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Abstract

Many species are shifting their distributions due to climate change and to increasing international trade that allows
dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture.
Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling
strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider
mite (Tetranychus evansi), an invasive pest that affects some of the most important agricultural crops worldwide, to show
how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1)
species prevalence; (2) modelling method; and (3) variability in environmental responses between mites belonging to two
invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current
and two different climate change scenarios for 2080, and variance between model projections were mapped to identify
regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater
influence than the statistical model once the best modelling strategies were selected. The major areas threatened under
current conditions include tropical countries in South America and Africa, and temperate regions in North America, the
Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other
temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap
suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to
environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be
used jointly to draw conclusions on invasive threat considering different sources of uncertainty in species distribution
modelling.
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Introduction

Species may respond to environmental change by either shifting

their geographic range, getting extinct, or else adapting locally to

the new environmental conditions through changes in phenology

and behaviour [1,2,3]. Adding to this diversity of potential

responses, range shifts, new introductions and extinctions of

agricultural pests and their predators may have major conse-

quences for food production and food security [4,5]. This is

especially true in countries where the infrastructure and gover-

nance may not be optimized to respond rapidly to pest outbreaks

and yield changes [6,7,8]. Moreover, changes in agricultural

productivity in some tropical areas may be coupled with rapid

human population growth, and these changes may have synergistic

negative impacts on human populations [7]. Therefore, the

question of how these changes will affect agriculture throughout

the world will have important economic and social consequences

under climate change scenarios.

Species distribution modelling (SDM) has been used extensively

to predict current species distributions and future range shifts

[9,10]. Identifying areas and ecosystems at high risk of pest

outbreaks may help to redirect new efforts to control further pest

spread and serve as an indicator of how vulnerable different areas

may become when climatic conditions will change [11]. However,

studies using SDMs rarely quantify or map uncertainty, although

this has been recognized as one of the major needs in the field

[12,13,14]. Ensemble forecasting has been advocated as a way to

remediate this issue by considering several statistical modelling

strategies at the same time and averaging their predictions

according to the predictive ability of the models [15,16]. Another

common issue in modelling species distributions is the lack of a

meaningful measure of presence-absence discrimination when

presence-only data is available for modelling [17,18], making the

task of weighting different models in an ensemble forecasting

approach difficult. Although some options have been proposed to

measure model predictive ability when presence-only data are

available [19,20] they rarely explore the effects of varying species

prevalence (i.e. the overall frequency of the species in the

modelling area) in the results when a priori information regarding
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potential prevalence is absent, a factor that has been widely

recognized to affect model predictions [21,22,23,24].

The tomato red spider mite Tetranychus evansi is a small

arthropod, first recorded in Brazil in 1952 [25] under the name

of Tetranychus marianae and described in 1960 from Mauritius [26].

It was only after it caused significant agricultural damage in

tomato cultures in the early 1980 s in Africa and Brazil that the

species started being considered as a significant agricultural pest

[27]. Outbreaks were said to cause up to 90% loss in tomato

cultures in South-East and West Africa [28,29]. Outbreaks were

then recorded in Europe, especially around the Mediterranean

basin where it has spread significantly in the last decades. The mite

was later reported in Asia, mainly Japan and China (see [30] for a

complete list of reports). The species is inconspicuous, with a rapid

growth cycle (10 days under optimal conditions) and high

tolerance to hot and dry conditions, making it a challenging pest

in many agricultural systems. The species has also been

misidentified in several occasions (e.g. [31]), causing a slow

response to its outbreaks in newly invaded areas, an issue often

reported for spider mites (e.g. [32]). Detailed recent genetic studies

of different populations of T. evansi around the world suggest that

the species is native to South America, and show that two main

distinct clades, both coming from Brazil, and genetically charac-

terized as clade 1 and 2, explain current patterns of species genetic

diversity [33,34]. The most likely scenario for the species spread

involves an initial introduction of clade 1 from Brazil into Africa,

and invasion of this population into the Mediterranean, with later

reports in Asia. A second introduction of clade 2 occurred into a

restricted area of the Mediterranean basin, with a subsequent

mixture of both clades [33]. Therefore the two clades have

invaded distinct geographic areas worldwide. The question that

remains to be answered is whether or not this current differential

distribution is solely the result of introduction events, or whether it

reflects large-scale environmental niche differentiation between

clades. These two scenarios have important consequences for

climate change analysis, since in the absence of niche differenti-

ation mites of the two clades of T. evansi would have the same

invasive potential when introduced into a new area. This would be

an important issue to take into account when designing strategies

to prevent future pest expansion or when proposing quarantine

policies.

