothermia group than in the control group (Hirvonen and Lapinlampi, 1989). This reaction might be due to cold stress, causing noradrenaline and adrenaline to appear in the blood and urine in the

| TABLE 6. GENE ONTOLOGY CLASSIFICATION OF UPREGULATED GEN |
|----------------------------------------------------------|
|----------------------------------------------------------|

| GO accession          | GO term                                                                  | Count in<br>total | Count in selection | p Value    |
|-----------------------|--------------------------------------------------------------------------|-------------------|--------------------|------------|
| Biological process    |                                                                          |                   |                    |            |
| GO:0009987 GO:0008151 |                                                                          |                   |                    |            |
| GO:0050875            | Cellular process                                                         | 9212              | 773                | 4.11E-17   |
| GO:0008152            | Metabolic process                                                        | 7363              | 651                | 4.75E-18   |
| GO:0044237            | Cellular metabolic process                                               | 5717              | 530                | 1.69E-17   |
| GO:0044238            | Primary metabolic process                                                | 5722              | 529                | 3.06E-17   |
| GO:0043170 GO:0043283 | Macromolecule metabolic process                                          | 4448              | 457                | 9.59E-23   |
| GO:0044260 GO:0034960 | Cellular macromolecule metabolic process                                 | 3964              | 427                | 1.68E-24   |
| GO:0019222            | Regulation of metabolic process                                          | 3453              | 340                | 5.84E-13   |
| GO:0006807            | Nitrogen compound metabolic process                                      | 3292              | 317                | 1.24E-10   |
| GO:0034641            | Cellular nitrogen compound metabolic process                             | 3208              | 310                | 1.58E-10   |
| GO:0006139 GO:0055134 | Nucleobase, nucleoside, nucleotide and<br>nucleic acid metabolic process | 2974              | 300                | 2.17E-12   |
| Molecular function    | *                                                                        |                   |                    |            |
| GO:0005488            | Binding                                                                  | 10078             | 833                | 1.71E-17   |
| GO:0005515 GO:0045308 | Protein binding                                                          | 5306              | 437                | 7.94E-06   |
| GO:0003824            | Catalytic activity                                                       | 4782              | 382                | 0.00189936 |
| GO:0043167            | Ion binding                                                              | 3145              | 288                | 3.53E-07   |
| GO:0043169            | Cation binding                                                           | 3136              | 287                | 3.99E-07   |
| GO:0046872            | Metal ion binding                                                        | 3101              | 284                | 4.60E-07   |
| GO:0003676            | Nucleic acid binding                                                     | 2349              | 240                | 4.82E-10   |
| GO:0003677            | DNA binding                                                              | 1611              | 160                | 2.85E-05   |
| GO:0046914            | Transition metal ion binding                                             | 1531              | 141                | 0.00734583 |
| GO:0008270            | Zinc ion binding                                                         | 1308              | 127                | 0.00189936 |
| Cellular component    |                                                                          |                   |                    |            |
| GO:0005623            | Cell                                                                     | 13909             | 1040               | 3.19E-10   |
| GO:0044464            | Cell part                                                                | 13908             | 1040               | 3.19E-10   |
| GO:0005622            | Intracellular                                                            | 9579              | 827                | 4.85E-23   |
| GO:0044424            | Intracellular part                                                       | 9346              | 811                | 4.85E-23   |
| GO:0043226            | Organelle                                                                | 7946              | 709                | 7.12E-22   |
| GO:0043229            | Intracellular organelle                                                  | 7921              | 708                | 5.62E-22   |
| GO:0043227            | Membrane-bounded organelle                                               | 7007              | 634                | 8.56E-20   |
| GO:0043231            | Intracellular membrane-bounded organelle                                 | 6995              | 632                | 1.31E-19   |
| GO:0005737            | Cytoplasm                                                                | 6628              | 558                | 3.35E-10   |
| GO:0005634            | Nucleus                                                                  | 4084              | 408                | 1.60E-17   |

