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INTRODUCTION TO EMOTIONAL PROCESSING
Mood and anxiety disorders are characterized by a variety of neuroendocrine,
neurotransmitter, and neuroanatomical disruptions. Identifying the most functionally
relevant differences is complicated by the high degree of interconnectivity between
neurotransmitter- and neuropeptide-containing circuits in limbic, brain stem, and higher
cortical brain areas. Furthermore, a primary alteration in brain structure or function or in
neurotransmitter signaling may result from environmental experiences and underlying
genetic predisposition; such alterations can increase the risk for psychopathology.

Functional Anatomy
Symptoms of mood and anxiety disorders are thought to result in part from disruption in the
balance of activity in the emotional centers of the brain rather than in the higher cognitive
centers. The higher cognitive centers of the brain reside in the frontal lobe, the most
phylogenetically recent brain region. The prefrontal frontal cortex (PFC) is responsible for
executive functions such as planning, decision making, predicting consequences for
potential behaviors, and understanding and moderating social behavior. The orbitofrontal
cortex (OFC) codes information, controls impulses, and regulates mood. The ventromedial
PFC is involved in reward processing1 and in the visceral response to emotions.2 In the
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healthy brain, these frontal cortical regions regulate impulses, emotions, and behavior via
inhibitory top-down control of emotional-processing structures (eg,3).

The emotional-processing brain structures historically are referred to as the “limbic system”
(Fig. 1). The limbic cortex is part of the phylogenetically ancient cortex. It includes the
insular cortex and cingulate cortex. The limbic cortex integrates the sensory, affective, and
cognitive components of pain and processes information regarding the internal bodily
state.4,5 The hippocampus is another limbic system structure; it has tonic inhibitory control
over the hypothalamic stress-response system and plays a role in negative feedback for the
hypothalamic–pituitary–adrenal (HPA) axis. Hippocampal volume and neurogenesis
(growth of new cells) in this structure have been implicated in stress sensitivity and
resiliency in relationship to mood and anxiety disorders. An evolutionarily ancient limbic
system structure, the amygdala, processes emotionally salient external stimuli and initiates
the appropriate behavioral response. The amygdala is responsible for the expression of fear
and aggression as well as species-specific defensive behavior, and it plays a role in the
formation and retrieval of emotional and fear-related memories. (Fig. 2 depicts the
amygdala’s involvement in fear circuitry). The central nucleus of the amygdala (CeA) is
heavily interconnected with cortical regions including the limbic cortex. It also receives
input from the hippocampus, thalamus, and hypothalamus.

Neuroendocrine and Neurotransmitter Pathways
In addition to the activity of each brain region, it also is important to consider the
neurotransmitters providing communication between these regions. Increased activity in
emotion-processing brain regions in patients who have an anxiety disorder could result from
decreased inhibitory signaling by γ-amino-butyric-acid (GABA) or increased excitatory
neurotransmission by glutamate.

Well-documented anxiolytic and antidepressant properties of drugs that act primarily on
monoaminergic systems have implicated serotonin (5-hydroxytryptamine, 5-HT),
norepinephrine (NE), and dopamine (DA) in the pathogenesis of mood and anxiety
disorders. Genes whose products regulate monoaminergic signaling have become a prime
area of research in the pathophysiology of mood and anxiety disorders, and they are thought
to be critical for the mechanism of action of antidepressant drugs. Monoaminergic regulators
include transmitter receptors; vesicular monoamine transporter (vMAT), which packages
these neurotransmitters into vesicles; the vasopressin (AVP), oxytocin, and vasopressin
(AVP), oxytocin, and transmitter-specific reuptake transporters serotonin transporter
(SERT), neurotonin transporter, and dopamine transporter; the enzyme monoamine oxidase,
which degrades 5-HT, DA, and NE; and the enzyme catecholamine-O-methyltransferase
(COMT), which degrades DA and NE.

In the central nervous system, classic neurotransmitters often are packaged and co-released
with neuropeptides, many of which are expressed in limbic regions where they can influence
stress and emotion circuitry (Table 1). The functional implications of these limbic co-
localizations have been addressed in numerous reviews (eg,6–12). Neuropeptides with
particularly strong links to psychopathology include cholecystokinin (CCK), galanin,
neuropeptide Y (NPY), vasopressin (AVP), oxytocin, and corticotropin-releasing factor
(CRF), among others. CCK is found in the gastrointestinal system and vagus nerve and is
located centrally in numerous limbic regions (reviewed in13). Galanin is co-localized with
monoamines in brainstem nuclei. It influences pain processing and feeding behavior and
also regulates neuroendocrine and cardiovascular systems.14–16 NPY is known for its
orexigenic effects and is expressed abundantly in the central nervous system, where it is co-
localized with NE in the hypothalamus, hippocampus, and amygdala (reviewed in13).
Centrally, oxytocin regulates reproductive, maternal, and affiliative behavior.17,18 Central
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AVP regulates fluid homeostasis but also can co-localize with oxytocin to influence
affiliative behavior19 or with CRF to regulate the HPA axis.

CRF in parvocellular neurons of the hypothalamic paraventricular nucleus is the primary
secretagogue for the HPA axis in response to a threatening stimulus. AVP synergizes with
CRF in HPA axis activation. In the HPA axis, CRF is released from the paraventricular
nucleus and acts on receptors in the anterior pituitary to elicit production and release of
adrenocorticotropic hormone (ACTH), which is released systemi-cally and activates
production and release of glucocorticoids from the adrenal cortex. In humans, the main
stress steroid is cortisol; in rats it is corticosterone. HPA axis activity is regulated by
numerous other limbic system structures, including the amygdala, which enhances HPA axis
activity, and the hippocampus, which suppresses HPA axis activation (Fig. 3).

Standardized endocrine challenge tests to assess HPA axis activity include the
dexamethasone suppression test and the CRF stimulation test. In the dexamethasone
suppression test, systemic administration of dexamethasone, a synthetic glucocorticoid,
decreases (ie, suppresses) plasma ACTH and cortisol concentrations via negative feedback
at the level of the pituitary gland. In the CRF stimulation test, intravenously administered
CRF (which does not enter the central nervous system) elevates plasma ACTH and cortisol
concentrations by stimulating CRF1 receptors in the anterior pituitary. A combination of the
dexamethasone suppression test and the CRF stimulation test, the Dex/CRF test, developed
by Holsboer and colleagues, generally is considered to be the most sensitive measure of
HPA axis activity.

Genetic Contribution to Emotionality
Each anxiety disorder, as well as major depressive disorder (MDD), has both genetic and
environmental contributions to vulnerability. In attempts to identify the genetic contribution
for psychopathology, the candidate genes have largely been the same across diagnoses.
Researchers have tended to concentrate on the genes whose products regulate the HPA axis
and monoaminergic signaling. Ongoing research supports the hypothesis that a genetic
predisposition may be shared among mood and anxiety disorders, with the individual
clinical manifestation being a product of both genetic and environmental influences. In
particular, epigenetic factors may permit a remarkably complex range of gene–environment
interactions.