The current study had two main objectives. The first one was to

generate robust predictions of the potential distribution of the

species by studying the effects of the following sources of

uncertainties in model predictions: (1) the type of statistical

modelling used; (2) the lack of knowledge regarding potential

prevalence of the species at the global scale; and (3) the variability

in environmental preferences between mites belonging to the two

major invasive clades of T. evansi described above. The second

objective was to use this knowledge to forecast the potential effects

of climate change on T. evansi’s potential distribution using two

contrasting climate change scenarios for 2080.

Materials and Methods

Occurrence and Environmental Datasets
Occurrence data on T. evansi was compiled from literature

sources, mainly by screening the bibliography associated with this

species in the Spider Mites Web database [35] and by adding

recent observations. Part of this effort was already accomplished

for previous publications [30,36] but was here thoroughly

reviewed, updated and completed. Only identifiable point

locations were georeferenced, either through direct transcription

of the geographic coordinates when available in the published

source, or by using online geographic gazetteers and GoogleEarth

to locate precisely the sampling site. Vague references to large

regions, such as ‘‘present in southern Florida’’ were therefore

discarded from this georeferencing effort. Some of the individuals

sampled (mainly those coming from our own sampling efforts)

were genotyped for previous studies [33,34], revealing the

existence of two clades that have invaded different geographic

areas. We therefore assigned the georeferenced location points for

T. evansi as belonging to one or the other clade when either the

georeferenced individuals were the genotyped ones or when there

was no ambiguity regarding their potential genotype according to

their origin. This allowed us to model the species globally, as well

as each clade separately.

The original occurrence data therefore included 556 point

occurrences for T. evansi, and 418 and 107 point occurrences for

the first and second clade respectively. These data were then

overlaid with a 10-minute global grid, which corresponds to the

resolution of the environmental data (see below). This means that

a grid cell was recorded as a presence, regardless of whether one or

several point occurrence records were within its limits. The

resolution is also coarse enough (equivalent to 18.6 km at the

equator) to reduce the importance of any geographic location

error at finer scales. This left 380, 288 and 73 presence records for

the species and for each clade in the distribution modelling,

respectively (see Figure S1 for a map of record distributions).

Altitude as well 19 bioclimatic variables were downloaded from

Worldclim at a resolution of 10 minutes for current conditions, as

well as for two climate change scenarios for the year 2080 (A1B

and B2A from the Canadian Centre for Climate Modelling and

Analysis-CCCMA, which are based on the CGCM circulation

model). These variables include mean, maximum, minimum and

variability measures on temperature and precipitation [37]. The

A1B scenario assumes rapid economic growth and a population

that peaks in 2050, with some technologies being introduced to

reduce the effects of fossil fuel (so it is a moderate scenario of

climate change under high economic growth). The B2A scenario is

more conservative, assuming lower population and economic

growth, as well as introduction of environmental technologies,

therefore producing less dramatic climatic changes projections.

Here we will explore three sources of uncertainty in model

projections. The first one is the species prevalence assumed when

using background data (i.e. a random sample of the available

environment), rather than real absence records, and the second

one is the nature of the SDM used. Therefore, in the first part we

will focus on using only one type of SDM (Generalized Additive

Modelling, GAM) but several prevalence levels (from 10% to 90%)

whereas in the second part we will use only one species prevalence

(50%) and a diversity of SDMs. The third source of uncertainty

involves differential response between clades to environmental

gradients, and will therefore involve analysis of niche overlap

between the two clades of T. evansi, and projection of potential

range for mites of each clade. We describe details below.

