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Abstract
Pharmacodynamic modeling is based on a quantitative integration of pharmacokinetics,
pharmacological systems, and (patho-) physiological processes for understanding the intensity and
time-course of drug effects on the body. Application of such models to the analysis of meaningful
experimental data allows for the quantification and prediction of drug–system interactions for both
therapeutic and adverse drug responses. In this chapter, commonly used mechanistic
pharmacodynamic models are presented with respect to their important features, operable
equations, and signature profiles. In addition, literature examples showcasing the utility of these
models to adverse drug events are highlighted. Common model types that are covered include
simple direct effects, biophase distribution, indirect effects, signal transduction, and irreversible
effects.
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1. Introduction
Pharmacodynamics represents a broad discipline that seeks to identify drug- and system-
specific properties that regulate acute and long-term biological responses to drugs. The term
is typically used in the context of therapeutic effects, whereas toxicology or toxicodynamics
relates to adverse drug reactions. In contrast to classical conceptualizations whereby
beneficial and adverse responses occur via distinct mechanisms, it is increasingly clear that
diseases and both types of drug responses may emerge from perturbations of singular
complex interconnected networks (1). Thus, mechanism-based pharmacody-namic models,
by definition, should be multipurpose and readily adapted to understand the extent and time-
course of adverse drug effects.

In the mid-1960s, Gerhard Levy was the first to mathematically demonstrate a link between
pharmacokinetics (factors controlling drug exposure) and the rate of decline of in vivo
pharmacological responses (2, 3). Since that landmark discovery, pharmacodynamic
modeling has evolved into a quantitative field that aims to mathematically characterize the
temporal aspects of drug effects via emulating mechanisms of action (4). The application of
mathematical models to describe drug–system interactions allows for the quantification and
prediction of subsequent interactions within the system. The major goals of
pharmacodynamic modeling are to integrate known system components, functions, and
constraints, generate and test competing hypotheses of drug mechanisms and system
responses under new conditions, and estimate system-specific parameters that may be
inaccessible (5). These models are applicable to a wide range of disciplines within the
biological sciences including pharmacology and toxicology, wherein there is a critical need
to understand and predict desired and adverse responses to xenobiotic exposure, which
together define the clinical utility or therapeutic index.
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The main objectives of this chapter are to illustrate commonly used mechanistic
pharmacodynamic models, providing important model features, operable equations, and
signature profiles, as well as examples of the application of these models to the analysis of
drug-induced adverse reactions.

2. Modeling Requirements
Useful pharmacodynamic models are based on plausible mathematical and pharmacological
exposure–response relationships. Basic model components encompassing a range of
pharmacodynamic systems are illustrated in Fig. 1. For most drug effects, both
pharmacological mechanisms, often characterized by sensitivity-grounded capacity-limited
effector units, and physiological turnover processes need to be integrated with drug
disposition when constructing a PK/PD model.

The construction and evaluation of relevant PK/PD models require suitable pharmacokinetic
data, an appreciation for molecular and cellular mechanisms of pharmacological/
toxicological responses, and a range of quantitative experimental measurements of
meaningful biomarkers within the causal pathway between drug–target interactions and
clinical effects. Good experimental designs are essential to ensure that sensitive and
reproducible data are collected. These data should cover a reasonably wide dose/
concentration range and appropriate study duration to ascertain net drug exposure and the
ultimate fate of the biomarkers or outcomes under investigation. A wide range of systemic
drug concentrations is also typically required for the accurate and precise estimation of
pharmacodynamic parameters. Typically studies should involve a minimum of two to three
doses to adequately estimate the nonlinear parameters of most pharmacodynamic models
with simultaneous collection of concentration and response data. For more complex systems
(and therefore models), more extensive datasets are required as these models typically
incorporate multiple nonlinear processes and pharmacodynamic endpoints. Models are
typically defined using ordinary differential equations and include both drug- and system-
specific parameters. This separation of terms provides a platform for translational research,
whereby relationships with in vitro bioassays and preclinical experiments can be identified.

