Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Thiocyanato-κS)tris(thiourea-κS)mercury(II) chloride

A. Shihabuddeen Syed,^a K. Rajarajan^b* and M. NizamMohideen^c*

^aResearch and Development Center, Bharathiar University, Coimbatore 641 046, India, ^bDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 001, India, and ^cDepartment of Physics, The New College (Autonomous), Chennai 600 014, India

Correspondence e-mail: drkrr2007@gmail.com, mnizam_new@yahoo.in

Received 5 April 2013; accepted 30 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (N–C) = 0.007 Å; R factor = 0.036; wR factor = 0.082; data-to-parameter ratio = 33.1.

In the title salt, $[Hg(NCS)(CH_4N_2S)_3]Cl$, the Hg^{2+} ion is coordinated in a severely distorted tetrahedral manner by three thiourea groups and one thiocyanate anion through their S atoms. The S-Hg-S angles vary widely from 87.39 (5) to 128.02 (4)°. Weak intramolecular N-H···S hydrogen bonds are observed, which form S(6) ring motifs. In the crystal, the ions are linked by N-H···N and weak N-H···Cl interactions, generating a three-dimensional network.

Related literature

For background to mercury(II) complexes with thiourea and thiocyanate ligands, see: Nawaz *et al.* (2010). For hard and soft acids and bases, see: Ozutsmi *et al.* (1989); Bell *et al.* (2001). For related structures, see: Safari *et al.* (2009); Nawaz *et al.* (2010); Ramesh *et al.* (2012). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Hg}(\mathrm{NCS})(\mathrm{CH}_{4}\mathrm{N_{2}S})_{3}]\mathrm{Cl}\\ M_{r}=522.49\\ \mathrm{Orthorhombic},\ Pbca\\ a=8.2175\ (3)\ \mathrm{\mathring{A}}\\ b=16.3257\ (8)\ \mathrm{\mathring{A}}\\ c=22.6793\ (10)\ \mathrm{\mathring{A}} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.140, T_{max} = 0.221$ $V = 3042.6 \text{ (2) } \text{\AA}^3$ Z = 8 Mo K\alpha radiation \mu = 10.83 mm^{-1} T = 293 K 0.30 \times 0.25 \times 0.20 mm

38987 measured reflections 5125 independent reflections 3579 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.057$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.082$ S = 1.055125 reflections $\begin{array}{l} 155 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 2.17 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -1.21 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···Cl1 ⁱ	0.86	2.48	3.277 (4)	155
$N1 - H1B \cdot \cdot \cdot S2$	0.86	2.76	3.475 (5)	142
$N2-H2A\cdots Cl1^{i}$	0.86	2.55	3.335 (4)	152
$N3-H3B\cdots$ Cl1	0.86	2.61	3.320 (5)	141
$N4-H4B\cdots Cl1^{ii}$	0.86	2.51	3.370 (5)	175
$N5-H5B\cdots$ Cl1	0.86	2.54	3.363 (4)	161
$N5-H5A\cdots N7^{iii}$	0.86	2.11	2.933 (7)	160

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}$, y, $-z + \frac{1}{2}$; (iii) -x + 2, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2165).

References

- Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). *Inorg. Chim. Acta*, **319**, 130–136.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.
- Ozutsmi, K., Takamuku, T., Ishiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879.

Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336.

- Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, i33 [doi:10.1107/S1600536813011847]

(Thiocyanato-*kS*)tris(thiourea-*kS*)mercury(II) chloride

A. Shihabuddeen Syed, K. Rajarajan and M. NizamMohideen

Comment

This work is part of a research project concerning the investigation of thiourea (N₂H₄CS) and thiocyanate (SCN) based metal organic crystalline materials and their derivatives (Ramesh *et al.*, 2012). Transition metal thiourea and thiocyanate coordination complexes are candidate materials for device applications including their nonlinear optical properties. As ligands, both thiourea and thiocyanate are interesting due to their potential formation of metalcoordination complexes as they exhibit multifunctional coordination modes due to the presence of 'S' and 'N' donor atoms. With reference to the hard and soft acids and bases) concept (Ozutsmi *et al.*, 1989; Bell *et al.*, 2001), thesoft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands. Several crystallographic reports about mercury(II) complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Nawaz *et al.*, 2010). Here, we report the synthesis and structure of the title salt, $[(SC(2NH_2))_3(SCN)Hg(2^+]^+ . Cl^-,(I).$