Species Distribution Modelling
When absence data is not available, it is usually recommended

that a large random sample of the available environment, called

background data, is used in order to fit the models and assuming

equal weights between background data and presence records

[38,39]. However, species prevalence has been shown to greatly

influence model outputs [22,24,40,41] so that the assumption of

equal weights, equivalent to assuming 50% prevalence, should

affect model predictions. We tested here what would be the effects

of varying prevalence of the input data in model predictions by

considering the following prevalence levels: 10, 30, 50, 70 and

Uncertainties in Species Distribution Forecasts
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90%. For all modelling efforts the presence records were

complemented here with 100,000 background data randomly

sampled globally so as to represent the available environment.

When the modelling technique allowed it (i.e. for all methods

requiring presence and absence information), presences and

absences were weighted to correspond to the assumed species

prevalence (e.g. for a prevalence of 50%, presences and absences

weight the same, whereas for a prevalence of 90% a presence

weights 9 times more than an absence). This allows including a

large number of background points in order to represent the

available environmental variability, but at the same time

controlling for the assumed species prevalence. Notice that if the

weights were not employed, we would be assuming unrealistically

low species prevalence (380 presences/100,000 sites < 0.004).

In all our modelling efforts, we took a General Additive

Modelling approach (GAM) as our starting point. GAM allows for

non-linear responses to environmental gradients, yet the level of

complexity can be controlled for to avoid model over-fitting [42].

Here the maximum model complexity was fixed to quadratic

relationships (k = 3) using the mgcv package within R [43]. This

has been shown to perform among the best modelling strategies

when compared to other SDMs [44,45]. In order to select a subset

of environmental variables and avoid multi-collinearity we used a

forward variable selection strategy. We therefore started by fitting

a GAM model with one predictor at a time. The predictor that

showed the highest explained deviance was retained in the next

step, when a second predictor was added in the same manner.

Before any new addition, we eliminated from the next set of

potential predictors those that showed a high correlation (Pearson

r $0.8) with the predictors already included in the model. This

process of addition continued until the newly added predictor was

not significant in the model or until the addition of a new variable

did not produce a decrease in the Akaike Information Criterion

(AIC) [46]. The variables selected in this manner were then

systematically used for all other SDMs. This allowed making

comparisons between model outputs knowing that all models

included the same set of predictors.

To understand how much uncertainty is added in the modelling

effort by species prevalence in the input data, we only used GAM,

with the variables selected as explained above, and varied input

prevalence on the weights using 10, 30, 50, 70 and 90%

prevalence. To understand how much uncertainty is added by

using different modelling techniques we kept input prevalence at

50% and used 8 different modelling strategies. Once the variables

were selected using the initial GAM forward selection strategy

described above, 7 other SDMs were implemented for T. evansi in

the same dataset and using the same predictors: GLM, CART,

BRT, mahalonis distance (MAHAL), BIOCLIM, DOMAIN, and

MAXENT. A general description of all these methods can be

found in [44] and [47]. Tree based methods (CART, BRT) and

environmental distance-based methods (MAHAL, BIOCLIM,

DOMAIN) were fitted using only linear terms in the predictors,

whereas the regression based method (GLM) was fitted using

linear and quadratic terms for all predictors in order to account for

potential non-linear responses to environmental gradients. MAX-

ENT was run with default values, and the logistic output was

selected for further analysis. MAXENT, MAHAL, BIOCLIM and

DOMAIN are presence-only modelling strategies [44,48]. There-

fore, they do not allow directly including the weight of background

data on the output. For all other models, we used the 50% weight

for presences and absences (i.e. 50% prevalence). Results from

MAHAL are usually expressed as 1-distance from the environ-

mental space where the species occur. Therefore a value of 1

represents the maximum value (i.e. no distance, meaning sites that

are environmentally identical to occurrence sites) and predictions

include some very large negative values. Since these values were

not comparable to the ones in the model outputs for the other

models (which result in a range between 0 and 1), we rescaled by

linear transformation the output values from MAHAL so that the

minimum corresponds to 0 and the maximum corresponds to 1

before performing any consensus or variance analysis.