| GO accession          | GO term                                                                  | Count<br>in total | Count in selection | p Value  |
|-----------------------|--------------------------------------------------------------------------|-------------------|--------------------|----------|
| Biological process    |                                                                          |                   |                    |          |
| GO:0009987 GO:0008151 |                                                                          |                   |                    |          |
| GO:0050875            | Cellular process                                                         | 9212              | 842                | 5.61E-35 |
| GO:0008152            | Metabolic process                                                        | 7363              | 709                | 9.66E-34 |
| GO:0044237            | Cellular metabolic process                                               | 5717              | 590                | 3.13E-34 |
| GO:0044238            | Primary metabolic process                                                | 5722              | 584                | 2.52E-32 |
| GO:0043170 GO:0043283 | Macromolecule metabolic process                                          | 4448              | 471                | 9.08E-28 |
| GO:0044260 GO:0034960 | Cellular macromolecule metabolic process                                 | 3964              | 442                | 1.13E-30 |
| GO:0006807            | Nitrogen compound metabolic process                                      | 3292              | 350                | 3.74E-19 |
| GO:0034641            | Cellular nitrogen compound metabolic process                             | 3208              | 347                | 3.18E-20 |
| GO:0019222            | Regulation of metabolic process                                          | 3453              | 342                | 6.50E-14 |
| GO:0006139 GO:0055134 | Nucleobase, nucleoside, nucleotide and<br>nucleic acid metabolic process | 2974              | 320                | 6.18E-18 |
| Molecular function    | *                                                                        |                   |                    |          |
| GO:0005488            | Binding                                                                  | 10078             | 864                | 2.66E-25 |
| GO:0005515 GO:0045308 | Protein binding                                                          | 5306              | 477                | 4.12E-13 |
| GO:0003824            | Catalytic activity                                                       | 4782              | 418                | 4.25E-09 |
| GO:0003676            | Nucleic acid binding                                                     | 2349              | 254                | 6.96E-14 |
| GO:0000166            | Nucleotide binding                                                       | 2011              | 214                | 1.13E-10 |
| GO:0016787            | Hydrolase activity                                                       | 2050              | 187                | 3.41E-04 |
| GO:0017076            | Purine nucleotide binding                                                | 1746              | 175                | 1.99E-06 |
| GO:0032555            | Purine ribonucleotide binding                                            | 1674              | 172                | 5.17E-07 |
| GO:0032553            | Ribonucleotide binding                                                   | 1675              | 172                | 5.32E-07 |
| GO:0003677            | DNA binding                                                              | 1611              | 163                | 3.60E-06 |
| Cellular component    |                                                                          |                   |                    |          |
| GO:0044464            | Cell part                                                                | 13908             | 1119               | 1.08E-28 |
| GO:0005623            | Cell                                                                     | 13909             | 1119               | 1.08E-28 |
| GO:0005622            | Intracellular                                                            | 9579              | 962                | 0        |
| GO:0044424            | Intracellular part                                                       | 9346              | 949                | 0        |
| GO:0043229            | Intracellular organelle                                                  | 7921              | 806                | 0        |
| GO:0043226            | Organelle                                                                | 7946              | 806                | 0        |
| GO:0043231            | Intracellular membrane-bounded organelle                                 | 6995              | 736                | 0        |
| GO:0043227            | Membrane-bounded organelle                                               | 7007              | 736                | 0        |
| GO:0005737            | Cytoplasm                                                                | 6628              | 693                | 0        |
| GO:0005634            | Nucleus                                                                  | 4084              | 468                | 5.21E-36 |

TABLE 7. GENE ONTOLOGY CLASSIFICATION OF DOWNREGULATED GENES

early stages, but then decline as the adrenals become exhausted (Hirvonen and Huttunen, 1995; Saukko and Knight, 2004). In addition, cortisol has been reported to remain low in hypothermia (Woolf et al., 1972). Likewise, no variations of noradrenaline, adrenaline, or cortisol pathways were observed in the present study. Although adrenal responsiveness is thought to decrease in hypothermia (Felicetta et al., 1980), DNA microarray analyses in the present study revealed acute adrenal responses. The potential biomarkers revealed would be Fos, C2cd4b, and Rgs1 from among the upregulated genes (Table 1), and Scd3, Nr4a2, and Dbp from among the downregulated genes (Table 2). Needless to say, the possibility exists that other genes that expressed differentially may be useful for diagnosing hypothermia. We also arranged upregulated and downregulated genes in descending order of signal intensity (Tables 3 and 4). However, these genes showed few changes.

Biomarkers specific to hypothermia would be ideal for use in daily forensic practice. However, it is impossible to check the dynamics of biomarker candidates in all pathophysiologic conditions and deaths, and to validate their specificities. Aspects of the mechanism of death remain unknown. We consider that autopsies are the mainstay in death investigation, and that biomarkers would provide a supplementary source of information. In addition, most autopsy findings of hypothermia, including bright pink lividity, minute hemorrhage of gastric mucosa, and acetone detection, are not specific to hypothermia; this poses difficulties for researching the condition. Although tumor markers are not specific for only one tumor type, they play an active part in the field of oncology. We believe that biomarker utilization could be beneficial for development in the field of forensic pathologic investigation.