Among the limited longitudinal studies available, there is much support for a
“developmental dynamic pattern” regarding the influence of genetic factors on individual
differences in symptoms of depression and anxiety. In this model, the impact of genes on
psychopathology changes so that different developmental stages are associated with a
unique pattern of risk factors. This model is in sharp contrast to a “developmental stable
model” in which the genetic contribution to psychopathology is mediated by one set of risk
factors that do not change with the age of the subject.20

Another approach for assessing the impact of genes on risk for psychopathology focuses not
on diagnostic class but on more circumscribed phenotypic characteristics. A recent study
assessed anxious behavioral characteristics in children between 7 and 9 years of age. They
found shared and specific genetic effects on anxiety-related behavior but no single
underlying factor, supporting the hypothesis that genes are involved in the general
predisposition for anxiety-related behavior and also for specific symptom subtypes.21
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PANIC DISORDER
Anatomical and Neuroimaging Findings in Panic Disorder

Neuroimaging in patients who have panic disorder (PD) under resting conditions and under
anxiety- or panic-provoking conditions has identified neuroanatomical alterations associated
with symptom severity or treatment response.

Single-photon emission computed tomography (SPECT) identified lower metabolism in the
left inferior parietal lobe and overall decreased bilateral cerebral blood flow (CBF) in
patients who had PD as compared with control subjects, and this decrease corresponded with
symptom severity.22 Other studies, however, have demonstrated elevated glucose uptake in
the amygdala, hippocampus, thalamus, midbrain, caudal pons, medulla, and cerebellum as
measured by positron emission tomography (PET). These elevations normalize after
successful pharmacological or behavioral therapy, suggesting that the increased glucose
uptake in these regions is state dependent. Patients who had PD had decreased frontal
activity bilaterally but increased activity in the right medial and superior frontal lobe in
SPECT studies. Interestingly, the CBF asymmetry and shift to the right hemisphere
correlated with disorder severity in individual patients (reviewed in23).

After administration of the respiratory stimulant doxapram, patients who had PD exhibited a
greater decrease in PFC activity but a larger increase in cingulate gyrus and amygdala
activity while experiencing panic than control subjects. In patients who had PD who were
administered sodium lactate to provoke a panic attack, functional MRI (fMRI) demonstrated
elevated CBF in the right OFC and left occipital cortex but decreased CBF in the
hippocampus and amygdala (reviewed in23). Other studies have shown that patients who do
not experience a panic attack after sodium lactate infusion show no differences in CBF
compared with control subjects. Interestingly, when a spontaneous panic attack was
observed in an fMRI study, the panic was associated with significantly increased activity in
the right amygdala.24

Imaging analyses of patients who have PD who are in an anxious (but not panicked) state
also have provided important data. Upon presentation of threatening words in fMRI studies,
the left posterior cingulate and left medial frontal cortex were activated in these patients.25

Others have shown that presentation of negative emotional words elicits activations in the
right amygdala and right hippocampus in patients who have PD.26 When patients who have
PD are presented with anxiety-provoking visual stimuli, they exhibit increased activity in the
inferior frontal cortex, hippocampus, anterior cingulate cortex (ACC), posterior cingulate
cortex (PCC), and OFC.27 Compared with healthy control subjects, patients who had PD
exhibited less activation in the ACC and amygdala when shown pictures of angry faces.
These latter results were interpreted as a blunted response caused by chronic hyperactivity in
these circuits in patients who had PD.28

Neuroendocrine and Neurotransmitter Signaling in Panic Disorder
Amino acid neurotransmitters—Decreased inhibitory signaling has been hypothesized
to play an important pathophysiological role in PD. In drug-free patients who had PD,
increased benzodiazepine binding in the temporal cortex and right lateral frontal gyrus29 but
decreased binding in the left hippocampus30,31 has been observed. In patients who have PD
and comorbid MDD treated with antidepressant medications, benzodiazepine binding was
decreased in the lateral temporal lobes, left medial inferior temporal lobe, and bilateral OFC.
Binding in the insular cortex bilaterally was negatively correlated with panic severity and
with comorbid depression.32
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Magnetic resonance spectroscopy (MRS) has demonstrated decreased GABA concentrations
in the occipital cortex,33 ACC, and basal ganglia34 in patients who have PD compared with
control subjects. Although there is no evidence for differences in plasma or cerebrospinal
fluid (CSF) GABA concentrations in patients who have PD,33 low baseline CSF GABA
concentrations did correlate with a poor therapeutic response to the triazolobenzodiazepine
alprazolam or the tricyclic antidepressant imipramine. Interestingly, patients who have PD
and who have a family history of mood and anxiety disorders exhibit decreased cortical
GABA concentrations (reviewed in35).

Elevated excitatory glutamatergic signaling is associated with panicogenicity, and drugs that
reduce glutamate availability are hypothesized to possess anxiolytic properties. For example,
LY354740, an agonist on presynaptic metabotropic glutamate receptors (mGluR II), leads to
decreased release of glutamate. This drug decreases anxiety-like behavior in the fear-
potentiated startle paradigm in experimental animals.36 LY354740 and other presynaptic
metabotropic glutamate agonists also exert neuroprotective effects. In human studies,
LY354740 and related drugs decrease subjective anxiety in a conditioned-fear paradigm in
healthy volunteer subjects. In patients who have PD, mGluR II agonists are protective
against panicogenic agents such as carbon dioxide inhalation (reviewed in37).

Monoamines—Monoaminergic drugs, including tricyclic antidepressants and selective
serotonin-reuptake inhibitors (SSRIs), are effective in the treatment of PD. Two SSRIs,
fluvoxamine and paroxetine, had a more rapid onset of action and a better therapeutic
response on PD symptoms than achieved with cognitive behavioral therapy (CBT)
(reviewed in38). The dose of paroxetine needed to treat PD optimally is higher than that
required for MDD, suggesting that the mechanism by which SSRIs reduce panic symptoms
may be distinct from their mechanism of antidepressant action.39 Patients who have PD
exhibit an increased anxiogenic response to administration of the 5-HT2c/5-HT3 agonist
meta-chlorophenylpiperazine (mCPP).40 In PET studies, 5HT1A receptor binding is
decreased in the cingulate cortex and raphe nucleus of patients who have PD. SPECT studies
have revealed decreased SERT binding in the midbrain, bilateral temporal lobe, and
thalamus. The magnitude of the decrease correlates with symptom severity and also
normalizes in patients who have PD in remission (reviewed in35). Together, these data
support a role for serotonergic circuits in the pathogenesis of PD.

Noradrenergic involvement in PD is evidenced by challenge with the α2 antagonist
yohimbine. Yohimbine-elicited panic-like anxiety in patients who have PD is associated
with elevated cardiovascular activity and increased serum NE concentrations. There is some
evidence that the α2 agonist clonidine has an anxiolytic effect. Patients who have anxiety
disorders, including PD, often exhibit a blunted growth hormone response to clonidine
administration, suggesting that presynaptic NE autoreceptors are supersensitive (reviewed
in35). Overall, these data suggest that patients who have PD have alterations in NE circuits,
and this system therefore may represent a target for novel treatment development.