Consensus and Variance between Modelling Efforts
In the previous analyses, the outputs of each modelling exercise

were summarized to look at geographic areas that represent

consensus and divergence between models. Three consensus

methods were initially tested. First, the predicted probability of

occurrence (or suitability in the case of presence-only models) for

each model (i.e. for each prevalence level and for each modelling

strategy) were summarized in a principal component analysis

(PCA). The first axis of the PCA represents the axis of agreement

between models [49] and was used as a measure of consensus. The

other two consensus maps represented the mean and median

predicted probability values [50]. However, since the three

methods provided very similar results (Figure S2), from now on

we only focus on the median between model predictions.

Variance between model predictions was also calculated in

order to represent the areas of major uncertainties, and to

compare uncertainty due to prevalence versus statistical model

used.

To eliminate the influence of potentially poor models, we tested

model classification performance using three indices: AUC or the

area under the receiver operator curve, which is an overall

measure of presence and absence performance that is independent

of any threshold; sensitivity (i.e. success rate at predicting

presences) and specificity (i.e. success rate at predicting absences),

which depend on a threshold value on predicted probabilities that

is used to transform model outputs into presence-absence

predictions. We used the threshold that maximizes the sum of

specificity and sensitivity [51]. To perform predictions we only

kept models with AUC values $0.9. All these measures of

performance were calculated by fitting the models with 80% of the

presence records and a random sample of pseudo-absences of

same size, and testing the models with the other 20% of presence

records and another pseudo-absence random sample of same size,

all of this repeated 10 times. This reduces the inflation of the AUC

and other classification success indices which, calculated with a

large sample of pseudo-absences assumed to be real absences,

would always appear as over-optimistic [18].

Environmental Niche Overlap between Clades
The goal of this analysis effort was to look at whether or not the

two genotypes are occupying the same environmental space. We

started by carrying out a separate modelling effort for each clade

by using GAM and the forward selection method described above.

However, this resulted in the selection of the same environmental

variables used for T. evansi at the species level. We therefore used

the same variables, which also allowed us to compare each

genotype’s occupancy along the same environmental axes. Then

we looked at current potential distributions of the species and

clades as well as the overlap on each environmental axis. To look

at niche overlap, we used an Outlying Mean Index analysis (OMI)

[52]. This is a multivariate analysis that allows studying patterns of

occupancy along environmental gradients. The distribution of

occurrence can have linear as well as unimodal relationships with

environmental gradients [52,53]. In a first step, an ordination

technique is applied to look for combinations of environmental

variables that optimize the separation between species occurrenc-
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es. Niche position (mean environmental conditions of occurrence)

and niche breadth (variance around the niche position) of clades

along each of the ordination axes can then be calculated and

compared to a random expectation by comparing the observed

patterns of niche position and breadth to what would be expected

from a random sample of same size from the global environment

[52,53,54]. This provides information regarding whether or not

the tested clades are specialized in some portions of the

environmental gradients. In order to test whether or not there

are significant differences between the two clades, we performed a

pairwise t-test of occupancy along the main OMI axis, as well as

along the individual environmental gradients.

Results

Different Prevalence versus Different Modelling
Strategies

Models across prevalence levels and across modelling tech-

niques produced very good classification success rates (Table 1 and

2), with AUC and sensitivity values generally .0.9, and specificity

values .0.8.

When background data was weighted to vary potential species

prevalence, the resulting predictions were biased in the same way

than the input data. In other words, a model built with presence

weights of 10% (i.e. meaning 10% prevalence for the species

globally) predicted low probability values globally in wider areas as

compared to a model for which 90% prevalence was assumed

(Figure S3). All model prevalence predict the core current

distribution in the native range of Brazil, as well as in areas of

the Mediterranean basin, Africa and Japan where the pest has

already been recorded, but also areas such as southern Australia,

where the species has not been recorded (Figure 1a and b).

Different modelling strategies represent quite different maps of

potential distributions for current conditions (Figure S4). MAHAL

and DOMAIN tend to predict much larger areas than the other

modelling strategies. Since GAM, BRT, CART and MAXENT

produced a higher classification success rate than the other

modelling strategies (Table 2, AUC $0.900), we used these four

models to calculate the median and predict species distributions

(Figure 1c and d). This consensus projections revealed similar

results than by using GAM models only with different prevalence

levels (compare Figure 1a and b versus c and d). In all cases, some

areas where there are no current records are included within the

potential range of the species (e.g. southern Australia). Large

potential range contractions were predicted in Africa and the

Americas, and a range expansion into northern France and

England as well as some limited areas in North America, Asia and

South America were also projected under both climate change

scenarios (Figure 1).