Once a structural model has been selected, unknown parameter values can be estimated
using nonlinear regression techniques. It is beyond the scope of this chapter to review the
vast array of software programs and algorithms available, and the best tool and approach
will often be defined by the characteristics of the experimental data, the familiarity of the
end user with specific programs, and the goals and objectives of the analysis. The type of
model (e.g., data-driven versus systems models), the nature of the biomarker (e.g.,
continuous versus categorical), the degree of inter-subject variability, and complexities
within a dataset (e.g., missing variables, data above or below a limit of quantification, and
availability of covariates) are just a few considerations when selecting an approach to
develop and qualify PK/PD models.

3. Practical Modeling Approaches
The first steps in any modeling endeavor are to define the objectives of the analysis and to
perform a careful graphical analysis of raw data. Both efforts should facilitate selection of
appropriate techniques and conditions for model construction and evaluation. A good
graphical analysis (along with a priori knowledge of drug mechanisms) may be used to
narrow down the number of structural models being considered as a base model and also
help in calculating initial parameter estimates. Despite progress in computational algorithms,
good initial parameter estimates can reduce the likelihood of falling into local minima and
can also be used as a reality check when compared to final parameter estimates or literature
reported values. Next, an appropriate drug/toxin pharmacokinetic/toxicokinetic function is
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derived from fitting a model to concentration–time profiles in relevant biological fluids.
Depending on the complexity of the pharmacodynamic model/system, the pharmacokinetic
model and associated parameters are often fixed to serve as a driving function for the
pharmacodynamic model relating drug exposure to pharmacological/toxicological effects.
Although simultaneous PK/PD modeling is desirable, this can still be a formidable challenge
for complex models. Objective model-fitting criteria (e.g., diagnostic and goodness-of-fit
plots) are frequently compared to select a final model, and a variety of techniques are
available to verify or qualify models, which can range in complexity depending on the
modeling approach (e.g., population versus pooled data). Ideally, an external dataset, not
used in the construction of the model, could be used to determine whether the model is
generalizable; however, internal validation steps are far more common as most model-
builders will attempt to incorporate all available experimental data. In any event, final
models should reasonably recapitulate the data used to derive the model, generate new
insights and testable hypotheses of factors controlling drug responses, and provide guidance
for subsequent decisions in drug discovery, development, and pharmacotherapy. Subsequent
sections will highlight commonly used pharmacodynamic models with increasing degrees of
complexity, as well as provide literature examples on the application of such models to the
analysis of drug-induced adverse events.

3.1. Simple Direct Effect Models
The Hill equation assumes that drugs effects (E) are directly proportional to receptor
occupancy (i.e., linear transduction), assumes that plasma drug concentrations are in rapid
equilibrium with the effect site, and represents a fundamental pharmacodynamic relationship
(6):

(1)

This equation, also known as the Emax model, describes the concentration–effect
relationship in terms of a baseline effect or E0 (if applicable), the maximum possible effect
(Emax), and the drug concentration producing half maximal effect (EC50). These parameters
can be visualized easily from a plot of effect versus log- concentration where Emax is the
plateau at relatively high concentrations and EC50 is the drug concentration associated with
E = 0.5 × Emax. Signature temporal profiles for simple direct effects for a compound with
monoexponential disposition are shown in Fig. 2. The effect versus time curves appear
saturated at high dose levels, decline linearly and in parallel over a range of doses, and the
peak response time corresponds with the time of peak drug concentrations.

If a sufficient range of concentrations is not achieved, or cannot be obtained for safety
reasons, the Hill equation can be reduced to simpler functions. For concentrations
significantly less than the EC50, Cp in the denominator of Eq. 1 is negligible, and drug effect
is directly proportional to plasma drug concentrations:

(2)

with S as the slope of the relationship. When the effect is between 20 and 80% maximal,
according to Eq. 1, the effect is directly proportional to the log of drug concentrations:

(3)
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with m as the slope of the relationship. These reduced functions are only valid within certain
ranges of drug concentrations relative to drug potency, and hence cannot be extrapolated to
identify the maximal pharmacodynamic effect of a compound.