Neuropeptides—Although CCK is a well-known panic-inducing agent even in healthy
volunteers, few studies have specifically addressed the role of CCK in panic disorder.
Chronic imipramine treatment decreases the acute anxiety-inducing effects of CCK, but this
finding does not speak to a role for endogenous CCK systems in PD (reviewed in13).

A recent study also identified an association between galanin and symptom severity in
female patients who had PD but had no effect on risk for PD. The associated single-
nucleotide polymorphisms (SNPs) were within CpG dinucleotides of the galanin promoter,
suggesting that epigenetic factors could explain the influence of galanin on PD severity.41
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Corticotropin-releasing factor and the hypothalamic-pituitary-adrenal axis—
Patients who have PD have been reported to exhibit increased baseline plasma cortisol
concentration, which is positively correlated with the risk for a panic attack after lactate
administration. These data suggest that elevated baseline plasma cortisol represents a state of
anticipatory anxiety, but not panic itself. The underlying biology of elevated basal cortisol
concentrations may be related to increases in CRF concentrations in the CSF of patients who
have PD (reviewed in35).

The HPA axis in patients who have PD has been assessed at rest over a full circadian cycle,
before and after activation by a panicogenic agent that does not independently activate the
HPA axis (doxapram) and before and after administration of a panicogenic agent that does
activate the HPA axis (the CCK-B agonist pentagastrin). Increased overnight plasma cortisol
concentrations corresponding to sleep disruption have been noted in subjects who have PD;
this increase is a trait rather than a statedependent marker of PD. In the doxapram challenge
study, an exaggerated increase in plasma ACTH was observed in the patients who had PD.
Compared with healthy control subjects, plasma ACTH concentrations were elevated
following pentagastrin administration in patients who had PD. Taken together, these data
support the hypothesis that patients who have PD are hypersensitive to the HPA axis–
activating effects of situations that are novel, threatening, and uncontrollable. After the basal
state was established reliably, the ACTH response to CRF administration was not altered in
patients who had PD, suggesting that the previous studies were confounded by the effects of
the novel environment on the HPA axis (reviewed in42).

Genetic Contribution to Panic Disorder
PD is thought to be the most heritable of the anxiety disorders. First-degree relatives of
proband patients who have PD have a sevenfold increased likelihood for PD and also have
an increased risk for phobic disorders.43–45 Twin studies suggest that 30% to 40% of the
variance in vulnerability for PD is derived from genetic factors and the remainder from
individual-specific, but not shared, environment/life experiences.43

Linkage studies in families that have PD have been hampered by non-replication and small
numbers.45,46 A large analysis including 120 pedigrees with more than 1500 individuals
revealed two loci with genome-wide significance on chromosomes 2q and 15q, but these
results await further replication.47 A large number of genetic association studies for PD have
been published, implicating many genes. A recent review compiled the genes that have been
associated with PD in more than one study thus far, although in some cases different
polymorphisms within these genes have been associated with PD in different studies,
complicating any attempt to draw causal conclusions from these data (reviewed in45). The
genes associated with PD in multiple studies are:

1. COMT

2. Adenosine 2A receptor

3. CCK

4. CCK Receptor B

5. 5HT2A receptor

6. Monoamine oxidase-A

In addition to the aforementioned target genes, polymorphisms in SLC6A4, the gene for the
serotonin transporter, also have been associated with PD. The association, however, is not
with the well-studied promoter-length polymorphism.48 Rather, SNPs within the serotonin
transporter gene show association with PD and comorbid PD/social anxiety disorder (SAD).

Martin et al. Page 6

Psychiatr Clin North Am. Author manuscript; available in PMC 2013 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Subjects who have at least one copy of haplotype A-A-G from rs3794808, rs140701, and
rs4583306 have 1.7 times the odds of PD than subjects with no copy of this haplotype.49 In
combination with associations of other genes within the monoamine system mentioned
earlier in this article, these data support the hypothesis that monoaminergic systems are
involved in anxiety disorders as a group; their exact role may be disorder specific.

Although most genetic-association studies have investigated only single polymorphism
contributions, it is very likely that a combination of polymorphisms in sets of candidate
genes act in concert to increase the risk for this disorder. In fact, a recent study investigating
the contribution of genetic variants in the CRF and AVP system reported that the strongest
results were the combined effects of rs878886 in CRF1 and rs28632197 in the gene
encoding the vasopressin 1B receptor (AVP1B).50 A model with two SNPs showed
significant associations with PD in both samples separately, and significance improved to P
5 .00057 in the combined sample of 359 cases and 794 controls. Both SNPs are of potential
functional relevance, because rs878886 is located in the 3′ untranslated region of the CRF1
gene, and rs28632197 leads to an arginine-to-histidine amino acid exchange at position 364
of AVP1B, which is located in the intracellular C-terminal domain of the receptor and
probably is involved in G-protein coupling. These genetic data support the large body of
evidence demonstrating interactions of AVP and CRF systems in anxiety. Another family-
based study failed to find an association of four polymorphisms in the CRF1 locus with PD,
but fewer CRF1 polymorphisms and no AVP1B polymorphisms were tested in this study.51

POSTTRAUMATIC STRESS DISORDER
Anatomical and Neuroimaging Findings in Posttraumatic Stress Disorder

Activation of the amygdala is important for the fear learning associated with PTSD
symptoms and with extinction learning associated with PTSD treatment. Amygdala
hyperresponsiveness has been identified in numerous studies of patients who have PTSD
(reviewed in37). Greater activation of the amygdala in response to viewing fearful faces
corresponded with poor prognosis in CBT;52 other studies have shown that severity of
PTSD symptoms predicts the magnitude of amygdala activation when encoding memories
unrelated to the traumatic event.53

A recent study examined the neural correlates of responsiveness to CBT in Iraq war veterans
who had PTSD. Avoidance symptoms of PTSD are thought to result from conditioned fear-
like encoding of the environment surrounding a traumatic event. CBT in PTSD attempts to
override the conditioned fear with extinction learning. In patients who had recently
diagnosed PTSD, rostral ACC volume predicted a successful CBT response. It is possible
that decreased rostral ACC volume results in a decreased ability for extinction learning.
Thus, patients who have PTSD and who have a smaller ACC volume may be less able to
regulate fear during therapy, rendering the CBT process less effective.54 Functional imaging
studies have shown that greater activation of the ventral ACC in response to viewing fearful
faces corresponded with a poorer response to CBT.52