Predictions from individual GAM models with different

prevalence levels, as well as the median across different prevalence

levels, all predict a large contraction of the potential range of the

species under both climate change scenarios (Figure 1a and b).

While some areas remain part of the potential range of the species

both under current and future conditions (black in Figure 1), large

range contractions are predicted under climate change scenarios

in Africa, North America and South America. However, range

expansions into new regions, especially in northern Europe

(northern France and England) are also predicted (red areas in

Figure 1).

Distribution of Uncertainty
Both under current and future climatic conditions, the use of

different statistical models produced lower variance among

predictions than varying prevalence levels when the median of

the four best models were used (Figure 2), but the opposite trend

was observed when all model strategies were considered (Figure

S5). Prevalence produces areas of high uncertainty in Eastern

China and Korea, in Central Asia, and northern England, as well

as some other limited regions in eastern Africa, Europe and in the

Americas (Figure 2a). Modelling strategy produces smaller areas of

high variance in roughly the same places (Figure 2b). This pattern

remains valid across both scenarios of climate change, with

prevalence always producing more variance between predictions

than using different modelling strategies when the best models are

used in the calculation of consensus (Figure 2, first versus second

columns).

Environmental Niche Differentiation between Clades
The first axis in the OMI analysis explained a large percentage

of the variation (96%) on environmental occupancy patterns

between clades. Positive values along OMI 1 represented

environments with low temperature range (annual and diurnal),

low altitude, high annual temperature and precipitation, and low

precipitation during the coldest quarter among others, tempera-

ture range and mean annual temperature being dominant in this

relationship (Table 3). Tetranychus evansi as a whole, as well as each

clade, occupied a limited range of values on the positive side of this

gradient but far from the extreme available OMI 1 values, with

clade 2 having a larger OMI 1 mean with respect to clade 1

(Figure 3), i.e. clade 2 occupied warmer environments with lower

temperature annual ranges (see also Table S1). A bootstrap of

randomly drawn available environmental conditions, compared to

observed occupied sites confirms that the species and the two

clades are significantly specialized along this axis (one tailed

bootstrap test, p-value ,0.001). A pairwise comparison between the

two clades also showed that their occupancy along the first OMI

axis was significantly different (one-sided t-test, p-value ,0.001),

clade 1 specializing in sites representing lower values of OMI 1 as

compared to clade 2 (Figure 3). When the environmental variables

composing OMI 1 were tested individually, all showed significant

differences between the clades (one-sided t-test, p-value ,0.05)

except mean annual precipitation and precipitation during the

driest quarter. These differences in environmental space are

translated into dramatically different potential ranges of the two

clades globally (Figure 4), with mites of clade 1 having a much

larger potential range than those of clade 2, both under current

and future climate change scenarios.

Table 1. Model performance for GAM models considering
different prevalence levels.

Prevalence AUC Sensitivity Specificity

10% 0.94760.019 0.92260.029 0.88960.041

30% 0.94460.017 0.92660.037 0.87260.041

50% 0.94560.021 0.94660.036 0.86460.044

70% 0.94360.019 0.93060.027 0.87560.044

90% 0.91860.025 0.91260.043 0.82660.057

Median 0.94460.003 0.95360.011 0.84360.001

Performance is shown in terms of classification rate (AUC, sensitivity and
specificity). Sensitivity and specificity correspond to those calculated using the
MST threshold; the validation set used here represents 20% of the data (the
other 80% was used to calibrate the models).
doi:10.1371/journal.pone.0066445.t001

Uncertainties in Species Distribution Forecasts
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Discussion

We showed here that although modelling strategy and species

prevalence have major effects on the species distribution forecasts,

consensus strategies allow drawing robust conclusions regarding

core distribution areas and uncertainty can be mapped. Niche

overlap analysis shows that invasive mites of both clades of T. evansi

specialize in warm environments, but that those of clade 1 have a

much larger potential range than the others. Both clades would

therefore present very different invasive potentials when intro-

duced into new areas. Overall, this study provides an applied

example of how the joint use of species distribution modelling and

niche overlap analysis can be used to study current and future

invasive potential of species considering different sources of

uncertainty.