The full Hill equation, or sigmoid Emax model, incorporates a curve-fitting parameter, γ,
which describes the steepness of the concentration–effect relationship:

(4)

Initial estimates for this parameter can be determined using the linear slope of the effect
versus log-concentration plot:

(5)

As the Hill coefficient increases from 1 to 5, the concentration–effect relationship becomes
less graded, and values of 5 tend to result in quantal or all-or-none types of effects. In
contrast, values less than 1 produce very shallow slopes.

Simple direct effect models have been utilized to characterize the adverse effects of a
number of drugs. Arrhythmias may occur as a side effect of cardiac and noncardiac
therapies, and an increasing number of studies are conducted with QTc intervals as the
toxico-dynamic endpoint. QTc prolongation in response to citalopram (7) and tacrolimus (8)
has been modeled using a simple Emax function (Fig. 3). The simple Emax model
incorporating baseline measurements of the dynamic endpoints was also used to model the
cardiovascular toxicity of cocaine administration (9). The model reasonably described the
effects of cocaine on multiple endpoints including heart rate and systolic and diastolic blood
pressure. Both the Emax and sigmoid Emax models were evaluated for describing
methemoglobin formation from dapsone metabolites (10); however, fitting criteria were not
evaluated to select the best model.

3.2. Biophase Distribution
In many cases, the in vivo pharmacological effects will lag behind plasma drug
concentrations. This results in the phenomenon of hysteresis, or a temporal disconnect in
effect versus concentration plots. Distribution of drug to its site of action might represent a
rate-limiting process that may account for the delay in drug effect. The term “biophase” was
coined by Furchgott (11) to describe the drug site of action, and a mathematical approach to
linking plasma concentrations and drug effect through a hypothetical effect compartment
was popularized by Sheiner and colleagues (12) (Fig. 4, top panel). Plasma drug
concentrations are described using an appropriate pharmacokinetic model, and the rate of
change of drug concentrations at the biophase (Ce) is defined as

(6)

with keo as a first-order distribution rate constant. Although separate rate constants for
production and loss were first proposed, they are often set as the same term (keo) for
identifiability purposes. The amount of drug moving into and out of this compartment is
assumed to be negligible, and therefore does not influence the pharmacokinetics of the drug.
Biophase distribution is combined with Eq. 1 or 4, with Ce from Eq. 6 replacing Cp to drive
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the pharmacological effect. Figure 4 (bottom panels) illustrates the signature profile of the
biophase model (i.e., biophase concentration and effect profiles) for a drug exhibiting
monoexponential disposition. Peak drug effects are delayed relative to peak plasma
concentrations; however, the time to peak effect is observed at the same time, independent
of the dose level. The time to peak drug effect is related to keo, with smaller values resulting
in later peak effects. Furthermore, for large dose levels, the slope of the decline of effect is
linear and parallel between 20 and 80% of the maximum effect. Estimation of biophase
model parameters can be done sequentially by fitting the pharmacokinetics and then fitting
the biophase and pharmacodynamic parameters, or by simultaneously fitting all terms.

The biophase model is only suitable for describing delayed responses due to drug
distribution. As it was the first approach for describing such delayed drug responses, it has
been commonly misapplied to describe systems in which the rate-limiting step is unrelated
to drug distribution, resulting in poor fitting and/or unrealistic parameter values.

The biophase model was implemented for describing buprenorphine-induced respiratory
depression in rats (13), and the clinical prediction of transient increases in blood pressure
(14). Yassen and colleagues (13) utilized biophase distribution combined with a sigmoidal
Emax model to characterize changes in ventilation following a range of dose levels of
buprenorphine. In contrast, increases in blood pressure resulting from a drug in clinical
development were described using the biophase model coupled with a more complex
pharmacodynamic relationship incorporating changes from a blood pressure set point (14).