It has been hypothesized that symptoms of PTSD, including intrusive thoughts and re-
experiencing trauma, result from an inability of higher cognitive structures to repress
negative emotional memories. This imbalance is obvious in functional imaging studies with
tasks that require interrelated executive and emotional processing systems. In healthy
subjects and in recently deployed veterans of war who have PTSD, presentation of
emotional stimuli, as compared with neutral stimuli, elicits activation in ventral frontolimbic
brain regions, including the ventromedial PFC, inferior frontal gyrus, and ventral anterior
cingulate gyrus. In patients who have PTSD, the magnitude of ventral activation is
positively correlated with symptom severity. Furthermore, compared with neutral stimuli,
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combat-related stimuli produced enhanced activation of this ventral emotional system. The
amplitude of this increase also correlated with the severity of PTSD symptoms.55 During
executive tasks, healthy controls and patients who have PTSD activate a dorsal executive
network that includes the middle frontal gyrus, dorsal anterior cingulate gyrus, and inferior
parietal lobule. In patients who have PTSD, reduced activation of the dorsal executive
network correlates with symptom severity. The middle frontal gyrus, a component of the
dorsal executive network, also is activated when patents who have PTSD view combat-
related images. These results suggest that brain areas that are restricted to executive
functioning in healthy subjects are used for emotional/affective processing in patients who
have PTSD, thereby diminishing the capacity of executive control.55

Similarly, sensory gating deficits in patients who have PTSD may result from information
processing systems being overpowered by hypervigilance for threat-related stimuli and
hyperarousal. A task requiring subjects to inhibit a primed motor response has demonstrated
deficits of inhibitory control in patients who have PTSD. In control subjects, inhibitory
processing activated the right frontotemporoparietal cortical network. In patients who had
PTSD, the left ventrolateral PFC (vlPFC) was activated, and the frontotemporoparietal
cortical network was less active. In terms of the behavioral response, increased error
correlated with PTSD symptom severity. Increased symptom severity may result in
increasingly overwhelmed inhibitory networks. Conversely, decreasing ability to recruit
inhibitory control networks may result in more intense symptoms.56

Neurotransmitter and Neuroendocrine Signaling in Posttraumatic Stress Disorder
Amino acid neurotransmitters—Glutamate plays a critical role in hippocampal-
dependent associative learning and in amygdala-dependent emotional processing in stressful
conditions or following stress exposure. Inappropriate glutamate signaling therefore could
contribute to the processing distortion experienced by many patients who have PTSD. In
support of the glutamate hypothesis of PTSD, the N-methyl-D-aspartic acid receptor
antagonist ketamine is well known for its ability to induce dissociative and perceptual
distortions, similar to the processing distortion in patients who have PTSD (reviewed in37).

Recent research has explored the possible therapeutic potential of glutamatergic targets in
PTSD. One such drug is the anticonvulsant topiramate. Topiramate inhibits excitatory
transmission at kainate and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)
receptors and has demonstrated anxiolytic properties at lower doses than required for
anticonvulsant effects, suggesting a unique mechanism of action. Open-label studies using
topiramate as either adjunctive or monotherapy have demonstrated some efficacy in
diminishing nightmares and flashbacks and in improving overall PTSD symptoms.37

Monoamines—There are numerous reports of hyperactive noradrenergic signaling in
PTSD. For example, NE is robustly secreted after exposure to acute physiological stress, and
CSF concentrations of NE are tonically elevated in PTSD veterans. There is no evidence of
a correlation between NE concentration and symptom severity, however (reviewed in57). As
with patients who have PD, yohimbine elicits panic-like anxiety associated with
cardiovascular symptoms and increased serum NE in patients who have PTSD relative to
healthy control subjects (reviewed in35). Furthermore, patients who have PTSD have been
shown to exhibit elevated 24-hour urinary catecholamine excretion.58 Some of the effects of
NE on PTSD symptoms may be mediated by interactions between NE and glucocorticoids
(eg,59). Drugs targeting the NE system have been assessed in PTSD with varying degrees of
success for individual PTSD symptoms (see57 for a thorough review).

SSRIs have been demonstrated to be of moderate efficacy in PTSD, and sertraline is
approved by the Food and Drug Administration to treat this disorder. In patients who had
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non–combat-related PTSD, paroxetine treatment improved hyperarousal and avoidance
symptoms by 8 weeks and improved re-experiencing symptoms by the end of the 12-week
study.60 The Institute of Medicine report on treatment of PTSD did not consider the efficacy
data on SSRIs to be sufficient when compared with the psychotherapy data.61

Neuropeptides—In healthy soldiers during intense military training, interrogation stress
led to an increase in plasma NPY concentrations; plasma NPY concentrations were
correlated with cortisol concentrations and with behavioral performance. Combat-exposed
men who did not develop PTSD tended to have higher concentrations of plasma NPY than
combat-exposed men who had PTSD. These data suggest that NPY could be a neural
correlate of resiliency.62

A recent review article identified a potential role for neurokinins in PTSD.35 Neurokinin 2
antagonists did not exhibit anxiolytic properties in preclinical tests in which benzodiazepines
were active. The latter are of limited use in PTSD, however. Expression of galanin has been
demonstrated to be stress responsive, in that it is decreased by acute stress but returns to
normal within several days. If the stress continues and becomes chronic, galanin expression
increases. It has been suggested that elevated galanin expression induced by chronic stress
leads to increased autoinhibition of NE cell bodies in the locus coeruleus (LC); decreased
tonic LC activity could contribute to depressive symptoms in patients who have PTSD
(reviewed in35).

Corticotropin-releasing factor and the hypothalamic-pituitary-adrenal axis—
Numerous studies have identified HPA axis disruption in patients who have PTSD.63–68

Compared with healthy control subjects, and in contrast to patients who have MDD, cortisol
concentration is decreased in plasma, in saliva upon awakening, and in 24-hour urinary
measures in combat-exposed patients who have PTSD.69 In a more recent study, a mixed
population of civilian patients who had PTSD also exhibited decreased cortisol
concentrations; lower plasma cortisol corresponded with greater symptom severity.70

Importantly, there also have been studies showing no difference in circadian salivary or 24-
hour urinary cortisol concentrations (eg,71,72).

As in patients who have MDD, CSF concentrations of CRF were found to be higher in
patients who had PTSD than in comparison subjects in two studies.73,74 Patients who have
MDD typically exhibit a blunted HPA axis response in the CRF-stimulation test, and in
veterans of the Vietnam or Korean wars hospitalized for PTSD, the ACTH response to ovine
CRF injection also was blunted relative to control subjects and was independent of comorbid
MDD diagnosis.75 In contrast, although dexamethasone non-suppression often is observed
in patients who have MDD, patients who have PTSD exhibit greater suppression of plasma
ACTH and cortisol concentrations.76 Negative findings also have been reported.77

Dexamethasone hypersuppression in patients who have PTSD may result from sensitized
central glucocorticoid receptors (GRs) secondary to chronic elevations in CRF. This finding
is in sharp contrast to patients who have MDD, in whom chronic CRF overexpression is
thought to result eventually in GR desensitization and reduced negative feedback (reviewed
in35). Alterations in CRFergic signaling and the HPA axis could result from insufficient
glucocorticoid signaling caused by decreased hormone bioavailability or from decreased
hormone receptor sensitivity.78

Genetic Contribution to Posttraumatic Stress Disorder
The heritability for PTSD has an estimated range of 30% to 40%, probably resulting from a
variety of genes, each with relatively small contributions to the genetic predisposition for
this disorder.79–83 Because of the importance of the environmental impact for this disorder,
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linkage studies in pedigrees cannot be conducted easily. Candidate gene association studies
also are confounded by the problem of matching for environmental exposure and largely
have been limited by small sample size (n < 100); therefore these studies would able to
detect only large genetic effects.