Our study reveals several important aspects of the species

distribution modelling process and its use in invasive risk

assessments for a significant agricultural pest under climate change

scenarios. First, once the best modelling strategies are chosen with

respect to their predictive ability (i.e. classification rate success),

model uncertainty due to lack of knowledge on potential

prevalence of the species has a larger impact than modelling

strategy (Figure 2). The idea that modelling strategy has a large

influence on model predictions is not new. Several recent studies

have shown that it is important to incorporate such uncertainties,

especially under scenarios of climate change [12,55,56]. For

Figure 1. Potential range of Tetranychus evansi. Maps reflect median of predictions from model outputs, comparing current and future climate
from two different climate change scenarios. On the left side, scenario A1B, on the right side the more conservative B2A scenario (see text for
description of scenarios). The upper row shows results from consensus between GAM models with different prevalence levels (10%, 30%, 50%, 70%,
90%), whereas the lower row shows consensus between four different modelling strategies (GAM, BRT, CART, MAXENT) at a prevalence of 50%. Black
areas indicate regions that are predicted as part of the potential range under current and future conditions; blue areas correspond to areas that are
today part of the potential range but that are predicted to become outside the range under climate change conditions in 2080 (range contraction);
red areas indicate potential range expansions meaning they become part of the potential range under climate change scenarios; finally yellow areas
are not part of the potential range.
doi:10.1371/journal.pone.0066445.g001

Table 2. Model performance for different statistical models.

Prevalence AUC Sensitivity Specificity

GAM 0.94560.021 0.94660.036 0.86460.044

GLM 0.82260.033 0.82560.072 0.82060.075

BRT 0.93360.023 0.93460.046 0.81660.077

CART 0.90060.031 0.89260.040 0.86260.044

BIOCLIM 0.86960.034 0.83460.077 0.78760.056

DOMAIN 0.84760.031 0.82560.062 0.72860.078

MAHAL 0.85460.028 0.82460.056 0.74660.037

MAXENT 0.95260.006 0.94260.024 0.86560.015

Median 0.95660.003 0.95660.001 0.84960.001

When the model allows changing species prevalence (i.e. GAM, GLM, BRT,
CART), a prevalence of 50% was used in model weights. Performance is shown
in terms of classification rate (AUC, sensitivity and specificity). Sensitivity and
specificity correspond to those calculated using the MST threshold; the
validation set used here represents 20% of the data (the other 80% was used to
calibrate the models).
doi:10.1371/journal.pone.0066445.t002
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example, Garcı́a et al. [57] studied consensus among seven

modelling strategies for 2,500 animal species across Africa and

using three climate models and three emission scenarios. Their

results showed that the uncertainty associated to the modelling

strategy was higher than that associated to the different climate

change scenarios. However, the effects of assuming 50%

prevalence in their input data were not evaluated. Here we

showed that selecting fewer modelling strategies according to their

classification rate success is a powerful means of reducing model

uncertainties. However, the uncertainty due to the assumed

species prevalence levels in the input data may have important

consequences for model predictions. Species prevalence has long

been known to influence model performance and model outputs

[58,59]. However, current recommendations regarding how to

handle presence-only data usually ignore this aspect of the

modelling process and recommend using 50% prevalence (e.g.

[38,57]) or the use of a correction formula on model outputs that is

also ultimately influenced by the assumptions linked to species

prevalence [21,23,24]. Here we have taken a pragmatic approach,

directly varying input species prevalence in order to assess its

impact on model predictions. As expected, model outputs were

biased in the same direction than model inputs: models fitted with

lower species prevalence produced smaller areas of high suitability

than those that were fitted using higher species prevalence in the

input data (Figure S3). We would therefore recommend imple-

Figure 2. Variance between model projections computed for T. evansi. The left column shows variance between GAM models using varying
prevalence levels (10%, 30%, 50%, 70%, 90%) whereas the right side shows variance among four different modelling strategies (GAM, BRT, CART,
MAXENT) at a prevalence of 50%. Red areas indicate higher uncertainty with respect to blue areas where different models produce similar results.
doi:10.1371/journal.pone.0066445.g002

Table 3. Loadings for the first Outlying Mean Index (OMI).