In (I), the Hg²⁺ ion is coordinated to three softer S atoms of thiourea and one softer S atom of a thiocyanate anion in addition to the isolated chlorine ion (Fig. 1). Intramolecular N—H···S hydrogen bonds are observed which form S(6) ring motifs (Bernstein *et al.*, 1995). Bond distances and angles are in agreement with those reported for related compounds (Safari *et al.*, 2009; Nawaz *et al.*, 2010). The S—Hg—S angles vary widely from 87.39 (5)° to 128.02 (4)°, indicative of a distorted tetrahedral arrangement. The SCN⁻ moiety is planar [to within 0.007 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The S2—C4—N7 unit is nearly linear with a bond angle of 177.9 (6)°. In the crystal, the ions are stabilized by weak N—H···Cl, and N—H···N intermolecular interactions (Table.1) which form a three-dimensional network (Fig. 2).

Experimental

A mixture of thiourea, ammonium thiocyanate and mercury (II) choloride were dissolved in aqueous solution in the molar ratio 3:1:1 and thoroughly mixed for an hour to obtain a homogenous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal XRD were obtained in 12 days.

Refinement

All H atoms were positioned geometrically with N—H = 0.86 Å and constrained to ride on their parent atoms with $U_{iso}(H)=1.2$ Ueq.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek,

Figure 1

View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

Packing diagram of (I) viewed along the *a* axis. Intramolecular N—H···S hydrogen bonds and weak N—H···Cl, and N—H···N intermolecular interactions are shown as dashed lines.

(Thiocyanato-*kS*)tris(thiourea-*kS*)mercury(II) chloride

Crystal data	
$[Hg(NCS)(CH_4N_2S)_3]Cl$	F(000) = 1968
$M_r = 522.49$	$D_{\rm x} = 2.281 { m Mg m^{-3}}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 5125 reflections
a = 8.2175 (3) Å	$\theta = 2.4 - 31.2^{\circ}$
b = 16.3257 (8) Å	$\mu = 10.83 \text{ mm}^{-1}$
c = 22.6793 (10) Å	T = 293 K
V = 3042.6 (2) Å ³	Block, colorless
Z = 8	$0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.140, T_{max} = 0.221$ <i>Refinement</i>	38987 measured reflections 5125 independent reflections 3579 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 31.8^\circ, \ \theta_{min} = 2.5^\circ$ $h = -12 \rightarrow 6$ $k = -23 \rightarrow 24$ $l = -32 \rightarrow 33$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.082$	neighbouring sites
S = 1.05	H-atom parameters constrained
5125 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0291P)^2 + 7.0058P]$
155 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 2.17 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -1.21 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F* with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C1	1.2410 (5)	0.1993 (3)	0.42350 (17)	0.0280 (8)
C2	1.0389 (5)	0.3016 (3)	0.2771 (2)	0.0321 (9)
C3	0.7067 (6)	0.0234 (3)	0.43089 (19)	0.0333 (9)
C4	1.2429 (7)	-0.0184 (3)	0.3691 (2)	0.0498 (13)
N1	1.3113 (5)	0.1934 (3)	0.37245 (16)	0.0488 (12)
H1A	1.4063	0.2142	0.3671	0.059*
H1B	1.2628	0.1687	0.3439	0.059*
N2	1.3169 (5)	0.2370 (3)	0.46633 (17)	0.0445 (10)
H2A	1.4119	0.2575	0.4604	0.053*
H2B	1.2718	0.2414	0.5004	0.053*
N3	1.0072 (6)	0.3302 (3)	0.32922 (19)	0.0511 (11)
H3A	1.0352	0.3794	0.3383	0.061*
H3B	0.9582	0.2999	0.3547	0.061*
N4	1.1131 (6)	0.3476 (3)	0.2386 (2)	0.0541 (12)
H4A	1.1409	0.3967	0.2477	0.065*
H4B	1.1342	0.3287	0.2040	0.065*
N5	0.6681 (6)	0.0872 (3)	0.46201 (18)	0.0496 (11)