Because PTSD is the only anxiety diagnosis requiring a prior traumatic event, much
research has been devoted to examining gene-by-environment interactions in patients who
have PTSD.A complex-repeat polymorphism in the 5′ upstream region of SLC6A4, the
gene encoding the serotonin transporter (serotonin transporter-linked polymorphic region, 5-
HTTLPR), has been studied in depth by numerous groups. This polymorphism consists of a
repetitive region containing 16 imperfect repeat units of 22 bp, located approximately 1000
bp upstream of the transcriptional start site.48,84 The 5-HTTLPR is polymorphic because of
the insertion/deletion of units 6 through 8, which produces a short (S) allele that is 44 bp
shorter than the long (L) allele. The 5-HTTLPR has been associated with different basal
expression and functional activity of the transporter, most likely related to differential
transcriptional activity.48,84 The L-allele of this polymorphism has been shown to lead to a
higher serotonin reuptake by the transporter and thus less serotonin in the synaptic cleft. The
shortSERT allele has been shown to interact with stressful life events (including abuse in
childhood)to increase the risk for depression later in life.85–91 This polymorphism recently
has been shown to play a role in the genetic underpinnings of PTSD. In hurricane victims,
the SERT polymorphism interacts with severity of trauma and level of social support toward
the development of PTSD.92

Other genes interacting with early-life stress (ELS) also are strong candidates for
influencing susceptibility for PTSD. Preclinical studies indicate that the persistent
hyperactivity of the HPA axis associated with ELS is mediated by a hyperactive CRF1
system, with chronic overactivity of CRF1 in limbic brain regions.93,94 In fact, the authors
have shown that a haplotype within the gene encoding CRF1 interacts with child abuse to
predict depression severity in adults.95 These polymorphisms, however, did not interact with
ELS to predict PTSD symptoms.96

Polymorphisms in genes regulating GR activity may alter sensitization of the stress-response
pathway during development so that victims of ELS have increased risk for PTSD following
traumatic events in adulthood. FKBP5, a co-chaperone of heat shock protein 90, plays a role
in regulating the expression of glucocorticoid-responsive genes.97 Increased expression of
FKBP5 has been shown to reduce glucocorticoid binding affinity98 and to reduce nuclear
translocation of the GR,99 resulting in resistance to glucocorticoid activation. In humans, the
rare alleles of the FKBP5, SNPs rs4613916, rs1360780, and rs3800373, were associated
with higher FKBP5 expression in blood monocytes as well as with a stronger induction of
FKBP5 mRNA by cortisol.100 As an important candidate gene in trauma-related HPA axis
disturbances, the putative functional SNPs in FKBP5 are hypothesized to moderate the
development of PTSD and/or to alter the impact of early trauma or PTSD on GR.100–102

In support of this hypothesis, there seems to be a positive correlation between the
upregulation of FKBP5 mRNA in peripheral blood mononuclear cells induced by acute
trauma and the development of the PTSD 4 months later.103 Furthermore, when exposed to
medical trauma, pediatric patients who had the rs3800373 and rs1360780 alleles were more
likely to exhibit peritraumatic dissociation,104 a strong predictor of PTSD in adulthood.105

In the largest genetics study in PTSD conducted thus far, the authors’ group showed that the
same alleles increased the risk for adult PTSD symptom severity in adults who had been
exposed to child abuse but not to trauma as adults.96 Additional research will be necessary
to clarify the gene–environment relationship between early-life trauma versus adult trauma.
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SOCIAL ANXIETY DISORDER
Anatomical and Neuroimaging Findings in Social Anxiety Disorder

As with PD and PTSD, amygdala activation has been implicated in symptoms of SAD.
Social-cue tasks, such as the viewing of harsh faces, were associated with hyperreactivity in
the amygdala and other limbic areas in patients who had SAD. Similarly, in response to
viewing negative (but not neutral or positive) affective faces, patients who have SAD
exhibited bilateral amygdala activation, which positively correlated with symptom severity
and which reversed upon successful treatment. In anticipation of public speaking,
subcortical, limbic, and lateral paralimbic activity is increased in patients who have SAD,
suggesting elevations in automatic emotional processing. Decreased activity in the ACC and
PFC in these subjects suggests a decreased ability for cognitive processing (reviewed in23).

In contrast to the social-cue studies, activity in the left hippocampus and right amygdala was
decreased during script-guided mental imagery tasks that provoke social anxiety. This
decrease may reflect active blunting of the emotional and autonomic response to improve
overall functioning during social situations that provoke anxiety.106 Furthermore, anxiety-
provoking imagery (compared with neutral imagery) was associated with increased
activation in the left postcentral gyrus and putamen and in the right inferior frontal and
middle temporal gyri. Relative decreased activity was observed in the right middle temporal
gyrus, left precuneus, and posterior cingulate gyrus. After 8 weeks of treatment with
nefazodone, both remitted and partially improved social anxiety was associated with
decreased regional CBF (rCBF) in the lingual gyrus, left superior temporal gyrus, and right
vlFC and with increased rCBF in the left middle occipital gyrus and inferior parietal cortex.
In subjects who achieved remission following nefazodone treatment, posttreatment testing
revealed decreased rCBF in the ventral and dorsal ACC, left vlPFC, dorsolateral PFC, and
brainstem and increased rCBF in the middle cingulate cortex, left hippocampus,
parahippocampal gyrus, subcallosal orbital, and superior frontal gyri.106

The combined results of imaging analysis in subjects who have SAD suggest dysfunction of
a cortico-striato-thalamic network: hyperactivity in the right PFC, striatal dysfunction, and
increased hippocampal and amygdala activity with left lateralization. It has been suggested
that hyperactivity in the frontolimbic system, including the ACC, which processes negative
emotional information and anticipation of aversive stimuli, could result in misinterpretation
of social cues (reviewed in23,107).

Neurotransmitter and Neuroendocrine Signaling in Social Anxiety Disorder
Amino acid neurotransmitters—Increased excitatory glutamatergic activity has been
reported in patients who have SAD. Compared with matched control subjects, patients who
had SAD had a 13.2% higher glutamate/creatine ratio in the ACC as measured by MRS. The
glutamate/creatine ratio correlated with symptom severity, suggesting a causal role between
excitatory signaling in the ACC and psychopathology (reviewed in37).