3.3. Indirect Response Models
Indirect response models represent a highly useful class of models wherein reversible drug–
receptor interactions serve to alter the natural production or loss of biomarker response
variables. A model reflecting inhibition of production was first utilized to characterize
prothrombin activity in blood after oral warfarin administration (15). Dayneka and
colleagues (16) were the first to formally propose four basic indirect response models whose
structures are detailed in Fig. 5 (top panel). These models have been used to investigate the
pharmacodynamics of a wide range of drug effects, and their mathematical properties have
been well characterized (17, 18). The four basic models include inhibition of production
(Model I) or dissipation (Model II) of response or stimulation of production (Model III) or
dissipation of response (Model IV), and are defined by the following differential equations:

3.3.1. Model I

(7)

3.3.2. Model II

(8)

3.3.3. Model III

(9)
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3.3.4. Model IV—

(10)

where kin is a zero-order production rate constant, kout is a first-order elimination rate
constant, Imax and Smax are defined as the maximum fractional factors of inhibition (0 < Imax
≤ 1) or stimulation (Smax > 0), and IC50 and SC50 are defined as the EC50. Initial parameter
estimates can be obtained from a graphical analysis of PK/PD data as previously described
(17, 18). Signature profiles for these models in response to increasing dose levels are shown
in Fig. 5 (middle and bottom panels). Interestingly, the time to peak responses are dose
dependent, occurring at later times as the dose level is increased. This phenomenon is easily
explained as the inhibition or stimulation effect will continue for larger doses, as drug
remains above the EC50 for longer times. The initial condition for all models (R0) is kin/kout
which may be set constant or fitted as a parameter during model development. Ideally, a
number of measurements should be obtained prior to drug administration to assess baseline
conditions. Based on the determinants of R0, typically the baseline and one of the turnover
parameters are estimated, and the remaining rate constant is calculated as a function of the
two estimated terms. This reduces the number of parameters to be estimated and maintains
system stationarity.

The basic indirect response models can be extended to incorporate a precursor compartment
(P). The following equations represent a general set of precursor-dependent indirect
response models (Fig. 6, top panel) that were developed and characterized by Sharma and
colleagues (19):

(11)

(12)

where k0 represents the zero-order rate constant for precursor production, kp is a first-order
rate constant for production of the response variable, and kout is the first-order rate constant
for dissipation of response. H1 and H2 represent the inhibition or stimulation of precursor
production or production of response and are analogous to the Imax and Smax functions
presented in Eqs. 7 through 10. Stimulation or inhibition of kp is more commonly observed
than alterations in the production of precursor. The signature profiles for models V and VI
are shown in Fig. 6 (bottom panels) and clearly demonstrate the rebound effect as drug
washes out of the system. The data requirements for these models are similar to the basic
indirect response models; however, sufficient data are needed to adequately capture
baseline, maximum, and rebound effects, as well as the eventual gradual return to baseline
conditions. Responses should be evaluated for two to three doses, with a sufficiently large
dose to capture the maximum effect. The response measurements for the large dose should
be used to determine initial parameter estimates followed by simultaneous fitting of all
response data. Initial parameter estimates should be derived as previously described (19).

Indirect response models have been utilized to describe the pharmacodynamic effects of a
wide range of compounds that alter the natural bioflux or turnover of endogenous substances
or functions. A basic indirect response model for erythropoietin was extended to include
multiple-compartments for describing the turnover of red blood cells and carboplatin-
induced anemia (20).
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This model nicely illustrates the development of a more complex model based on indirect
mechanisms of drug action to simultaneously describe multiple in vivo processes.