H5A	0.6676	0.0844	0.4999	0.060*	
H5B	0.6430	0.1324	0.4448	0.060*	
N6	0.7440 (8)	-0.0438 (3)	0.4576 (2)	0.0667 (15)	
H6A	0.7430	-0.0458	0.4955	0.080*	
H6B	0.7698	-0.0865	0.4375	0.080*	
N7	1.2853 (8)	-0.0407 (4)	0.4142 (2)	0.0779 (18)	
Hg1	0.92567 (2)	0.123362 (12)	0.340864 (7)	0.03933 (7)	
S1	1.05319 (12)	0.15817 (7)	0.43857 (4)	0.0313 (2)	
S2	1.18864 (19)	0.01386 (9)	0.30317 (6)	0.0529 (4)	
S3	0.70350 (17)	0.02592 (8)	0.35487 (5)	0.0430 (3)	
S4	0.98486 (18)	0.20568 (7)	0.25448 (5)	0.0411 (3)	
Cl1	0.66976 (13)	0.27345 (7)	0.39858 (4)	0.0323 (2)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.025 (2)	0.034 (2)	0.0245 (18)	0.0005 (16)	-0.0007 (15)	0.0005 (16)
C2	0.029 (2)	0.028 (2)	0.040 (2)	-0.0008 (16)	0.0019 (17)	-0.0016 (17)
C3	0.039 (3)	0.029 (2)	0.031 (2)	-0.0060 (18)	0.0015 (18)	0.0054 (17)
C4	0.060 (3)	0.044 (3)	0.046 (3)	0.022 (3)	0.006 (2)	-0.005 (2)
N1	0.032 (2)	0.090 (3)	0.0248 (18)	-0.021 (2)	0.0068 (15)	-0.010 (2)
N2	0.036 (2)	0.066 (3)	0.0310 (19)	-0.019 (2)	0.0034 (16)	-0.0137 (19)
N3	0.061 (3)	0.037 (2)	0.055 (3)	-0.013 (2)	0.019 (2)	-0.0159 (19)
N4	0.076 (3)	0.030 (2)	0.057 (3)	-0.015 (2)	0.024 (2)	-0.0046 (19)
N5	0.078 (3)	0.034 (2)	0.037 (2)	0.007 (2)	0.002 (2)	0.0028 (18)
N6	0.123 (5)	0.037 (3)	0.040(2)	0.026 (3)	0.002 (3)	0.008 (2)
N7	0.110 (5)	0.079 (4)	0.044 (3)	0.043 (4)	0.005 (3)	0.008 (3)
Hg1	0.04559 (12)	0.04260 (11)	0.02981 (9)	-0.01684 (8)	-0.00241 (7)	0.00517 (7)
S 1	0.0253 (5)	0.0458 (6)	0.0226 (4)	-0.0040 (4)	0.0020 (4)	-0.0053 (4)
S2	0.0672 (10)	0.0556 (8)	0.0358 (6)	0.0222 (7)	-0.0004 (6)	-0.0097 (6)
S3	0.0545 (8)	0.0436 (7)	0.0310 (5)	-0.0259 (6)	-0.0047 (5)	0.0018 (5)
S4	0.0683 (8)	0.0323 (6)	0.0227 (5)	-0.0161 (6)	-0.0053 (5)	0.0020 (4)
C11	0.0305 (5)	0.0362 (5)	0.0301 (5)	-0.0054 (4)	-0.0013 (4)	0.0004 (4)

Geometric parameters (Å, °)

C1—N1	1.297 (5)	N2—H2B	0.8600
C1—N2	1.309 (5)	N3—H3A	0.8600
C1—S1	1.717 (4)	N3—H3B	0.8600
C2—N3	1.297 (6)	N4—H4A	0.8600
C2—N4	1.302 (6)	N4—H4B	0.8600
C2—S4	1.707 (4)	N5—H5A	0.8600
C3—N6	1.290 (6)	N5—H5B	0.8600
C3—N5	1.298 (6)	N6—H6A	0.8600
C3—S3	1.725 (4)	N6—H6B	0.8600
C4—N7	1.141 (7)	Hg1—S4	2.4250 (11)
C4—S2	1.647 (6)	Hg1—S3	2.4422 (12)
C4—S2	1.647 (6)	Hg1—S1	2.5162 (10)
N1—H1A	0.8600	Hg1—S2	2.9320 (14)
N1—H1B	0.8600	Hg1—S2	2.9320 (14)