Monoamines—The Neurobiology of Anxiety Disorders In addition to benzodiazepines,
SSRIs, SNRIs, and monoamine oxidase inhibitors are effective in the treatment of SAD.
That SSRI treatment is successful in treating SAD symptoms and reversing some brain
abnormalities (eg, elevated amygdala activity) has been cited as evidence for a serotonergic
role in the etiology of SAD.107 Data supporting the hypothesis of disrupted monoaminergic
signaling in patients who have SAD include decreased 5HT1A receptor binding in the
amygdala, ACC, insula, and dorsal raphe nucleus (DRN). Moreover, trait and state anxiety
is elevated in patients who have SAD who have one or two copies of the short SERT allele,
and this patient population exhibits amygdala hyperactivity in anxiety-provocation
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paradigms. Neuroimaging analyses also have revealed decreased density of the dopamine
transporter and decreased binding capacity for the D2 receptor (reviewed in23). A role for
DA in SAD is supported by the finding that patients who have Parkinson’s disease have high
rates of comorbid SAD (reviewed in107). This co-morbidity, however, could result from
insecurity regarding display of the physical symptoms of this movement disorder rather than
a common etiology of DA malfunction.

A recent study assessed whether a DA agonist (pramipexole, 0.5 mg) or antagonist
(sulpiride, 400 mg) influenced response to anxiogenic challenge such as verbal tasks and
autobiographical scripts in patients who had SAD. The anxiogenic effect of the behavioral
challenges was significantly increased in patients who had untreated SAD following
administration of either drug. After successful treatment with SSRIs, however,
administration of pramipexole seemed to dampen the behavioral provocation-induced
anxiety, whereas sulpiride administration continued to enhance the anxiogenic effects of
these tasks. These authors suggested that instability in the dopaminergic response to social
stress contributes to anxiety severity and is normalized only partly by successful treatment,
perhaps via SSRI-induced desensitization of postsynaptic D3 receptors.108

Neuropeptides—As key effectors of social behavior, the neuropeptides oxytocin and
vasopressin are of particular interest in SAD and autistic spectrum disorders. Recently direct
oxytocin administration to the amygdala in laboratory animals was shown to decrease
activation in this region and to dampen amygdala–brainstem communications, which are
known to play a role in the autonomic and behavioral components of fear. Furthermore,
preliminary data have shown that genetic variants in the central vasopressin and oxytocin
receptors (AVP1A and OXTR, respectively) influence amygdalar activity. These data
support the hypothesis of amygdala hyperactivity in SAD. Future research in this area may
elucidate neural underpinning of human social behavior and the genetic risk for disorders
including SAD and autism.18

Corticotropin-releasing factor and the hypothalamic-pituitary-adrenal axis—
Some evidence indicates sensitization of the HPA axis in patients who have SAD.
Psychosocial stress produces a greater increase in plasma cortisol, but not ACTH, in patients
who have SAD than in control patients despite similar baseline cortisol concentrations.109

Compared with healthy control subjects or patients who have PTSD, subjects who have
SAD tend toward an elevated cortisol response in the Trier Social Stress Test (TSST). The
degree of cortisol elevation was correlated with increased avoidance behavior in the
approach–avoidance task and the predicted stress-induced increased social avoidance above
and beyond effects of blood pressure and subjective anxiety.110 Negative findings also have
been reported, however (eg,111,112). For example, an earlier study found that adolescent girls
who had social phobia and control subjects exhibited an equal elevation in salivary cortisol
following the TSST. To the authors’ knowledge, there are no endocrine-challenge studies
(Dex-Suppression, CRF-Stimulation, or Dex/CRF) in patients who have SAD.

Genetic Contribution to Social Anxiety Disorder
The Neurobiology of Anxiety Disorders Unfortunately, there are very few studies
specifically examining the genetic underpinnings of SAD. Available data suggest that SAD
has a high degree of familial aggregation. In a recent meta-analysis in which SAD was
grouped with specific phobia and agoraphobia, an association between phobia in probands
and their first-degree relatives was identified.43

Twin studies in social phobics suggest that additive genetics is responsible for increased
incidence of SAD in monozygotic compared with dizigotic twins and suggest no role for
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common environmental experiences. Adult twin studies of combined phobia diagnoses
(including social phobics) suggest that the additive genetics accounts for 20% to 40% of the
variance in diagnosis. This result corresponds with a population-based twin study of
adolescents diagnosed with social phobia, MDD, and alcoholism, in which genetics
accounted for 28% of the risk variance for SAD. Again, the remaining risk was derived from
non-shared environmental experiences. Unlike MDD and PTSD, there is little evidence that
early-life trauma influences the risk for developing SAD in adulthood.43

The one genome-wide linkage analysis of SAD implicated a region on chromosome 16 near
the gene encoding the norepinephrine transporter. Other genes associated with SAD include
(1) a functional variant in ADRB1, the gene encoding the β1-adrenergic receptor, and (2)
two SNPs and a 3-SNP haplotype in the gene for COMT in female patients who have SAD
(reviewed in107). Because SAD is such a complex phenotype, it has been suggested that it
may be more fruitful to search for susceptibility genes by examining intermediate
phenotypes, quantitative traits, and comorbidity with other illnesses. In fact, SAD
heritability includes disorder-specific but also nonspecific genetic factors. SAD is associated
with behavioral inhibition in childhood, low extroversion, and high neuroticism. These
personality traits are not SAD specific but are hypothesized to contribute to a spectrum of
psychopathology inclusive of mood and anxiety disorders. Furthermore, behavioral
inhibition, low extroversion, and high neuroticism are each known to be highly heritable and
may largely account for the genetic contribution to SAD.

Genes associated with high behavioral inhibition include CRF and SERT. Internalizing
neuroticism is associated with the gene encoding glutamic acid decarboxylase, the rate-
limiting enzyme in the synthesis of GABA from glutamate (reviewed in107).

GENERALIZED ANXIETY DISORDER
Anatomical and Neuroimaging Findings in Patients who Have Generalized Anxiety
Disorder

Structural imaging studies have shown high ratios of gray matter to white matter in the
upper temporal lobe of pediatric patients who have generalized anxiety disorder (GAD).113

Pediatric patients who have GAD also exhibit increased amygdala volume, which may
correspond to the stress-induced amygdalar hypertrophy observed in laboratory animal
studies (reviewed in37).

In functional imaging studies of adolescent patients who have GAD, resting vlPFC activity
is elevated relative to healthy control subjects. Because the vlPFC activity correlates
negatively with symptom severity, the elevation in vlPFC metabolism is interpreted as a
compensatory response rather than an underlying cause of GAD.114 Because of observed
hypermetabolism in the PFC of patients who have GAD, neuronal viability has been
assessed in this region as measured by the ratio of N-ace-tylasparate to creatine using proton
MRS. For patients who had GAD, neuronal viability was increased in the right dorsolateral
PFC in those without early-life stress but was decreased in those who self-reported early-life
trauma.115

Functional brain imaging results obtained under resting conditions in patients who have
GAD have tended to be inconsistent; provocative anxiety-inducing tasks have produced
more robust and interpretable fMRI results. The pattern of brain activity in anxious patients
who have GAD correlates well with results from laboratory animal studies in which limbic
circuits, particularly the amygdala, play an important role in the fear response (eg,116,117;
see118 for a review). In fact, many imaging studies of patients who have GAD show elevated
amygdala and insula activation during negative emotional processing (reviewed in23,119,120).
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In response to viewing angry faces, adolescent patients who had GAD exhibited an elevated
right amygdala response; this activation correlated positively with symptom severity. The
overactivity in the right amygdala also was correlated negatively with activity in the right
vlPFC, suggesting top-down disinhibition as a potential mechanism for elevated amygdala
activity.121 Interestingly, strong pretreatment activation of the left amygdala in pediatric
patients who had GAD predicted a positive therapeutic response to fluoxetine or CBT.122

These results have been interpreted to suggest that a greater amygdaloid response to
negative emotions represents a healthier signal-to-noise ratio. When adult patients who have
GAD view fearful faces, lower pretreatment amygdala activity and higher ACC activity
predict a positive treatment response to venlafaxine.123 Additional studies will be crucial in
determining whether amygdala activation has clinical utility in predicting treatment
outcome.