3.4. Signal Transduction Models
Substantial time-delays in the observed pharmacodynamic response may result from
multiple time-dependent steps occurring between drug–receptor binding and the ultimate
pharmacological response. A transit compartment approach can be utilized to describe a lag
between drug concentration and observed effects owing to time-dependent signal
transduction (21, 22). Assuming rapid receptor binding, the following differential equation
describes the rate of change of the initial transit compartment (M1):

(13)

wherein the Emax model describes the drug–receptor interaction, and τ is the mean transit
time through this compartment. Subsequent transit compartments may be added, and a
general equation for the ith compartment can be defined as

(14)

Later compartments will show a clear delay in the onset of response as well as substantial
delays in achieving the maximum effect. Model development for signal transduction
systems typically includes evaluating varied numbers of transit compartments and values for
τ to determine the combination that best describes the data.

Chemotherapy-induced myelosuppression represents a classic example of the use of a transit
compartment modeling to describe this adverse reaction to numerous chemotherapeutic
agents (Fig. 7, top panel). The structural model was proposed by Friberg and colleagues (23)
to describe myelosuppression induced by irinotecan, vinflunine (Fig. 7, bottom panel), and
2′-deoxy-2′-methylidenecyti-dine for a range of dose levels and various dosing regimens.
This same structural model has been used to describe indisulam-induced mye-losuppression
(24), as well as the drug–drug interactions between indisulam and capecitabine (25), and
pemetrexed and BI2536 (26).

3.5. Irreversible Effect Models
A wide range of compounds, including anticancer drugs, antimicrobial drugs, and enzyme
inhibitors, elicit irreversible effects. A basic model for describing irreversible effects was
developed by Jusko and includes simple cell killing (27):

(15)

where R represents cells or receptors, C is either Cp or Ce, and k is a second-order cell-kill
rate constant. The initial condition for this equation is the initial number of cells present
within the system (R0) often represented as a survival fraction. This approach is only
applicable for non-proliferating cell populations, but may be extended to incorporate cell
growth (27):

(16)
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with ks as an apparent first-order growth rate for proliferating cell populations, such as
malignant cells or bacteria. This growth rate constant represents the net combination of
natural growth and degradation of the cellular population, and its initial estimate can be
determined from a control- or nondrug-treated cell population. The model diagram and
corresponding signature profiles are shown in Fig. 8. The initial slope of the log survival
fraction versus time curve out to time, t, and the plasma drug AUC(0–t) can be used to obtain
an initial estimate for k (k = −ln SFt/AUC(0–t)), and the initial condition for Eq. 16 is the
total cell population at time zero. In contrast to simple cell killing, the effect–time profiles
are characterized by an initial cell kill phase, followed by an exponential growth phase, once
drug concentrations are below an effective concentration (Fig. 8, bottom panel). Clearly the
control group is needed to properly characterize the exponential growth rate constant in the
untreated cell population.

The irreversible effect model can also be adapted to include the turnover or production and
loss of a biomarker:

(17)

The initial condition for this model is the same as basic indirect responses or kin/kout. The
signature profiles for this model are similar to the profiles for indirect response models I and
IV (Fig. 5). It is important to understand the mechanism of action of the response that you
are evaluating in order to determine which model should be utilized.

Irreversible effect models are commonly used to describe the cell killing action of
chemotherapeutic agents and anti-infectives. This model was also applied to evaluate the
formation of methe-moglobin following the administration of a range of antimalarial agents
(28). The final model characterized methemoglobin production resulting from the formation
of an active drug metabolite.

3.6. More Complex Models
The main focus of this chapter was the introduction of commonly used mechanistic
pharmacodynamic models that can be readily applied to toxicokinetics and dynamics.
However, a number of mechanistic processes may be required to adequately describe the
drug–system interactions under investigation. Slow receptor binding, tolerance phenomenon,
drug interactions, opposing drug effects, and disease progression may add additional
complexities to the analysis of toxicodynamic data. For example, Houze and colleagues (29)
evaluated paraoxon-induced respiratory toxicity and its reversal with pralidoxime (PRX)
administration in rats via the combination of multiple pharmacodynamic modeling
components. Initially, the time-course of paraoxon inactivation of in vitro whole blood
cholinesterase (WBChE) was modeled based on enzyme inactivation:

(18)

where EA is active enzyme, k is the maximal rate constant of enzyme inactivation, CPO is
paraoxon concentration, EC50,PO is the concentration of paraoxon that produces 50% of k, kr
is a first-order reactivation rate constant, and EI is the inactive enzyme pool. The rate of
change of the inactive enzyme (EI) was defined as
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(19)

where kage is a first-order rate constant of aging of inactive enzyme. The reactivation of this
in vitro system by PRX was modeled as an indirect response, and Eqs. 18 and 19 were
updated accordingly:

(20)

(21)

Interestingly, the estimated potency of PRX was in agreement with an empirical literature
estimate. For the in vivo dynamics, a fixed pharmacokinetic function for PRX was
introduced, and an empirical function was used to describe paraoxon-induced enzyme
inactivation, as plasma concentrations were unavailable. The estimated parameters from the
in vitro analysis were fixed (not identi-fiable from in vivo data only), and the toxicodynamic
biomarker, expiratory time (TE), was linked to apparent active enzyme (EA) according to the
following nonlinear transfer function:

(22)

where  is the baseline expiratory time, Emax, TE is the maximal increase in TE, E0 is the
baseline active enzyme (1 or 100%), E50 is the corrected enzyme ratio resulting in 50% of
Emax, TE, and n is a sigmoidicity coefficient. Expiratory profiles and the transient antidotal
effect of PRX were described well, and this analysis highlights the integration of several
basic modeling approaches described in this chapter. Further, the coupling of in vitro
enzyme and in vivo toxicodynamic data demonstrates the versatility and multi-scale nature
of the model.

An additional theoretical example of mechanism-based analysis of drug interactions was
presented by Earp and colleagues (30), who examined drug interactions utilizing indirect
response models. These more complex models typically consider multiple pharmaco-
dynamic endpoints which require individual data sets and stepwise analysis for each
endpoint. A corticosteroid model which considers mRNA dynamics of the glucocorticoid
receptor and hepatic tyro-sine aminotransferase mRNA and activity is an example of
simultaneously characterizing multiple pharmacodynamic endpoints using an integration of
basic modeling components (31).

The majority of mechanism-based pharmacodynamic models describe continuous
physiological response variables. However, models are available for evaluating
noncontinuous outcomes, such as the probability of a specific event occurring. Such
responses are often more clinically relevant, and more research is needed to combine
continuous mechanistic PK/PD models with clinical outcomes data. One example is the
prediction of enoxaparin-induced bleeding events in patients undergoing various therapeutic
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dosing regimens (32). A population proportional-odds model was developed to predict the
severity of bleeding event on an ordinal scale of 1–3 (32).

4. Prospectus
The future of mechanism-based pharmacodynamic modeling for both therapeutic and
adverse drug responses is promising for model-based drug development and therapeutics,
and many of the basic modeling concepts in this chapter will likely continue to represent key
building components in more complex systems models. A diverse array of models is
available with a minimal number of identifiable parameters to mimic mechanisms and the
time-course of therapeutic and adverse drug effects. However, new methodologies will be
needed to evolve these models further into translational platforms and prospectively
predictive models of drug efficacy and safety. Network-based systems pharmacology
models have shown utility for understanding drug-induced adverse events (1). Further
research is needed to identify practical techniques for bridging systems pharmacology and in
vivo PK/PD models to anticipate the clinical utility of new chemical entities from first
principles.
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Fig. 1.
Basic components of pharmacodynamic models. The time-course of drug concentrations in a
relevant biological fluid (e.g., plasma, Cp) or the biophase (Ce) is characterized by a
mathematical function that serves to drive PD models. The biosensor process involves the
interaction between the drug and the pharmacologic target (R), and may be described using
various receptor-occupancy models, may require equations that consider the kinetics of the
drug–receptor complex formation and dissociation, or may encompass irreversible drug–
target interactions. Many drugs act via indirect mechanisms and the biosensor process may
serve to stimulate or inhibit the production (kin) or loss (kout) of endogenous mediators.
These altered mediators may not represent the final observed drug effect (E) and further
time-dependent transduction processes may occur, thus requiring additional modeling
components. System complexities such as drug interactions, functional adaptation, changes
with pathophysiology, and other factors may play a role in regulating drug effects after acute
and long-term drug exposure (adapted from ref. 33).
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Fig. 2.
Simulated drug concentrations (left) and response curves (right) using a simple Emax model
(Eq. 1). Drug concentrations follow monoexponential disposition: Cp = Coe(−kt). Co was set
to 10, 100, or 1,000 units to achieve increasing dose levels. Parameter values were k = 0.12/
h, Emax = 100 units, and EC50 = 15 units.