In connection with hypothermia, no reports of changes in *C2cd4b*, *Rgs 1*, *Scd3*, *Nr4a2*, or *Dbp* expression were found. On the other hand, *Fos* is a multifaceted gene, expressed during cell growth, differentiation, and development (Muller, 1986; Tulchinsky, 2000). In this study, *Fos* was acutely upregulated during hypothermia. Furthermore, there have been many studies showing that various types of noxious stimuli, (including thermal, mechanical, and chemical) induce expression of *Fos* in the brain and spinal cord (Morgan and Curran, 1991; Herrera and Robertson, 1996).

Results of the current the pathway analysis suggest that TNF- $\alpha$  and TGF- $\beta$  are associated with the pathogenesis of hypothermia. The present study also suggests that TGF- $\beta$  would promote the expression of *Fos*, which was the most



**FIG. 2.** Real-time quantitative polymerase chain reaction (PCR) analysis of upregulated genes. mRNA levels in hypothermia relative to control. Values are expressed as mean $\pm$ standard deviation (SD).

upregulated gene. However, although the production of TGF- $\beta$  in the adrenal gland was reported (Ho and Vinson, 1995; Langlois *et al.*, 1998; Otsuka *et al.*, 1999), relationships between TGF- $\beta$  and *Fos* could not be assessed in the present study. Therefore, this is simply a hypothesis. In addition, the detailed mechanisms of TNF- $\alpha$  activity in the adrenal gland remain unexplained. In the Gene Ontology analysis, cellular process, binding, cell, and cell part were overexpressed categories. These results can not directly contribute to detection of hypothermia biomarkers. However, we can compare the present Gene Ontology terms with those of other organs involved in hypothermia, and consider both along with other research developments. Analyzing common Gene Ontology terms and



**FIG. 3.** Real-time quantitative PCR analysis of down-regulated genes. mRNA levels in hypothermia relative to control. Values are expressed as mean±SD.

organ-specific terms could help reveal the pathophysiology of hypothermia in the future.

The present research demonstrated changes in gene expression in the hypothermic mouse adrenal gland, and we suggest that mRNA expressions may be useful for the diagnosis of hypothermia. However, reports of forensic hypothermia investigations using molecular biological methods have only recently begun to appear, and existing hypothermia findings are also important (Turk, 2010). In addition, fatty degeneration of renal tubular epithelium (Preuss et al., 2004) and myocardial cells (Preuss et al., 2006), vacuoles in pancreatic adenoid cells (Preuss et al., 2007), and heat shock protein 70 in renal tubular epithelium and glomerular podocytes (Preuss et al., 2008) can be used as markers of hypothermia. In forensic practice, considering the combination of macroscopic, microscopic, and molecular biologic observations would be conducive to a more accurate diagnosis of hypothermia.

DNA microarray analysis is used in many fields of medicine. In the present study of 23,905 genes, expression of only 48 genes increased more than two-fold, and that of only 28 genes decreased to less than 0.5-fold, of control levels. These results indicate that the practical uses of transcriptomic methods will be unavoidable in future forensic pathologic research. Since the standardization of experimental conditions is an absolute requirement for transcriptomic analyses, its application for analysis of human forensic samples would be meaningless. For detailed analysis of pathophysiology and forensic biomarker identification, animal experimentation in conjunction with transcriptomic analysis would play important roles. After considering animal transcriptomic data along with postmortem changes, expression of biomarker candidates in forensic human samples should be assessed. Since RNA would decompose in the postmortem interval, utilization of protein levels should be considered for daily forensic practice. In other words, protein analysis would be the next stage after DNA microarray analysis. However, murine adrenal glands are extremely small, and we think that the reliability of antibodies currently on the market is not guaranteed (Pradidarcheep et al., 2008, 2009; Bordeaux et al., 2010), or that no suitable antibodies could be found. Therefore, protein analysis involving immunohistochemistry was not performed in the present study. However, results of the present murine DNA microarray study may provide data applicable to development of future immunohistochemical analysis of human samples. Data presented in this article could become the basis for further investigation. This article includes information regarding adrenal physiology during hypothermia, involving more than 20,000 genes. We believe that these data are informative, not only for future forensic pathological studies, but also potentially for clinical research into hypothermia. From the viewpoint of adrenal gene activity, they may contribute to elucidation of the pathophysiology of hypothermia.

#### Acknowledgment

This study was supported by JSPS KAKENHI Grant Number 24790641.

#### **Disclosure Statement**

All authors declare that they have no conflicts of interest.