Interconnectivity with brain regions responsible for interpreting social behavior may be one
mechanism by which the amygdala plays a substantial role in anxiety disorders. The brain
regions responsible for interpreting social behavior include the superior temporal gyrus,
thalamus, and PFC. Amygdala hyperactivity may mediate the inaccurate interpretations of
social behavior in patients who have GAD.120

Neurotransmitter and Neuroendocrine Signaling in Generalized Anxiety Disorder
Amino acid neurotransmitters—The observed limbic overactivity in patients who have
GAD could result from decreased inhibitory neurotransmission, increased excitatory
neurotransmission, or a combination of these two processes. Dysregulation of GABA
inhibitory neurotransmission has been documented in several anxiety disorders (reviewed
in124). GABAA receptor downregulation is observed in patients who have GAD and has
been hypothesized to play a role in the etiology of this illness (reviewed in68). In support of
this hypothesis is the finding that symptoms of GAD, including excessive worry,
hypervigilance, and psychomotor agitation, are treated effectively with GABAA facilitators
such as benzodiazepines and barbiturates (reviewed in124). Furthermore, treatment with
riluzole, an anti-glutamatergic agent, seems to improve GAD symptoms.125,126

Monoamines—Although all the SSRIs have shown efficacy in GAD, the drug most
frequently studied in anxiety is paroxetine, which decreases symptoms of harm avoidance. It
is important to note that GAD often is comorbid with other disorders, including MDD, PD,
and SAD, each of which also has shown responsiveness to SSRI treatment.39

More concrete evidence supporting a role for 5-HT circuitry in GAD includes challenge
with the 5-HT2c/5-HT3 agonist mCPP, which elicits anxiety and anger in patients who have
GAD (reviewed in68).

Further evidence for a serotonergic component of GAD is provided by functional brain
imaging studies that have found that midbrain SERT density correlates negatively with
symptom severity.127,128 Recent studies have replicated the negative correlation between
SERT density and anxiety symptoms in GAD, but there is no difference in SERT density in
subjects who have GAD as compared with controls.127

Neuropeptides—Patients who have GAD are hypersensitive to exogenously administered
CCK agonists,129,130 leading to the study of CCK receptor–selective antagonists as a
putative novel class of anxiolytics. One such drug was developed but was not demonstrated
to possess anxiolytic efficacy.131 Additional research and development of unique CCK
antagonists will be an important step in clarifying the role of CCK in anxiety and its
potential as a therapeutic target.
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To the authors’ knowledge, no studies have specifically examined the role of NPY in GAD.
NPY does possess anxiolytic effects in laboratory animals (reviewed in132). These anxiolytic
effects may be caused by NPY–CRF interactions; these two neuro-peptides are co-localized
in numerous limbic regions and exert opposing effects on the amygdala, LC, and
periaqueductal gray matter, the last region is responsible for the motor output for the
behavioral stress response.133

Corticotropin-releasing factor and the hypothalamic-pituitary-adrenal axis—
Although very few studies have specifically examined HPA axis reactivity in patients who
have GAD, there is no evidence of hypercortisolism, dexamethasone non-suppression, or
increased CSF CRF concentrations.67,68 That CRF and the HPA axis seem to play a less
prominent role in GAD than in other anxiety disorders and MDD is perhaps surprising given
that CRF antagonists have been demonstrated to possess anxiolytic effects (134–136;
reviewed in137). It is possible that the lack of evidence for a pathophysiological role for CRF
circuits in GAD is an artifact of the paucity of endocrine studies in these patients. It is
equally likely, however, that the difference in CRF/HPA axis observations in patients who
have MDD and patients who have GAD represents a critical biological distinction between
these two syndromes.

Genetic Contribution to Generalized Anxiety Disorder
Overall the genetic contribution is thought to be less substantial in GAD than in other
anxiety disorders. Studies have shown that first-degree relatives of GAD probands have
elevated rates of mood and anxiety disorders in general138 and perhaps have a specifically
increased risk for GAD.43 A recent study of more than 3000 twin pairs found modest
familial aggregation of GAD with equal heritability in males and females in same-sex or
opposite-sex twin pairs; there was no evidence for gender-specific genetic underpinnings of
GAD.139 Results from twin studies estimate that approximately 32% of the variance for
liability to GAD is caused by additive genetics in male and female twins and that the
remaining variance is explained by environment specific to the individual, rather than the
shared environment of the twin pair (reviewed in43). Only a handful of genetic-association
studies specific for GAD have been reported, and all are thus far unreplicated (eg,140–142).

SUMMARY AND GUIDANCE FOR THE DIAGNOSTIC AND STATISTICAL
MANUAL OF MENTAL DISORDERS, EDITION FIVE
Functional Neuroanatomy

The Neurobiology of Anxiety Disorders Commonalities in anxiety disorders include
functional hyperactivity in limbic regions, particularly the amygdala, and the inability of
higher cortical executive areas to normalize the limbic response to stimuli (Table 2). In
contrast to MDD, in which amygdala hyperactivity is observed under resting conditions,
provocation paradigms are required to identify amygdalar hyperactivity in patients who have
an anxiety disorder.

Additional neuroimaging studies must focus not on individual brain regions but on
corticolimbic circuits. Between-laboratory consistency must become a priority throughout
the research community to allow interpretation of results across studies. Perhaps most
importantly, neuroimaging research must place more emphasis on hypothesis-driven studies.
It is hoped that such increased consistency and clear goals will lead to more reliable and
robust observations that finally can piece together the diagnosis-specific clinical
implications of functional and structural alterations in patients who have mood and anxiety
disorders.
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Neurotransmitter and Neuroendocrine Signaling
Disruption in neurotransmitter, neuropeptide, and neuroendocrine signaling is not unique to
mood and anxiety disorders; a great deal of overlap between diagnostic syndromes should be
expected. For example, dysregulation of the generalized stress response is common to
numerous medical and psychiatric diagnoses. Repeated, prolonged, or particularly severe
stress could increase the magnitude and duration of CRF, glucocorticoid, and
catecholaminergic signaling, and these three signaling classes can explain the psychiatric,
circulatory, metabolic, and immune manifestations of stress-related illness. In contrast,
hypoactivation of the HPA axis as a compensatory mechanism for chronic/severe stress
exposure may occur also. HPA axis hyperactivity is seen in MDD, OCD, PD, anorexia, and
alcoholism (to name a few), whereas HPA axis hypoactivity is observed in chronic fatigue,
fibromyalgia, nicotine withdrawal, PTSD, and the postpartum period. Importantly, the
direction of the HPA axis disruption depends on the nature, duration, predictability, and
severity of the stressor and also on the age of the subject, individual genetic background, and
previous experiences (reviewed in58). The clinical implications of altered monoaminergic
signaling probably are influenced by an equally long list of factors. A closer relationship
between preclinical and clinical research is essential before it will be possible to begin to
piece together the relationship between each of these factors.