Variable name OMI 1

Temperature Annual Range 20.976

Mean Altitude 20.194

Mean Temperature Diurnal Range 20.134

Precipitation of Driest Quarter 0.071

Precipitation Seasonality 0.160

Precipitation of Coldest Quarter 0.177

Annual Precipitation 0.322

Annual Mean Temperature 0.767

The first OMI axis explains most of the variation in occupancy patterns between
the two clades of T. evansi. Loadings for the different environmental predictors
are shown in this table.
doi:10.1371/journal.pone.0066445.t003
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menting the same type of ensemble forecasting approach that has

been recommended to summarize consensus among modelling

strategies (e.g. [16]), but adding species prevalence as a second

factor. A simple pragmatic approach would involve first imple-

menting a classic ensemble forecasting using 50% prevalence in

order to select the best modelling strategies, and then varying

species prevalence using the best modelling approach. This would

allow considering differences among modelling strategies as well as

effects of species prevalence on model forecasting. Expert opinion

may reveal to be very useful in limiting the initial choices in this

procedure, especially when species prevalence may have a large

influence on the geographic extent of the potential distribution of

the species and when there is some biological knowledge regarding

factors limiting the species survival in the field.

Second, uncertainty is not distributed homogeneously across

space: areas of large uncertainty can be mapped and identified,

and are much reduced with respect to areas of certainty (Figure 2).

These areas may be related to regions where future climate shows

different properties than the current climate. For example Zurell

et al. [60] showed that large differences among models were

generated when the range of the variables used in the fitting

process was smaller than the range used in the projection phase. In

this case BRT will generate a flat response outside the fitting

range, while a GAM will extrapolate the shape of the relationship

as a continuation of the range of values used to fit the model. As

shown in that study, this generates situations where new conditions

also generate higher uncertainty in model projections. In our case,

a large background sample was used to fit the models, so that

current conditions are fairly well represented. This risk is therefore

likely to influence uncertainty under future scenarios more than

under current conditions. However, high areas of uncertainty

under current and future conditions largely overlap (Figure 2),

suggesting that other factors are also at play. The influence of

prevalence is especially notorious at the edge of the potential range

(left side in Figure 2): if we were to assume higher prevalence

levels, the edge towards more temperate regions would be more

likely to change from unsuitable to suitable, whereas large areas in

the tropics and at the poles remain largely consistent across all

model prevalence. This means that the direction and extent of this

uncertainty could be potentially predictable and would allow

adjusting the models as new invasions unfold, and also focusing

monitoring efforts in these regions in order to determine the

species real potential.

Third, although both climate change scenarios used here are

quite different in terms of their economic and environmental

assumptions, they both produced very similar predictions in terms

of the potential distribution of T. evansi (Figure 1 and 4). This result

echoes that of Garcı́a et al. [57], suggesting that modelling strategy

has a larger influence than climate change scenarios at this scale.

In this situation, a simple average between conditions may be

sufficient to account for climate model uncertainties. As in the case

of the effects of prevalence, identifying the few areas where both

climate change scenarios produce different predictions would also

help set up targeted monitoring efforts that would help refine the

models and generate more concrete management recommenda-

tions for particular pests.

Finally, the analyses of niche overlap among the two main

clades of T. evansi that have invaded different regions of the world

suggest that both mites occupy indeed environments with different

characteristics. Although the patterns of genetic diversity demon-

strate that current distributions of these clades can be explained by

the history of introductions [33] the fact that they both occupy

environments with different characteristics suggests that niche

differentiation has also played a role in the current range of the

species. This suggests that the invasive potential of one of them is

much greater than the other, which is supported by their

distribution range in the invaded continents, with one of the

clades (clade 2) having been found so far in only a very restricted

area in Southern Europe [33]. The fact that it is not only mean

temperature but also temperature range that influences species

distribution may point to more complex physiological responses to

climate change, especially because climate variability is predicted

to increase in parallel to average temperature. Undergoing

experimental work regarding temperature response of mites

belonging to the two clades goes in the same direction,

demonstrating that the most invasive clade is capable of tolerating

much lower minimal temperatures (unpublished data).