Felmlee et al. Page 14

Methods Mol Biol. Author manuscript; available in PMC 2013 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Direct effect model of tacrolimus-induced changes of QTc intervals in guinea pigs. The
pharmacokinetic model includes both plasma and ventricular myocardial drug
concentrations (a), and the latter are associated with changes in QTc according to Eq. 4 (b).
The PK/PD relationship results in the time-course of changes in QTc (c). Reprinted from ref.
8 with permission from Springer.
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Fig. 4.
Biophase model structure (top panel) and signature profiles for drug concentrations at the
biophase (left bottom panel) and pharmacological effects (right bottom panel). Response
curves were simulated using Eqs. 1 and 6 driven by drug concentrations following
monoexponential disposition: Cp = Coe(−kt). Co was set to 100 units. Parameter values were
k = 0.12/h, keo = 0.1 or 0.5/h, Emax = 100 units, and EC50 = 15 units.
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Fig. 5.
Indirect response model structure (top panel) and signature profiles for the four basic
indirect response models (middle and bottom panels). Response curves were simulated using
Eqs. 7, 8, 9, and 10 driven by drug concentrations following monoexponential disposition:
Cp = Coe(−kt). Co was set to 10, 100, or 1,000 units to achieve increasing doses. Parameter
values were k = 0.12/h, Imax = 1 unit (Models I and II), Smax = 10 units (Models III and IV),
EC50 = 15 units, kout = 0.25/h, and Ro = 100 units (kin = Rokout).

Felmlee et al. Page 17

Methods Mol Biol. Author manuscript; available in PMC 2013 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Multiple compartment indirect response models (top panel) and signature profiles for
Models V and VI (bottom panel). Response curves were simulated using Eqs. 11 and 12
driven by drug concentrations following monoexponential disposition: Cp = Coe(−kt). Co was
set to 10, 100, or 1,000 units to achieve increasing doses. Parameter values were k = 0.12/h,
Imax = 1 unit, Smax = 10 units, EC50 = 15 units, ko = 25 unit/h, kp = 0.5/h, and kout = 0.25/h.
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Fig. 7.
Transit-compartment model of myelosuppression (top panel) including a proliferating
progenitor pool (P), three transit compartments (Mi), and a plasma neutrophil compartment
(N). Drug effect is driven by plasma drug concentration (Cp) and pharmacodynamic
parameters (θ). An adaptive feedback function on the proliferation rate constant is governed
by the ratio of initial neutrophils to current neutrophil count, raised to a power coefficient
(γ). The time-course of neutrophils following vinflunine administration (arrows in bottom
panel). Reprinted from ref. 23 with permission from the American Society of Clinical
Oncology.
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Fig. 8.
Structural model for irreversible effects (top panel) and signature profiles for irreversible
effect model with a proliferating cell population (bottom panel). Response curves were
simulated using Eq. 16 driven by drug concentrations following monoexponential
disposition: Cp = Coe(−kt). Co was set to 0, 10, 100, or 1,000 units to achieve a control
population and increasing dose levels. Pharmacokinetic parameter was k = 0.12/h.
Pharmacodynamic parameters were k = 0.0005 units/h, ks = 0.03/h.
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