Genetic Contribution
The Neurobiology of Anxiety Disorders When attempting to identify the genetic
contribution toward susceptibility for psychopathology, the candidate genes are largely the
same across diagnoses and tend to be genes whose products regulate the HPA axis and
monoaminergic signaling. These similarities, however, do not preclude important clinical
distinctions between diagnostic classes within anxiety disorders or between anxiety
disorders and MDD. Some genetic factors are nonspecific but influence the risk for
psychopathology in general. Others are diagnosis specific. Moreover, the impact of
individual diagnosis-specific genetic risk factors may vary over time, depending on the
developmental stage and previous experience of each subject.

Overall, the decision to classify MDD, PD, PTSD, SAD, and GAD as distinct disorders must
be based not only on clinical phenomenology but also on pathophysiology, genetics, course
of illness, and treatment response data. Neuroendocrine, neurotransmitter, and
neuroanatomical differences between patients who have mood or anxiety disorders and
healthy control subjects must be interpreted with care (Table 3). Brain regions and
neurotransmitter systems implicated in mood and anxiety disorders have wide-ranging
functions, many of which may be unrelated to the etiology of psychiatric disorders. Finally
each of these disorders clearly represents the result of complex gene–environment
interactions. The clinical phenotype may well be determined largely by individual
differences in multiple genes that exhibit functional polymorphisms. It is hoped that
continued research will begin to uncover more consistent findings across laboratories,
methodologies, and subjects. At that point, a new discussion of diagnostic criteria may be
relevant.
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Fig. 1.
The limbic system. (A) Lateral view of cortex. (B) Sagittal view of slice through midline.
NAc, nucleus accumbens; OFC, orbital frontal cortex; PAG, periaqueductal gray, VTA,
ventral tegmental area.
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Fig. 2.
The fear response is a hardwired process involving the amygdala. (Adapted from Davis M.
The role of the amygdala in fear and anxiety. Ann Rev Neurosci 1992;15:356; with
permission.)
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Fig. 3.
The HPA axis. Black line- Suppression connection; dotted line- Facilitory connection; dots
and dashes line- Suppression connection indirect pathway (via BNST and other limbic
regions); and dashed lines- Facilitory connection indirect pathway (via BNST and other
limbic regions).
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Table 1

Neuropeptides in stress and psychopathology

Neuropeptide Role in Stress-neurobiology Role in Psychopathology

Cholecystokinin (CCK)
(Brawman-Mintzer et al., 1997;
Koszycki et al., 2004)

Weak ACTH secretagogue Anxiogenic
Exogenous CCK evokes anxiety;
patients who have anxiety
disordersare hypersensitive

Galanin (Gal)
(Barrera et al., 2005;
Karlsson and Holmes, 2006)

Increased by physiological
and psychological
stress and pain

Depressogenic
Galanin antagonists are being
developed and possess
antidepressant properties

Neuropeptide Y (NPY)
(Hashimoto et al., 1996;
Heilig, 2004; Martin, 2004; Sajdyk et al., 2004;
Hou et al., 2006;
Yehuda et al., 2006;
Karl and Herzog, 2007)

Increased during stress
Endogenous alarm system
Stress-induced increase
in feeding
Modulate behavior to
cope with
chronic stress.

Antidepressant and anxiolytic
in laboratory animals
Depressed patients have low
plasma concentrations of
NPY, especially in first
episode
Plasma NPY concentration is
normalized by
antidepressants

Oxytocin (OT)
Gimpl and Fahrenholz, 2001)

Weak ACTH
secretagogue

Low OT in CSF is associated
with depression in women

Vasopressin (AVP)
(van Londen et al., 1997; Ma et al., 1999;
Wigger et al., 2004;
Goekoop et al., 2006)

Increased by stress Moderate ACTH
secretagogue
synergize to stimulate
ACTH production
and release

Potentially elevated in
depression

Corticotropin-releasing
factor

Increased by stress Primary ACTH
secretagogue

Elevated in MDD, PD, PTSD;
associated with HPA
axis hyperactivity in MDD and
HPA axis hypoactivity in PTSD
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Table 2

Functional anatomy of normal and pathological sadness and anxiety

Anatomic Area Normal and Pathological Sadness Normal and Pathological Anxiety

Insular cortex Acute sadness activates dorsal
insula

Acute anxiety activates
ventral insula

Cingulate cortex Pregenual ACC deactivated in
euthymic MDD
Pregenual ACC activated in acute
MDD
Subgenual ACC normal in acute
MDD but hypoactive in patients
who have remitted MDD
ACC and PCC activated by acute
sadness

Acute anxiety has no effect on ACC
but deactivates the PCC

Amygdala Overactive at rest in primary mood
disorders
Magnitude of activity correlates to
severity
Overactivity without conscious
perception
Normal activity after treatment
Smaller volume of left amygdale
versus controls

Not overactive at rest
Overactive during symptom
provocation
Right amygdala most relevant to
anxiety

Psychiatr Clin North Am. Author manuscript; available in PMC 2013 June 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Martin et al. Page 30

Table 3

Summary of select neurotransmitter abnormalities in MDD, GAD, and normal sadness and anxiety

Neurotransmitter Normal and Pathological Sadness Normal and Pathological Anxiety

GABA Inconsistent
GABA-A agonists not approved for
MDD by the Food and Drug
Administration

Decreased
GABA-A receptor density in GAD;
GABA-A agonists are anxiolytic
Affinity for GABA-A predicts
efficacy of benzodiazepines

Serotonin Decreased 5HIAA CSF
concentrations in suicide victims
Normal in non-suicidal MDD
patients
Blunted prolactin response to 5-HT
agonists

Decreased 5HIAA CSF
concentrations in some studies

SERT Decreased density in midbrain
Density correlates negatively with
anxiety symptoms in MDD

Density correlates negatively with
anxiety symptoms in GAD

5HT1A — Anxiolytic as DRN autoreceptors
Anxiogenic as hippocampus
postsynaptic receptors

5HT2 Desensitized by antidepressants Anxiogenic
Antagonists are anxiolytic

Norepinephrine Elevated in CSF and plasma of
patients who have severe
melancholic MDD
Unchanged in patients who have
non-melancholic MDD
Blunted growth hormone
response to clonidine
Blunted rapid-eye-movement
response to clonidine

Unchanged in GAD
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