N2—H2A	0.8600		
N1—C1—N2	119.0 (4)	C2—N4—H4B	120.0
N1-C1-S1	123.3 (3)	H4A—N4—H4B	120.0
N2-C1-S1	117.7 (3)	C3—N5—H5A	120.0
N3-C2-N4	119.9 (4)	C3—N5—H5B	120.0
N3—C2—S4	123.4 (4)	H5A—N5—H5B	120.0
N4-C2-S4	116.7 (4)	C3—N6—H6A	120.0
N6-C3-N5	119.1 (4)	C3—N6—H6B	120.0
N6—C3—S3	119.6 (4)	H6A—N6—H6B	120.0
N5—C3—S3	121.4 (4)	S4—Hg1—S3	128.02 (4)
N7—C4—S2	177.9 (6)	S4—Hg1—S1	120.18 (4)
N7—C4—S2	177.9 (6)	S3—Hg1—S1	110.11 (4)
C1—N1—H1A	120.0	S4—Hg1—S2	87.39 (5)
C1—N1—H1B	120.0	S3—Hg1—S2	101.05 (5)
H1A—N1—H1B	120.0	S1—Hg1—S2	95.02 (4)
C1—N2—H2A	120.0	S4—Hg1—S2	87.39 (5)
C1—N2—H2B	120.0	S3—Hg1—S2	101.05 (5)
H2A—N2—H2B	120.0	S1—Hg1—S2	95.02 (4)
C2—N3—H3A	120.0	C1—S1—Hg1	106.69 (14)
C2—N3—H3B	120.0	C4—S2—Hg1	97.45 (18)
H3A—N3—H3B	120.0	C3—S3—Hg1	97.71 (15)
C2—N4—H4A	120.0	C2—S4—Hg1	108.55 (16)
N1—C1—S1—Hg1	-14.6 (4)	S2—Hg1—S2—C4	0 (9)
N2-C1-S1-Hg1	166.6 (3)	N6—C3—S3—Hg1	-115.5 (4)
S4—Hg1—S1—C1	-32.03 (16)	N5—C3—S3—Hg1	66.4 (4)
S3—Hg1—S1—C1	161.59 (16)	S4—Hg1—S3—C3	-160.34 (16)
S2—Hg1—S1—C1	57.87 (16)	S1—Hg1—S3—C3	4.69 (17)
S2—Hg1—S1—C1	57.87 (16)	S2—Hg1—S3—C3	104.27 (17)
S2-C4-S2-Hg1	0 (100)	S2—Hg1—S3—C3	104.27 (17)
S4—Hg1—S2—S2	0.00 (8)	N3—C2—S4—Hg1	-17.9 (5)
S3—Hg1—S2—S2	0.00 (8)	N4—C2—S4—Hg1	163.4 (4)
S1—Hg1—S2—S2	0.00 (8)	S3—Hg1—S4—C2	138.25 (16)
S4—Hg1—S2—C4	150.5 (2)	S1—Hg1—S4—C2	-25.45 (17)
S3—Hg1—S2—C4	-81.2 (2)	S2—Hg1—S4—C2	-119.74 (17)
S1—Hg1—S2—C4	30.5 (2)	S2—Hg1—S4—C2	-119.74 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1A····Cl1 ⁱ	0.86	2.48	3.277 (4)	155
N1—H1 <i>B</i> ···S2	0.86	2.76	3.475 (5)	142
N2—H2A···Cl1 ⁱ	0.86	2.55	3.335 (4)	152
N3—H3 <i>B</i> ···Cl1	0.86	2.61	3.320 (5)	141
N4—H4 <i>B</i> ···Cl1 ⁱⁱ	0.86	2.51	3.370 (5)	175
N5—H5 <i>B</i> ···Cl1	0.86	2.54	3.363 (4)	161
N5—H5 <i>A</i> ····N7 ⁱⁱⁱ	0.86	2.11	2.933 (7)	160

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, *y*, -*z*+1/2; (iii) -*x*+2, -*y*, -*z*+1.