Tropical species are increasingly moving around the world and

biological invasions are regarded as a pervasive consequence of

global change and international trade [61,62], a trend that also

applies to spider mites. The introductions of tropical species of

spider mites into Europe has increased by 50% in the last 30 years

[63], the most threatened region in Europe today being the

Mediterranean basin where spider mites feed on subtropical and

tropical crops, such as avocados and citrus [63]. Overall, the idea

that T. evansi will decrease its potential range globally but increase

as a threat to some new areas in northern Europe remains fairly

well supported across models and climate change scenarios despite

variability between clades. This would be beneficial for agriculture

in tropical countries but troublesome in northern Europe.

However, this result needs to be considered with caution. Extreme

temperatures in tropical areas may decrease overall agricultural

productivity in these regions through direct effects of extremely

high temperatures on plants [64,65]. However, current efforts to

model the impacts of climate change on agricultural yield usually

focus on the effects of climate on plant productivity, and ignore

potential interactions with agricultural pests or human manage-

Figure 3. Results from the Outlying Mean Index (OMI) analysis
along the first axis of ordination. The vertical line indicates the
mean of 100,000 sites sampled randomly from the globe. The species as
well as the two clades have their mean (black dots) as well as the
standard deviation (lines around the circle) in positive values for OMI 1,
showing that the species occupies warm and highly variable
environments. This specialization is significant for all groups (bootstrap
with respect to random samples of globally available environments,
one-tailed test, p-value ,0.001), as indicated by *. A pairwise
comparison of sites occupied by clade 1 and clade 2 also shows that
clade 1 occupies significantly lower values along OMI 1 axis.
doi:10.1371/journal.pone.0066445.g003
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ment responses [8,66]. More general studies on biodiversity and

climate change have also pointed to a potential decrease of

ectotherm diversity in the tropics under warmer conditions [67].

This may play in favour of agriculture when pests such as the red

spider mites are projected to get extinct in some areas, but the final

balance will also depend on the composition of the new arthropod

community, with potential extinction of competitors and predators

as well. What these results mean in the wider context of food

security under climate change scenarios is that a large multi-

trophic modelling effort is well overdue in order to identify pests

that may represent an increased risk under new environmental

conditions, so that we can plan and monitor in advance.

Agricultural adaptation in tropical areas will likely involve a

combination of strategies, including the use of drought and heat

resistant varieties of plants where arthropod pests may become less

of a concern, whereas temperate areas will likely require more

monitoring and control of pests spreading from tropical areas.
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doi:10.1371/journal.pone.0066445.g004

Uncertainties in Species Distribution Forecasts

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e66445



References

1. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation.

Nature 470: 479–485.

2. Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and Climate
Change: Integrating Evolutionary and Ecological Responses of Species and

Communities. Annual Review of Ecology, Evolution, and Systematics 41: 321–
350.

3. Parmesan C (2006) Ecological and evolutionary responses to recent climate

change. Annual Review of Ecology Evolution and Systematics 37: 637–669.

4. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, et al. (2010)
Food Security: The Challenge of Feeding 9 Billion People. Science 327: 812–

818.

5. Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of
climate change on natural enemies of agricultural pests. Biological Control 52:

296–306.

6. Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, et al. (2007)
Adapting agriculture to climate change. Proceedings of the National Academy of

Sciences of the United States of America 104: 19691–19696.

7. Rosegrant MW, Cline SA (2003) Global food security: Challenges and policies.
Science 302: 1917–1919.

8. Simelton E, Fraser EDG, Termansen M, Benton TG, Gosling SN, et al. (2012)

The socioeconomics of food crop production and climate change vulnerability: a

global scale quantitative analysis of how grain crops are sensitive to drought.
Food Security 4: 163–179.

9. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than

simple habitat models. Ecology Letters 8: 993–1009.
10. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate

change threats to plant diversity in Europe. Proceedings of the National

Academy of Sciences of the United States of America 102: 8245–8250.

11. Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, et al. (2011) Ecological
impacts of invasive alien plants: a meta-analysis of their effects on species,

communities and ecosystems. Ecology Letters 14: 702–708.
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