#### References

- Aghayev E, Thali MJ, Jackowski C, Sonnenschein M, Dirnhofer R, Yen K. MRI detects hemorrhages in the muscles of the back in hypothermia. Forensic Sci Int 2008;176:183–186.
- Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D. Antibody validation. Biotechniques 2010;48:197–209.
- Cullen KE, Sarge KD. Characterization of hypothermia-induced cellular stress response in mouse tissues. J Biol Chem 1997; 272:1742–1746.
- DiMaio VJ, DiMaio D. Hypothermia. In: Forensic pathology, 2nd ed. DiMaio VJ, DiMaio D (eds). Boca Raton, FL: CRC press, 2001, pp. 428–434.
- Felicetta JV, Green WL, Goodner CJ. Decreased adrenal responsiveness in hypothermic patients. J Clin Endocrinol Metab 1980;50:93–97.
- Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol 1996;50:83–107.
- Hirvonen J, Huttunen P. Increased urinary concentration of catecholamines in hypothermia deaths. J Forensic Sci 1982;27: 264–271.
- Hirvonen J, Huttunen P. Hypothermia markers. Serum, urine, and adrenal gland catecholamines in hypothermic rats given ethanol. Forensic Sci Int 1995;72:125–133.
- Hirvonen J, Lapinlampi T. Plasma and urine catecholamines and cerebral spinal fluid amine metabolites as hypothermia markers in Guinea-pigs. Med Sci Law 1989;29:130–135.
- Ho MM, Vinson GP. Endocrine control of the distribution of basic fibroblast growth factor, insulin-like growth factor-I and transforming growth factor-beta 1 mRNAs in adult rat adrenals using non-radioactive *in situ* hybridization. J Endocrinol 1995;144:379–387.
- Kim SY, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005;6:144.
- Langlois D, Le Roy C, Penhoat A, Lebrethon MC, Saez JM. Autocrine role of TGF beta 1 in adrenal. Horm Metab Res 1998;30:411–415.
- Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible protooncogenes fos and jun. Annu Rev Neurosci 1991;14:421–451.
- Muller R. Cellular and viral fos genes: structure, regulation of expression and biological properties of their encoded products. Biochim Biophys Acta 1986;823:207–225.
- Okuda C, Saito A, Miyazaki M, Kuriyama K. Alteration of the turnover of dopamine and 5-hydroxytryptamine in rat brain associated with hypothermia. Pharmacol Biochem Behav 1986;24:79–83.
- Otsuka F, Ogura T, Yamauchi T, Kataoka H, Kishida M, Miyatake N, Mimura Y, Kageyama J, Makino H. Long-term administration of adrenocorticotropin modulates the expression of IGF-I and TGF-beta 1 mRNAs in the rat adrenal cortex. Growth Horm IGF Res 1999;9:41–51.
- Paton BC. Accidental hypothermia. Pharmacol Ther 1983;22: 331–377.

- Pradidarcheep W, Labruyere WT, Dabhoiwala NF, Lamers WH. Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 2008;56:1099– 1111.
- Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC, Lamers WH. Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 2009;379: 397–402.
- Preuss J, Dettmeyer R, Lignitz E, Madea B. Fatty degeneration in renal tubule epithelium in accidental hypothermia victims. Forensic Sci Int 2004;141:131–135.
- Preuss J, Dettmeyer R, Lignitz E, Madea B. Fatty degeneration of myocardial cells as a sign of death due to hypothermia versus degenerative deposition of lipofuscin. Forensic Sci Int 2006; 159:1–5.
- Preuss J, Dettmeyer R, Poster S, Lignitz E, Madea B. The expression of heat shock protein 70 in kidneys in cases of death due to hypothermia. Forensic Sci Int 2008;176:248–252.
- Preuss J, Lignitz E, Dettmeyer R, Madea B. Pancreatic changes in cases of death due to hypothermia. Forensic Sci Int 2007; 166:194–198.
- Saukko P, Knight B. Injury caused by cold: hypothermia. In: Knight's Forensic Pathology, 3rd ed. Saukko P, Knight B (eds). London: Arnold, 2004, pp. 414–420.
- Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol 2000; 15:921–928.
- Turk EE. Hypothermia. Forensic Sci Med Pathol 2010;6:106-115.
- Ulrich AS, Rathlev NK. Hypothermia and localized cold injuries. Emerg Med Clin North Am 2004;22:281–298.
- Umehara T, Usumoto Y, Tsuji A, Kudo K, Ikeda N. Expression of material mRNA in the hypothalamus and frontal cortex in a rat model of fatal hypothermia. Leg Med 2011;13:165– 170.
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3: RESEARCH0034.
- Woolf PD, Hollander CS, Mitsuma T, Lee LA, Schalch DS. Accidental hypothermia: endocrine function during recovery. J Clin Endocrinol Metab 1972;34:460–466.

Address correspondence to: Masataka Takamiya, MD, PhD Department of Forensic Medicine Iwate Medical University 2-1-1 Nishitokuta, Yahaba Iwate 028-3694 Japan

E-mail: mtakamiy@iwate-med.ac.jp